1
|
Castro-Camba R, Neves M, Correia S, Canhoto J, Vielba JM, Sánchez C. Ethylene Action Inhibition Improves Adventitious Root Induction in Adult Chestnut Tissues. PLANTS (BASEL, SWITZERLAND) 2024; 13:738. [PMID: 38475584 DOI: 10.3390/plants13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Phase change refers to the process of maturation and transition from the juvenile to the adult stage. In response to this shift, certain species like chestnut lose the ability to form adventitious roots, thereby hindering the successful micropropagation of adult plants. While auxin is the main hormone involved in adventitious root formation, other hormones, such as ethylene, are also thought to play a role in its induction and development. In this study, experiments were carried out to determine the effects of ethylene on the induction and growth of adventitious roots. The analysis was performed in two types of chestnut microshoots derived from the same tree, a juvenile-like line with a high rooting ability derived from basal shoots (P2BS) and a line derived from crown branches (P2CR) with low rooting responses. By means of the application of compounds to modify ethylene content or inhibit its signalling, the potential involvement of this hormone in the induction of adventitious roots was analysed. Our results show that ethylene can modify the rooting competence of mature shoots, while the response in juvenile material was barely affected. To further characterise the molecular reasons underlying this maturation-derived shift in behaviour, specific gene expression analyses were developed. The findings suggest that several mechanisms, including ethylene signalling, auxin transport and epigenetic modifications, relate to the modulation of the rooting ability of mature chestnut microshoots and their recalcitrant behaviour.
Collapse
Affiliation(s)
- Ricardo Castro-Camba
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| | - Mariana Neves
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jesús M Vielba
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| | - Conchi Sánchez
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Trivellini A, Toscano S, Romano D, Ferrante A. LED Lighting to Produce High-Quality Ornamental Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1667. [PMID: 37111890 PMCID: PMC10144751 DOI: 10.3390/plants12081667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The flexibility of LED technology, in terms of energy efficiency, robustness, compactness, long lifetime, and low heat emission, as well as its applications as a sole source or supplemental lighting system, offers interesting potential, giving the ornamental industry an edge over traditional production practices. Light is a fundamental environmental factor that provides energy for plants through photosynthesis, but it also acts as a signal and coordinates multifaceted plant-growth and development processes. With manipulations of light quality affecting specific plant traits such as flowering, plant architecture, and pigmentation, the focus has been placed on the ability to precisely manage the light growing environment, proving to be an effective tool to produce tailored plants according to market request. Applying lighting technology grants growers several productive advantages, such as planned production (early flowering, continuous production, and predictable yield), improved plant habitus (rooting and height), regulated leaf and flower color, and overall improved quality attributes of commodities. Potential LED benefits to the floriculture industry are not limited to the aesthetic and economic value of the product obtained; LED technology also represents a solid, sustainable option for reducing agrochemical (plant-growth regulators and pesticides) and energy inputs (power energy).
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Stefania Toscano
- Department of Science Veterinary, Università degli Studi di Messina, 98168 Messina, Italy;
| | - Daniela Romano
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
3
|
Vilasboa J, Da Costa CT, Fett-Neto AG. Environmental Modulation of Mini-Clonal Gardens for Cutting Production and Propagation of Hard- and Easy-to-Root Eucalyptus spp. PLANTS (BASEL, SWITZERLAND) 2022; 11:3281. [PMID: 36501321 PMCID: PMC9740115 DOI: 10.3390/plants11233281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Clonal Eucalyptus propagation is essential for various industry sectors. It requires cuttings to successfully develop adventitious roots (ARs). Environmental conditions are influential on AR development and may be altered to modulate the productivity of hard-to-root clones. The current knowledge gap in research on the physiological patterns underlying commercial-scale propagation results hinders the design of novel strategies. This study aimed to identify patterns of variation in AR-relevant parameters in contrasting seasons and species with distinct rooting performances. E. dunnii and E. ×urograndis (hard- (hardR) and easy-to-root (easyR), respectively) mini-stumps were subjected to light modulation treatments and to mini-tunnel use (MT) for a year. The treatment impact on the branching and rooting rates was recorded. The carbohydrate content, AR-related gene expression, and mineral nutrition profiles of cuttings from the control (Ctrl) and treated mini-stumps were analyzed. Light treatments were often detrimental to overall productivity, while MTs had a positive effect during summer, when it altered the cutting leaf nutrient profiles. Species and seasonality played large roles in all the assessed parameters. E. ×urograndis was particularly susceptible to seasonality, and its overall superior performance correlated with changes in its gene expression profile from excision to AR formation. These patterns indicate fundamental differences between easyR and hardR clones that contribute to the design of data-driven management strategies aiming to enhance propagation protocols.
Collapse
Affiliation(s)
- Johnatan Vilasboa
- Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Cibele T. Da Costa
- Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Arthur G. Fett-Neto
- Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
4
|
Rotoni C, Leite MFA, Pijl A, Kuramae EE. Rhizosphere microbiome response to host genetic variability: a trade-off between bacterial and fungal community assembly. FEMS Microbiol Ecol 2022; 98:6590037. [PMID: 35595468 DOI: 10.1093/femsec/fiac061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Rhizosphere microbial community composition is strongly influenced by plant species and cultivar. However, our understanding of the impact of plant cultivar genetic variability on microbial assembly composition remains limited. Here, we took advantage of vegetatively propagated chrysanthemum (Chrysanthemum indicum L.) as a plant model and induced roots in five commercial cultivars: Barolo, Chic, Chic 45, Chic Cream, and Haydar. We observed strong rhizosphere selection for the bacterial community but weaker selection for the fungal community. The genetic distance between cultivars explained 42.83% of the total dissimilarity between the bacteria selected by the different cultivars. By contrast, rhizosphere fungal selection was not significantly linked to plant genetic dissimilarity. Each chrysanthemum cultivar selected unique bacterial and fungal genera in the rhizosphere. We also observed a trade-off in the rhizosphere selection of bacteria and fungi in which the cultivar with the strongest selection of fungal communities showed the weakest bacterial selection. Finally, bacterial and fungal family taxonomic groups consistently selected by all cultivars were identified (bacteria Chitinophagaceae, Beijerinckiaceae, and Acidobacteriaceae and fungi Pseudeurotiaceae and Chrysozymaceae). Taken together, our findings suggest that chrysanthemum cultivars select distinct rhizosphere microbiomes and share a common core of microbes partially explained by the genetic dissimilarity between cultivars.
Collapse
Affiliation(s)
- Cristina Rotoni
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Marcio F A Leite
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Agata Pijl
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Image Analysis of Adventitious Root Quality in Wild Sage and Glossy Abelia Cuttings after Application of Different Indole-3-Butyric Acid Concentrations. PLANTS 2022; 11:plants11030290. [PMID: 35161269 PMCID: PMC8840049 DOI: 10.3390/plants11030290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Adventitious root (AR) formation is a key step in stem cutting propagation of economically important woody ornamentals. Inadequate environmental and hormonal conditions can lead to the production of an insufficient or modest number of ARs in stem cutting, with a consequent decrease in quality. The aim of this research was to optimize wild sage and glossy abelia autumn stem cutting propagation protocols, using image analysis to assess the effects of different IBA concentrations and cultivars on AR quality. For both taxa, the treatments were: four IBA concentrations: 0, 1250, 2500 and 5000 mg L−1 and two cultivars: ‘Little Lucky’ (cv1) and ‘Yellow’ (cv2) from Lantana, and ‘Canyon Creek’ (cv1) and ‘Eduard Goucher’ (cv2) from Abelia. Results show that IBA application is not needed to enhance rooting ability; however, IBA concentration is an important factor determining the best overall AR quality in both taxa. In wild sage applying 5000 mg L−1 IBA improved AR quality in ‘Little Lucky’, increasing the root number, total length, surface area and number of forks and crossings, but decreased quality in ‘Yellow’. In glossy abelia ‘Edouard Goucher’, 5000 mg L−1 IBA increased the root number, but 1250 mg L−1 IBA improved AR quality; ‘Canyon Creek’ did not perform as well as cv2 at these concentrations. This study confirms that sensitivity to IBA dosage varies among species and their cultivars. Findings may help the commercial nursery industry produce higher quality cuttings.
Collapse
|
6
|
Zhai S, Cai W, Xiang ZX, Chen CY, Lu YT, Yuan TT. PIN3-mediated auxin transport contributes to blue light-induced adventitious root formation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111044. [PMID: 34620442 DOI: 10.1016/j.plantsci.2021.111044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Adventitious rooting is a heritable quantitative trait that is influenced by multiple endogenous and exogenous factors in plants, and one important environmental factor required for efficient adventitious root formation is light signaling. However, the physiological significance and molecular mechanism of light underlying adventitious root formation are still largely unexplored. Here, we report that blue light-induced adventitious root formation is regulated by PIN-FORMED3 (PIN3)-mediated auxin transport in Arabidopsis. Adventitious root formation is significantly impaired in the loss-of-function mutants of the blue light receptors, PHOTOROPIN1 (PHOT1) and PHOTOROPIN2 (PHOT2), as well as the phototropic transducer, NON-PHOTOTROPIC HYPOCOTYL3 (NPH3). In addition, blue light enhanced the auxin content in the adventitious root, and the pin3 loss-of-function mutant had a reduced adventitious rooting response under blue light compared to the wild type. The PIN3 protein level was higher in plants treated with blue light than in those in darkness, especially in the hypocotyl pericycle, while PIN3-GFP failed to accumulate in nph3 PIN3::PIN3-GFP. Furthermore, the results showed that PIN3 physically interacted with NPH3, a key transducer in phototropic signaling. Taken together, our study demonstrates that blue light induces adventitious root formation through the phototropic signal transducer, NPH3, which regulates adventitious root formation by affecting PIN3-mediated auxin transport.
Collapse
Affiliation(s)
- Shuang Zhai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Cai
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Cai-Yan Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Xie D, Tarin MWK, Chen L, Ren K, Yang D, Zhou C, Wan J, He T, Rong J, Zheng Y. Consequences of LED Lights on Root Morphological Traits and Compounds Accumulation in Sarcandra glabra Seedlings. Int J Mol Sci 2021; 22:7179. [PMID: 34281238 PMCID: PMC8268991 DOI: 10.3390/ijms22137179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/26/2023] Open
Abstract
This study evaluated the effects of different light spectra (white light; WL, blue light; BL and red light; RL) on the root morphological traits and metabolites accumulation and biosynthesis in Sarcandra glabra. We performed transcriptomic and metabolomic profiling by RNA-seq and ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), respectively. When morphological features were compared to WL, BL substantially increased under-ground fresh weight, root length, root surface area, and root volume, while RL inhibited these indices. A total of 433 metabolites were identified, of which 40, 18, and 68 compounds differentially accumulated in roots under WL (WG) vs. roots under BL (BG), WG vs. roots under RL (RG), and RG vs. BG, respectively. In addition, the contents of sinapyl alcohol, sinapic acid, fraxetin, and 6-methylcoumarin decreased significantly in BG and RG. In contrast, chlorogenic acid, rosmarinyl glucoside, quercitrin and quercetin were increased considerably in BG. Furthermore, the contents of eight terpenoids compounds significantly reduced in BG. Following transcriptomic profiling, several key genes related to biosynthesis of phenylpropanoid-derived and terpenoids metabolites were differentially expressed, such as caffeic acid 3-O-methyltransferase) (COMT), hydroxycinnamoyl-CoA shikimate hydroxycinnamoyl transferase (HCT), O-methyltransferase (OMT), and 1-deoxy-D-xylulose-5-phosphate synthetase (DXS). In summary, our findings showed that BL was suitable for growth and accumulation of bioactive metabolites in root tissue of S. glabra. Exposure to a higher ratio of BL might have the potential to improve the production and quality of S. glabra seedlings, but this needs to be confirmed further.
Collapse
Affiliation(s)
- Dejin Xie
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Muhammad Waqqas Khan Tarin
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| | - Lingyan Chen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| | - Ke Ren
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Deming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Chengcheng Zhou
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| | - Jiayi Wan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Tianyou He
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| | - Jundong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
| | - Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.X.); (K.R.); (D.Y.); (J.W.); (J.R.)
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.); (C.Z.); (T.H.)
| |
Collapse
|
8
|
Feldzensztajn M, Wierzba P, Mazikowski A. Examination of Spectral Properties of Medicinal Plant Leaves Grown in Different Lighting Conditions Based on Mint Cultivation. SENSORS (BASEL, SWITZERLAND) 2021; 21:4122. [PMID: 34203955 PMCID: PMC8232698 DOI: 10.3390/s21124122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022]
Abstract
Cultivation in controlled environmental conditions can provide good quality medicinal herbs with consistent properties. A sensing system that can determine the contents of medicinal substances in plants using spectral characteristics of leaves would be a valuable tool. Viability of such sensing approach for mint had to be confirmed experimentally, as no data correlating contents of medicinal substances with spectral characteristics of leaves are available, to the best of authors' knowledge. In the first stage, presented in this paper, the influence of lighting on mint (Mentha rotundifolia) grown on a small hydroponic plantation was studied. Spectral characteristics of leaves were recorded by a spectrophotometer and colorimetric analysis was used to investigate the relationship between these characteristics and the spectrum of lighting. Dry mass yield was measured to test its dependence on the lighting. Dependence of chromaticity of leaves on the spectrum of light used in the cultivation was confirmed. Averaged spectra of leaves are distinguishable using a spectrophotometer and-in most cases-by a human observer. A partial correlation is observed between dry mass yield and the spectrum of lighting. Obtained results justify further research into the correlation between lighting and the contents of biological substances in medicinal plants using spectral characteristics of leaves.
Collapse
Affiliation(s)
- Mateusz Feldzensztajn
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland;
- NIVISS Sp. z o. o. Sp. k., Rdestowa Street 53D, 81-577 Gdynia, Poland
| | - Paweł Wierzba
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland;
| | - Adam Mazikowski
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland;
| |
Collapse
|
9
|
Druege U. Overcoming Physiological Bottlenecks of Leaf Vitality and Root Development in Cuttings: A Systemic Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:907. [PMID: 32714348 PMCID: PMC7340085 DOI: 10.3389/fpls.2020.00907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/03/2020] [Indexed: 05/09/2023]
Abstract
Each year, billions of ornamental young plants are produced worldwide from cuttings that are harvested from stock plants and planted to form adventitious roots. Depending on the plant genotype, the maturation of the cutting, and the particular environment, which is complex and often involves intermediate storage of cuttings under dark conditions and shipping between different climate regions, induced senescence or abscission of leaves and insufficient root development can impair the success of propagation and the quality of generated young plants. Recent findings on the molecular and physiological control of leaf vitality and adventitious root formation are integrated into a systemic perspective on improved physiologically-based control of cutting propagation. The homeostasis and signal transduction of the wound responsive plant hormones ethylene and jasmonic acid, of auxin, cytokinins and strigolactones, and the carbon-nitrogen source-sink balance in cuttings are considered as important processes that are both, highly responsive to environmental inputs and decisive for the development of cuttings. Important modules and bottlenecks of cutting function are identified. Critical environmental inputs at stock plant and cutting level are highlighted and physiological outputs that can be used as quality attributes to monitor the functional capacity of cuttings and as response parameters to optimize the cutting environment are discussed. Facing the great genetic diversity of ornamental crops, a physiologically targeted approach is proposed to define bottleneck-specific plant groups. Components from the field of machine learning may help to mathematically describe the complex environmental response of specific plant species.
Collapse
|