1
|
Zhang Y, Gong Z, Zhu Z, Sun J, Guo W, Zhang J, Ding P, Liu M, Gao Z. Identification of floral aroma components and molecular regulation mechanism of floral aroma formation in Phalaenopsis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9202-9209. [PMID: 39007364 DOI: 10.1002/jsfa.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Most Phalaenopsis cultivars have almost no aroma, with a few exceptions. Phalaenopsis presents significant challenges in fragrance breeding due to its weak aroma and low fertility. It is therefore necessary to identify the aroma components and key regulatory genes in Phalaenopsis cultivars like 'Orange Beauty', 'Brother Sara Gold', 'Purple Martin', 'H026', 'SK16', 'SX098', and 'SH51', to improve the aroma of the common Phalaenopsis. RESULTS Floral aroma components were tested on nine Phalaenopsis species, using smell identification and headspace gas chromatography-mass spectrometry. The result showed that alcohols, esters, and alkenes were the key specific components in the different species and cultivar aromas and the aroma intensity and component content of cultivars with different colors were different. The main components of the floral aromas in Phalaenopsis were alcohols (including eucalyptol, linalool, citronellol, and 1-hexanol), esters (including hexyl acetate, leaf acetate, and dibutyl phthalate), alkenes (including pinene and sabinene) and arenes (like fluorene). The transcriptome of flowers in the bud stage and bloom stage of P. 'SH51' was sequenced and 5999 differentially expressed genes were obtained. The contributions of the phenylpropionic acid/phenyl ring compound and the terpene compound to the aroma were greater. Sixteen genes related to phalaenopsis aroma were found. TC4M, PAL, CAD6, and HR were related to phenylpropanoid synthesis pathway. SLS, TS10, and P450 were related to the synthesis pathway of terpenes. TS10 and YUCCA 10 were involved in tryptophan metabolism. CONCLUSION This is the first report on the floral aroma components and regulatory genes in Phalaenopsis. The proposed method and research data can provide technical support for Phalaenopsis breeding. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingjie Zhang
- Yantai Academy of Agricultural Sciences, Yantai, China
- Nanjing Agricultural University, Nanjing, China
| | - Zihui Gong
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zhiqi Zhu
- Laizhou Hongshun plum planting technology Co., LTD, Yantai, China
| | - Jixia Sun
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Wenjiao Guo
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jingwei Zhang
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Pengsong Ding
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Minxiao Liu
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zhihong Gao
- Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Katherinatama A, Asikin Y, Shimoda K, Shimomura M, Mitsube F, Takara K, Wada K. Characterization of Free and Glycosidically Bound Volatile and Non-Volatile Components of Shiikuwasha ( Citrus depressa Hayata) Fruit. Foods 2024; 13:3428. [PMID: 39517212 PMCID: PMC11544857 DOI: 10.3390/foods13213428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Shiikuwasha, a citrus fruit native to Okinawa, Japan, has various cultivation lines with distinct free volatile and non-volatile components. However, the glycosylated volatiles, which are sources of hidden aromas, remain unknown. This study aimed to characterize the chemical profiles of free and glycosidically bound volatile as well as non-volatile components in the mature fruits of six Shiikuwasha cultivation lines: Ishikunibu, Izumi kugani-like, Kaachi, Kohama, Nakamoto seedless, and Ogimi kugani. Free volatiles were analyzed using solid-phase microextraction-gas chromatography-mass spectrometry. Glycosides were collected via solid-phase extraction and hydrolyzed with β-glucosidase, and the released volatiles were measured. Additionally, the non-volatile components were determined using non-targeted proton nuclear magnetic resonance analysis. Total free and bound volatiles ranged from 457 to 8401 µg/L and from 104 to 548 µg/L, respectively, and the predominant free volatiles found were limonene, γ-terpinene, and p-cymene. Twenty volatiles were released from glycosides, including predominant 1-hexanol and benzyl alcohol, with Kaachi and Ogimi kugani showing higher concentrations. Principal component analysis (PCA) revealed that taste-related compounds like sucrose, citrate, and malate influenced line differentiation. The PCA of the combined data of free and bound volatile and non-volatile components showed flavor component variances across all lines. These findings provide valuable insights into the chemical profiles of Shiikuwasha fruits for fresh consumption and food and beverage processing.
Collapse
Affiliation(s)
- Aldia Katherinatama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Kazuki Shimoda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Momoko Shimomura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Fumimasa Mitsube
- Okinawa Prefectural Agricultural Research Center Nago Branch, 4605-3, Nago 905-0012, Okinawa, Japan
- Hokubu Agriculture, Forestry and Fisheries Promotion Center, Okinawa Prefectural Government, 1-13-11 Ominami, Nago 905-0015, Okinawa, Japan
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Koji Wada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| |
Collapse
|
3
|
Zhang T, Tian S, Gao Z, Li Y, Jia H. Engineering an Ancestral Glycosyltransferase for Biosynthesis of 2-Phenylethyl-β-d-Glucopyranoside and Salidroside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19966-19976. [PMID: 39189841 DOI: 10.1021/acs.jafc.4c04381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Phenylethanoid glycosides (PhGs) are naturally occurring glycosides derived from plants with various biological activities. Glycosyltransferases catalyze the production of PhGs from phenylethanols via a transglycosylation reaction. The low activity and stability of glycosyltransferase limit its industrial application. An ancestral glycosyltransferase, UGTAn85, with heat resistance, alkali resistance, and high stability was resurrected using ancestral sequence reconstruction technology. This enzyme can efficiently convert phenylethanols to PhGs. The optimal reaction temperature and pH for UGTAn85 were found to be 70 °C and pH 10.0, respectively. This study employed a combination of structure-guided rational design and co-evolution analysis to enhance its catalytic activity. Potential mutation sites were identified through computer-aided design, including homology modeling, molecular docking, Rosetta dock design, molecular dynamics simulation, and co-evolution analysis. By targeted mutagenesis, the UGTAn85 mutant Q23E/N65D exhibited a 2.2-fold increase in enzyme activity (11.85 U/mg) and elevated affinity (Km = 0.11 mM) for 2-phenylethanol compared to UGTAn85. Following a fed-batch reaction, 36.16 g/L 2-phenylethyl-β-d-glucopyranoside and 51.49 g/L salidroside could be produced within 24 h, respectively. The findings in this study provide a new perspective on enhancing the stability and activity of glycosyltransferases, as well as a potential biocatalyst for the industrial production of PhGs.
Collapse
Affiliation(s)
- Ting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shaowei Tian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
5
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
6
|
Wu Y, Yang Y, Du L, Zhuang Y, Liu T. Identification of a highly promiscuous glucosyltransferase from Penstemon barbatus for natural product glycodiversification. Org Biomol Chem 2023; 21:4445-4454. [PMID: 37190792 DOI: 10.1039/d3ob00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glycosylation reactions mediated by UDP-glycosyltransferases (UGTs) are common post-modifications involved in plant secondary metabolism and significantly improve the solubility and bioactivity of aglycones. Penstemon barbatus is rich in phenylethanoid glycosides (PhGs), such as echinacoside and verbascoside. In this study, a promiscuous glycosyltransferase UGT84A95 was identified from P. barbatus. In vitro enzyme assays showed that UGT84A95 catalyzed the glucosylation of the phenol hydroxyl group of PhGs efficiently as well as other structurally diverse phenolic glycosides, including flavonoids, terpenoids, stilbene glycosides, coumarins, and simple polyphenols. By using UGT84A95, 12 glycosylated products were prepared and structurally identified by NMR spectroscopy, among which 7 are new compounds. These findings suggest that UGT84A95 could be a potential biocatalyst to synthesize multi-glycosylated glycosides.
Collapse
Affiliation(s)
- Yanan Wu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yihan Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Liping Du
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yibin Zhuang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Tao Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
7
|
Jiao P, Li B, Zhang F, Tang C. Chitosan-based matrix solid-phase dispersion extraction assisted cell membrane magnetic bead ligand-affinity assay for screening active compounds from Fructus Cnidii. J Sep Sci 2022; 45:3725-3734. [PMID: 35906749 DOI: 10.1002/jssc.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Cell membrane ligand-affinity assay is a useful tool for screening the active compounds from natural products. However, in traditional cell membrane ligand-affinity assays, natural products need to be refluxed, before being analyzed. This process consumes considerable time and energy and cannot be used for screening natural products that contain thermally unstable compounds. Therefore, an efficient analytical method is required. In this study, chitosan-based matrix solid-phase dispersion extraction was combined with cell membrane magnetic bead ligand-affinity assay to form a novel method for identifying the active compounds in Fructus Cnidii such as osthole and imperatorin. When compared with traditional cell membrane ligand-affinity assays, this assay requires less energy, extraction time (7 min), solvent volume (1.2 mL) and fewer natural products (40 mg). This indicates that the chitosan-based matrix solid-phase dispersion extraction assisted cell membrane magnetic beads ligand-affinity assay is an alternative analytical method for studying natural products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pan Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Fan Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
8
|
Zhou 周绍群 S, Jander G. Molecular ecology of plant volatiles in interactions with insect herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:449-462. [PMID: 34581787 DOI: 10.1093/jxb/erab413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant-derived volatile organic compounds (VOCs) play pivotal roles in interactions with insect herbivores. Individual VOCs can be directly toxic or deterrent, serve as signal molecules to attract natural enemies, and/or be perceived by distal plant tissues as a priming signal to prepare for expected herbivory. Environmental conditions, as well as the specific plant-insect interaction being investigated, strongly influence the observed functions of VOC blends. The complexity of plant-insect chemical communication via VOCs is further enriched by the sophisticated molecular perception mechanisms of insects, which can respond to one or more VOCs and thereby influence insect behavior in a manner that has yet to be fully elucidated. Despite numerous gaps in the current understanding of VOC-mediated plant-insect interactions, successful pest management strategies such as push-pull systems, synthetic odorant traps, and crop cultivars with modified VOC profiles have been developed to supplement chemical pesticide applications and enable more sustainable agricultural practices. Future studies in this field would benefit from examining the responses of both plants and insects in the same experiment to gain a more complete view of these interactive systems. Furthermore, a molecular evolutionary study of key genetic elements of the ecological interaction phenotypes could provide new insights into VOC-mediated plant communication with insect herbivores.
Collapse
Affiliation(s)
- Shaoqun Zhou 周绍群
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | |
Collapse
|
9
|
Xu X, Yan Y, Huang W, Mo T, Wang X, Wang J, Li J, Shi S, Liu X, Tu P. Molecular cloning and biochemical characterization of a new coumarin glycosyltransferase CtUGT1 from Cistanche tubulosa. Fitoterapia 2021; 153:104995. [PMID: 34293438 DOI: 10.1016/j.fitote.2021.104995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 11/15/2022]
Abstract
UDP-glycosyltransferases (UGTs) are an important and functionally diverse family of enzymes involved in secondary metabolite biosynthesis. Coumarin is one of the most common skeletons of natural products with candidate pharmacological activities. However, to date, many reported GTs from plants mainly recognized flavonoids as sugar acceptors. Only limited GTs could catalyze the glycosylation of coumarins. In this study, a new UGT was cloned from Cistanche tubulosa, a valuable traditional tonic Chinese herb, which is abundant with diverse glycosides such as phenylethanoid glycosides, lignan glycosides, and iridoid glycosides. Sequence alignment and phylogenetic analysis showed that CtUGT1 is phylogenetically distant from most of the reported flavonoid UGTs and adjacent to phenylpropanoid UGTs. Extensive in vitro enzyme assays found that although CtUGT1 was not involved in the biosynthesis of bioactive glycosides in C. tubulosa, it could catalyze the glucosylation of coumarins umbelliferone 1, esculetine 2, and hymecromone 3 in considerable yield. The glycosylated products were identified by comparison with the reference standards or NMR spectroscopy, and the results indicated that CtUGT1 can regiospecifically catalyze the glucosylation of hydroxyl coumarins at the C7-OH position. The key residues that determined CtUGT1's activity were further discussed based on homology modeling and molecular docking analyses. Combined with site-directed mutagenesis results, it was found that H19 played an irreplaceable role as the crucial catalysis basis. CtUGT1 could be used in the enzymatic preparation of bioactive coumarin glycosides.
Collapse
Affiliation(s)
- Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yaru Yan
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenqian Huang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|