1
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Fan Z, Lali MN, Xiong H, Luo Y, Wang Y, Wang Y, Lu M, Wang J, He X, Shi X, Zhang Y. Seedlings of Poncirus trifoliata exhibit tissue-specific detoxification in response to NH 4 + toxicity. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:467-475. [PMID: 38466186 DOI: 10.1111/plb.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Ammonium nitrogen (NH4 +-N) is essential for fruit tree growth, but the impact of excess NH4 +-N from fertilizer on evergreen citrus trees is unclear. In a climate chamber, 8-month-old citrus plants were exposed to five different hydroponic NH4 +-N concentrations (0, 5, 10, 15 and 20 mm) for 1 month to study effects of NH4 +-N on growth characteristics, N uptake, metabolism, antioxidant enzymes and osmotic regulatory substances. Application of 10 mm NH4 +-N adversely affected root plasma membrane integrity, root physiological functions, and plant biomass. MDA, CAT, POD, APX and SOD content were significantly correlated with leaf N metabolic enzyme activity (GOGAT, GDH, GS and NR). GDH was the primary enzyme involved in NH4 +-N assimilation in leaves, while the primary pathway involved in roots was GS-GOGAT. Under comparatively high NH4 + addition, roots were the main organs involved in NH4 + utilization in citrus seedlings. Our results demonstrated that variations in NH4 + concentration and enzyme activity in various organs are associated with more effective N metabolism in roots than in leaves to prevent NH4 + toxicity in evergreen woody citrus plants. These results provide insight into the N forms used by citrus plants that are important for N fertilizer management.
Collapse
Affiliation(s)
- Z Fan
- College of Resources and Environment, Southwest University, Chongqing, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - M N Lali
- College of Resources and Environment, Southwest University, Chongqing, China
- Department of Forestry and Natural Resources, Faculty of Agriculture, Bamyan University, Bamyan, Afghanistan
| | - H Xiong
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Y Luo
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Y Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Y Wang
- Development and Guidance Station of Cereal and Oil Crops in Hechuan District, Chongqing, China
| | - M Lu
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Agro-Tech Extension Station, Chongqing, China
| | - J Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - X He
- College of Resources and Environment, Southwest University, Chongqing, China
| | - X Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Y Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Hu J, Zheng Q, Neuhäuser B, Dong C, Tian Z, Dai T. Superior glucose metabolism supports NH 4+ assimilation in wheat to improve ammonium tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1339105. [PMID: 38318495 PMCID: PMC10839024 DOI: 10.3389/fpls.2024.1339105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The use of slow-release fertilizers and seed-fertilizers cause localized high-ammonium (NH4 +) environments in agricultural fields, adversely affecting wheat growth and development and delaying its yield. Thus, it is important to investigate the physiological responses of wheat and its tolerance to NH4 + stress to improve the adaptation of wheat to high NH4 + environments. In this study, the physiological mechanisms of ammonium tolerance in wheat (Triticum aestivum) were investigated in depth by comparative analysis of two cultivars: NH4 +-tolerant Xumai25 and NH4 +-sensitive Yangmai20. Cultivation under hydroponic conditions with high NH4 + (5 mM NH4 +, AN) and nitrate (5 mM NO3 -, NN), as control, provided insights into the nuanced responses of both cultivars. Compared to Yangmai20, Xumai25 displayed a comparatively lesser sensitivity to NH4 + stress, as evident by a less pronounced reduction in dry plant biomass and a milder adverse impact on root morphology. Despite similarities in NH4 + efflux and the expression levels of TaAMT1.1 and TaAMT1.2 between the two cultivars, Xumai25 exhibited higher NH4 + influx, while maintaining a lower free NH4 + concentration in the roots. Furthermore, Xumai25 showed a more pronounced increase in the levels of free amino acids, including asparagine, glutamine, and aspartate, suggesting a superior NH4 + assimilation capacity under NH4 + stress compared to Yangmai20. Additionally, the enhanced transcriptional regulation of vacuolar glucose transporter and glucose metabolism under NH4 + stress in Xumai25 contributed to an enhanced carbon skeleton supply, particularly of 2-oxoglutarate and pyruvate. Taken together, our results demonstrate that the NH4 + tolerance of Xumai25 is intricately linked to enhanced glucose metabolism and optimized glucose transport, which contributes to the robust NH4 + assimilation capacity.
Collapse
Affiliation(s)
- Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Chaofeng Dong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Hu J, Zheng Q, Dong C, Liang Z, Tian Z, Dai T. Enhanced Stomatal Conductance Supports Photosynthesis in Wheat to Improved NH 4+ Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 13:86. [PMID: 38202394 PMCID: PMC10780695 DOI: 10.3390/plants13010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The impact of ammonium (NH4+) stress on plant growth varies across species and cultivars, necessitating an in-depth exploration of the underlying response mechanisms. This study delves into elucidating the photosynthetic responses and differences in tolerance to NH4+ stress by investigating the effects on two wheat (Triticum aestivum L.) cultivars, Xumai25 (NH4+-less sensitive) and Yangmai20 (NH4+-sensitive). The cultivars were grown under hydroponic conditions with either sole ammonium nitrogen (NH4+, AN) or nitrate nitrogen (NO3-, NN) as the nitrogen source. NH4+ stress exerted a profound inhibitory effect on seedling growth and photosynthesis in wheat. However, these effects were less pronounced in Xumai25 than in Yangmai20. Dynamic photosynthetic analysis revealed that the suppression in photosynthesis was primarily attributed to stomatal limitation associated with a decrease in leaf water status and osmotic potential. Compared to Yangmai20, Xumai25 exhibited a significantly higher leaf K+ concentration and TaAKT1 upregulation, leading to a stronger stomatal opening and, consequently, a better photosynthetic performance under NH4+ stress. In conclusion, our study suggested stomatal limitation as the primary factor restricting photosynthesis under NH4+ stress. Furthermore, we demonstrated that improved regulation of osmotic substances contributed to higher stomatal conductance and enhanced photosynthetic performance in Xumai25.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Q.Z.); (C.D.); (Z.L.); (Z.T.)
| |
Collapse
|
5
|
Jiang Z, Shao Q, Li Y, Cao B, Li J, Ren Z, Qu J, Zhang Y. Noval bio-organic fertilizer containing Arthrobacter sp. DNS10 alleviates atrazine-induced growth inhibition on soybean by improving atrazine removal and nitrogen accumulation. CHEMOSPHERE 2023; 313:137575. [PMID: 36563729 DOI: 10.1016/j.chemosphere.2022.137575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Herbicide atrazine restricts nutrient accumulation and thus inhibits the growth of sensitive crops. The application of organic fertilizer is a common measure that contributes to modulating abiotic tolerance of crops and providing nutrients, but its advantages in combination with atrazine degrading microorganisms as bio-organic fertilizer to alleviate atrazine stress on sensitive crops and the associated mechanisms are unknown. We investigated the beneficial effects of organic and bio-organic fertilizer (named DNBF10) containing Arthrobacter sp. DNS10 applications on growth, leaf nitrogen accumulation, root surface structure and root physiological properties of soybean seedlings exposed to 20 mg kg-1 atrazine in soil. Compared with organic fertilizer, bio-organic fertilizer DNBF10 exhibited more reduction in soil atrazine residue and plant atrazine accumulation, as well as alleviation in atrazine-induced root oxidative stress and damaged cells of soybean roots. Transcriptome analysis revealed that DNBF10 application enhanced nitrogen utilization by improving the expression of genes involved in nitrogen metabolism in soybean leaves. Besides, genes expression of cytochrome P450 and ABC transporters involved in atrazine detoxification and transport in soybean leaves were also down-regulated by DNBF10 to diminish phytotoxicity of atrazine to soybean seedlings. These results illustrate the molecular mechanism by which the application of DNBF10 alleviates soybean seedlings growth under atrazine stress, providing a step forward for mitigate the atrazine induced inhibition on soybean seedlings growth through decreasing atrazine residues as well as enhancing damaged root repair and nitrogen accumulation.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Shao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheyi Ren
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
6
|
Zhang Y, Li B, Luo P, Xian Y, Xiao R, Wu J. Glutamine synthetase plays an important role in ammonium tolerance of Myriophyllum aquaticum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157596. [PMID: 35905951 DOI: 10.1016/j.scitotenv.2022.157596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
High-strength ammonium (NH4+), the main characteristic of swine wastewater, poses a significant threat to the rural ecological environment. As a novel phytoremediation technology, Myriophyllum aquaticum wetlands have high tolerance and removal rate of NH4+. Glutamine synthetase (GS), a pivotal enzyme in nitrogen (N) metabolism, is hypothesized to play an important role in the tolerance of M. aquaticum to high NH4+. Herein, the responses of M. aquaticum to GS inhibition by 0.1 mM methionine sulfoximine (MSX) under 15 mM NH4+ were investigated. After 5 days, visible NH4+ toxicity symptoms were observed in MSX-treated plants. Compared with the control, the NH4+ accumulation in the leaves increased by 20.99 times, while that of stems and roots increased by 3.27 times and 47.76 %, suggesting that GS inhibition had a greater impact on the leaves. GS inhibition decreased pigments in the leaves by 8.64 %-41.06 %, triggered oxidative stress, and affected ions concentrations in M. aquaticum. The concentrations of glutamine (Gln) and asparagine decreased by 63.46 %-97.43 % and 12.37 %-76.41 %, respectively, while the concentrations of most other amino acids increased after 5 days of MSX treatment, showing that GS inhibition reprogrammed the amino acids synthesis. A decrease in Gln explains the regulations of N-related genes, including increased expression of AMT in roots and decreased expression of GS, GOGAT, GDH, and AS, which would cause further NH4+ accumulation via promoting NH4+ uptake and decreasing NH4+ assimilation in M. aquaticum. This study revealed for the first time that GS inhibition under high NH4+ condition can lead to phytotoxicity in M. aquaticum due to NH4+ accumulation. The physiological and molecular responses of the leaves, stems, and roots confirmed the importance of GS in the high NH4+ tolerance of M. aquaticum. These findings provide new insights into NH4+ tolerance mechanisms in M. aquaticum and a theoretical foundation for the phytoremediation of high NH4+-loaded swine wastewater.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Baozhen Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China.
| | - Pei Luo
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yingnan Xian
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Runlin Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| |
Collapse
|
7
|
Janotík A, Dadáková K, Lochman J, Zapletalová M. L-Aspartate and L-Glutamine Inhibit Beta-Aminobutyric Acid-Induced Resistance in Tomatoes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212908. [PMID: 36365361 PMCID: PMC9655027 DOI: 10.3390/plants11212908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
Plant diseases caused by pathogens lead to economic and agricultural losses, while plant resistance is defined by robustness and timing of defence response. Exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with more robust defence responses. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance, thereby protecting various plants' diverse stresses by induction of non-canonical activity after binding into aspartyl-tRNA synthetase (AspRS). In this study, by integrating BABA-induced changes in selected metabolites and transcript data, we describe the molecular processes involved in BABA-induced resistance (BABA-IR) in tomatoes. BABA significantly restricted the growth of the pathogens P. syringae pv. tomato DC3000 and was related to the accumulation of transcripts for pathogenesis-related proteins and jasmonic acid signalling but not salicylic acid signalling in Arabidopsis. The resistance was considerably reduced by applying amino acids L-Asp and L-Gln when L-Gln prevents general amino acid inhibition in plants. Analysis of amino acid changes suggests that BABA-IR inhibition by L-Asp is due to its rapid metabolisation to L-Gln and not its competition with BABA for the aspartyl-tRNA synthetase (AspRS) binding site. Our results showed differences between the effect of BABA on tomatoes and other model plants. They highlighted the importance of comparative studies between plants of agronomic interest subjected to treatment with BABA.
Collapse
|
8
|
Kaya C, Sarıoglu A, Ashraf M, Alyemeni MN, Ahmad P. The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118727. [PMID: 34973379 DOI: 10.1016/j.envpol.2021.118727] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The main objective of the study was to assess if joint application of melatonin (MT, 0.1 mM) and salicylic acid (SA 0.5 mM) could improve tolerance of pepper plants to arsenic (As) as sodium hydrogen arsenate heptahydrate (0.05 mM). The imposition of arsenic stress led to accumulation of As in roots and leaves, and increased contents of leaf proline, phytochelatins, malondialdehyde (MDA) and H2O2, but it reduced plant biomass, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm) and leaf water potential. Melatonin and SA applied jointly or alone enhanced nitrogen metabolism by triggering the activities of glutamate synthase, glutamine synthetase, and nitrite reductases and nitrate. In comparison with a single treatment of MT or SA, the joint treatment of MT and SA had better impact on enhancing growth and key biological events and decreasing tissue As content. This clearly shows a cooperative function of both agents in enhancing tolerance to As-toxicity in pepper plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Ali Sarıoglu
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- University of Lahore, Lahore, Pakistan; International Centre for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Wang H, Tang X, Chen J, Shang S, Zhu M, Liang S, Zang Y. Comparative studies on the response of Zostera marina leaves and roots to ammonium stress and effects on nitrogen metabolism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105965. [PMID: 34543784 DOI: 10.1016/j.aquatox.2021.105965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Coastal eutrophication has resulted in the rapid loss and deterioration of seagrass beds worldwide. The high concentration of ammonium in eutrophic aquatic environments has been invoked as the main cause. In this study, leaves and roots of the seagrass Zostera marina were treated with simulated eutrophic seawater with elevated ammonium concentrations. The tolerance to ammonium stress and mechanism of nitrogen metabolism detoxification in different tissues were investigated. The results showed that high ammonium stress significantly affected the growth of leaves and had a negative effect on photosynthesis. The root activity of Z. marina was not inhibited at ammonium concentrations of ≤100 mg/L, indicating that the roots exhibited tolerance to ammonium stress. Increasing ammonium concentrations led to a higher increase of ammonium and free amino acid (FAA) contents in leaves than in roots. However, nitrogen storage decreased in Z. marina leaves after high ammonium treatments. The enzyme activity and gene expression of glutamine synthetase (GS) in roots were significantly higher than in the leaves even under ammonium stress. Meanwhile, ammonium stress increased the enzyme activities and gene expression of glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) in roots, which suggested that the roots had a strong ability to assimilate ammonium under ammonium stress. In contrast, although the GOGAT and GDH activity and gene expression in the leaves were initially increased, they significantly decreased when the ammonium concentration exceeded 100 mg/L. These results indicated that the concentration of 100 mg/L might be a threshold marking a transition from tolerance to toxicity for the leaves. Our study demonstrates that Z. marina leaves could be prone to higher damage than roots because the mechanism of ammonium assimilation in leaves is more susceptible to ammonium toxicity.
Collapse
Affiliation(s)
- Hongrui Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, PR China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, PR China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, PR China
| | - Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong, PR China
| | - Meiling Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, PR China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, PR China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, PR China.
| |
Collapse
|
10
|
Marchi L, Degola F, Baruffini E, Restivo FM. How to easily detect plant NADH-glutamate dehydrogenase (GDH) activity? A simple and reliable in planta procedure suitable for tissues, extracts and heterologous microbial systems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110714. [PMID: 33568313 DOI: 10.1016/j.plantsci.2020.110714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Plant NADH glutamate dehydrogenase (GDH) is an intriguing enzyme, since it is involved in different metabolic processes owing to its reversible (anabolic/catabolic) activity and due to the oligomeric nature of the enzyme, that gives rise to several isoforms. The complexity of GDH isoenzymes pattern and the variability of the spatial and temporal localization of the different isoforms have limited our comprehension of the physiological role of GDH in plants. Genetics, immunological, and biochemical approaches have been used until now in order to shed light on the regulatory mechanism that control GDH expression in different plant systems and environmental conditions. We describe here the validation of a simple in planta GDH activity staining procedure, providing evidence that it might be used, with different purposes, to determine GDH expression in plant organs, tissues, extracts and also heterologous systems.
Collapse
Affiliation(s)
- L Marchi
- Department of Medicine and Surgery, University of Parma, Italy.
| | - F Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| | - E Baruffini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| | - F M Restivo
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy.
| |
Collapse
|
11
|
Zhao Y, Gao J, Su S, Shan X, Li S, Liu H, Yuan Y, Li H. Regulation of the activity of maize glutamate dehydrogenase by ammonium and potassium. Biosci Biotechnol Biochem 2021; 85:262-271. [PMID: 33604622 DOI: 10.1093/bbb/zbaa020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 11/14/2022]
Abstract
Glutamate dehydrogenase (GDH) is an important enzyme in ammonium metabolism, the activity of which is regulated by multiple factors. In this study, we investigate the effects of ammonium and potassium on the activity of maize GDH. Our results show that both ammonium and potassium play multiple roles in regulating the activity of maize GDH, with the specific roles depending on the concentration of potassium. Together with the structural information of GDH, we propose models for the substrate inhibition of ammonium, and the elimination of substrate inhibition by potassium. These models are supported by the analysis of statistic thermodynamics. We also analyze the binding sites of ammonium and potassium on maize GDH, and the conformational changes of maize GDH. The findings provide insight into the regulation of maize GDH activity by ammonium and potassium and reveal the importance of the dose and ratio of nitrogen and potassium in crop cultivation.
Collapse
Affiliation(s)
- Yanjie Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Jie Gao
- College of Plant Science, Jilin University, Changchun, China
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, China
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun, China
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun, China
| | - He Li
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
12
|
González-Moro MB, González-Moro I, de la Peña M, Estavillo JM, Aparicio-Tejo PM, Marino D, González-Murua C, Vega-Mas I. A Multi-Species Analysis Defines Anaplerotic Enzymes and Amides as Metabolic Markers for Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2021; 11:632285. [PMID: 33584765 PMCID: PMC7873483 DOI: 10.3389/fpls.2020.632285] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
Nitrate and ammonium are the main nitrogen sources in agricultural soils. In the last decade, ammonium (NH4 +), a double-sided metabolite, has attracted considerable attention by researchers. Its ubiquitous presence in plant metabolism and its metabolic energy economy for being assimilated contrast with its toxicity when present in high amounts in the external medium. Plant species can adopt different strategies to maintain NH4 + homeostasis, as the maximization of its compartmentalization and assimilation in organic compounds, primarily as amino acids and proteins. In the present study, we report an integrative metabolic response to ammonium nutrition of seven plant species, belonging to four different families: Gramineae (ryegrass, wheat, Brachypodium distachyon), Leguminosae (clover), Solanaceae (tomato), and Brassicaceae (oilseed rape, Arabidopsis thaliana). We use principal component analysis (PCA) and correlations among metabolic and biochemical data from 40 experimental conditions to understand the whole-plant response. The nature of main amino acids is analyzed among species, under the hypothesis that those Asn-accumulating species will show a better response to ammonium nutrition. Given the provision of carbon (C) skeletons is crucial for promotion of the nitrogen assimilation, the role of different anaplerotic enzymes is discussed in relation to ammonium nutrition at a whole-plant level. Among these enzymes, isocitrate dehydrogenase (ICDH) shows to be a good candidate to increase nitrogen assimilation in plants. Overall, metabolic adaptation of different carbon anaplerotic activities is linked with the preference to synthesize Asn or Gln in their organs. Lastly, glutamate dehydrogenase (GDH) reveals as an important enzyme to surpass C limitation during ammonium assimilation in roots, with a disparate collaboration of glutamine synthetase (GS).
Collapse
Affiliation(s)
| | - Itziar González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Marlon de la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - José María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Pedro M. Aparicio-Tejo
- Instituto Multidisciplinar de Biología Aplicada (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
13
|
Yu Y, Yin H, Peng H, Lu G, Dang Z. Proteomic mechanism of decabromodiphenyl ether (BDE-209) biodegradation by Microbacterium Y2 and its potential in remediation of BDE-209 contaminated water-sediment system. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121708. [PMID: 31806441 DOI: 10.1016/j.jhazmat.2019.121708] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The investigation of BDE-209 degradation by Microbacterium Y2 under different condition was conducted. Cell membrane permeability, cell surface hydrophobicity (CSH), membrane potential (MP) and reactive oxygen species (ROS) production were altered under BDE-209 stress. Eleven debrominated congeners were identified, suggesting that BDE-209 biodegradation by Microbacterium Y2 was dominantly a successive debromination process. Proteome analysis showed that the overexpression of haloacid dehalogenases, glutathione S-transferases (GSTs) and ATP-binding cassette (ABC) transporters might occupy important roles in BDE-209 biotransformation. Meanwhile, heat shock proteins (HSPs), ribonuclease E, oligoribonuclease (Orn) and ribosomal protein were activated to counter the BDE-209 toxicity. The up-regulated pyruvate dehydrogenase E1 component beta subunit and dihydrolipoamide dehydrogenase suggested that the pyruvate metabolism pathway was activated. Bioaugmentation of BDE-209 polluted water-sediments system with Microbacterium Y2 could efficiently improve BDE-209 removal. The detection of total 16S rRNA genes in treatment system suggested that Microbacterium (25.6 %), Luteimonas (14.3 %), Methylovorus (12.6 %), Hyphomicrobium (9.2 %) were the dominant genera and PICRUSt results further revealed that the diminution of BDE-209 was owed to cooperation between the introduced bacteria and aboriginal ones.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
14
|
Vega-Mas I, Cukier C, Coleto I, González-Murua C, Limami AM, González-Moro MB, Marino D. Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition. Sci Rep 2019; 9:8925. [PMID: 31222161 PMCID: PMC6586781 DOI: 10.1038/s41598-019-45393-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/06/2019] [Indexed: 11/25/2022] Open
Abstract
Proper carbon (C) supply is essential for nitrogen (N) assimilation especially when plants are grown under ammonium (NH4+) nutrition. However, how C and N metabolic fluxes adapt to achieve so remains uncertain. In this work, roots of wheat (Triticum aestivum L.) plants grown under exclusive NH4+ or nitrate (NO3-) supply were incubated with isotope-labelled substrates (15NH4+, 15NO3-, or [13C]Pyruvate) to follow the incorporation of 15N or 13C into amino acids and organic acids. Roots of plants adapted to ammonium nutrition presented higher capacity to incorporate both 15NH4+ and 15NO3- into amino acids, thanks to the previous induction of the NH4+ assimilative machinery. The 15N label was firstly incorporated into [15N]Gln vía glutamine synthetase; ultimately leading to [15N]Asn accumulation as an optimal NH4+ storage. The provision of [13C]Pyruvate led to [13C]Citrate and [13C]Malate accumulation and to rapid [13C]2-OG consumption for amino acid synthesis and highlighted the importance of the anaplerotic routes associated to tricarboxylic acid (TCA) cycle. Taken together, our results indicate that root adaptation to ammonium nutrition allowed efficient assimilation of N thanks to the promotion of TCA cycle open flux modes in order to sustain C skeleton availability for effective NH4+ detoxification into amino acids.
Collapse
Affiliation(s)
- Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Caroline Cukier
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045, Angers, France
| | - Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Anis M Limami
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045, Angers, France
| | - M Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain.
| |
Collapse
|