1
|
Xiong X, Li J, Su P, Duan H, Sun L, Xu S, Sun Y, Zhao H, Chen X, Ding D, Zhang X, Tang J. Genetic dissection of maize (Zea mays L.) chlorophyll content using multi-locus genome-wide association studies. BMC Genomics 2023; 24:384. [PMID: 37430212 DOI: 10.1186/s12864-023-09504-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The chlorophyll content (CC) is a key factor affecting maize photosynthetic efficiency and the final yield. However, its genetic basis remains unclear. The development of statistical methods has enabled researchers to design and apply various GWAS models, including MLM, MLMM, SUPER, FarmCPU, BLINK and 3VmrMLM. Comparative analysis of their results can lead to more effective mining of key genes. RESULTS The heritability of CC was 0.86. Six statistical models (MLM, BLINK, MLMM, FarmCPU, SUPER, and 3VmrMLM) and 1.25 million SNPs were used for the GWAS. A total of 140 quantitative trait nucleotides (QTNs) were detected, with 3VmrMLM and MLM detecting the most (118) and fewest (3) QTNs, respectively. The QTNs were associated with 481 genes and explained 0.29-10.28% of the phenotypic variation. Additionally, 10 co-located QTNs were detected by at least two different models or methods, three co-located QTNs were identified in at least two different environments, and six co-located QTNs were detected by different models or methods in different environments. Moreover, 69 candidate genes within or near these stable QTNs were screened based on the B73 (RefGen_v2) genome. GRMZM2G110408 (ZmCCS3) was identified by multiple models and in multiple environments. The functional characterization of this gene indicated the encoded protein likely contributes to chlorophyll biosynthesis. In addition, the CC differed significantly between the haplotypes of the significant QTN in this gene, and CC was higher for haplotype 1. CONCLUSION This study's results broaden our understanding of the genetic basis of CC, mining key genes related to CC and may be relevant for the ideotype-based breeding of new maize varieties with high photosynthetic efficiency.
Collapse
Affiliation(s)
- Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Pingping Su
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haidong Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyang Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
2
|
Niu KX, Chang CY, Zhang MQ, Guo YT, Yan Y, Sun HJ, Zhang GL, Li XM, Gong YL, Ding CH, Wang ML, Ni Z, Sun Q, Gou JY. Suppressing ASPARTIC PROTEASE 1 prolongs photosynthesis and increases wheat grain weight. NATURE PLANTS 2023; 9:965-977. [PMID: 37277438 DOI: 10.1038/s41477-023-01432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
The elongation of photosynthesis, or functional staygreen, represents a feasible strategy to propel metabolite flux towards cereal kernels. However, achieving this goal remains a challenge in food crops. Here we report the cloning of wheat CO2 assimilation and kernel enhanced 2 (cake2), the mechanism underlying the photosynthesis advantages and natural alleles amenable to breeding elite varieties. A premature stop mutation in the A-genome copy of the ASPARTIC PROTEASE 1 (APP-A1) gene increased the photosynthesis rate and yield. APP1 bound and degraded PsbO, the protective extrinsic member of photosystem II critical for increasing photosynthesis and yield. Furthermore, a natural polymorphism of the APP-A1 gene in common wheat reduced APP-A1's activity and promoted photosynthesis and grain size and weight. This work demonstrates that the modification of APP1 increases photosynthesis, grain size and yield potentials. The genetic resources could propel photosynthesis and high-yield potentials in elite varieties of tetraploid and hexaploid wheat.
Collapse
Affiliation(s)
- Ke-Xin Niu
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chao-Yan Chang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mei-Qi Zhang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yue-Ting Guo
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yan Yan
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Hao-Jie Sun
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Liang Zhang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ming Li
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yi-Lin Gong
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Ci-Hang Ding
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jin-Ying Gou
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Qiu X, Wang G, Abou-Elwafa SF, Fu J, Liu Z, Zhang P, Xie X, Ku L, Ma Y, Guan X, Wei L. Genome-wide identification of HD-ZIP transcription factors in maize and their regulatory roles in promoting drought tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:425-437. [PMID: 35400885 PMCID: PMC8943141 DOI: 10.1007/s12298-022-01147-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 05/31/2023]
Abstract
Drought is the main limiting factor of maize productivity, therefore improving drought tolerance in maize has potential practical importance. Cloning and functional verification of drought-tolerant genes is of great importance to understand molecular mechanisms under drought stress. Here, we employed a bioinformatic pipeline to identify 42 ZmHDZ drought responsive genes using previously reported maize transcriptomic datasets. The coding sequences, exon-intron structure and domain organization of all the 42 genes were identified. Phylogenetic analysis revealed evolutionary conservation of members of the ZmHDZ genes in maize. Several regulatory elements associated with drought tolerance were identified in the promoter regions of ZmHDZ genes, indicating the implication of these genes in plant response to drought stress. 42 ZmHDZ genes were distributed unevenly on 10 chromosomes, and 24 pairs of gene duplications were the segmental duplication. The expression of several ZmHDZ genes was upregulated under drought stress, and ZmHDZ9 overexpressing transgenic plants exhibited higher SOD and POD activities and higher accumulation of soluble proteins under drought stress which resulted in enhanced developed phenotype and improved resistance. The present study provides evidence for the evolutionary conservation of HD-ZIP transcription factors homologs in maize. The results further provide a comprehensive insight into the roles of ZmHDZ genes in regulating drought stress tolerance in maize.
Collapse
Affiliation(s)
- Xiao Qiu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - GuoRui Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | | | - Jiaxu Fu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhixue Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - PengYu Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xiaowen Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Ying Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - XiaoKang Guan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Li Wei
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
5
|
Hou Z, Xu D, Deng N, Li Y, Yang L, Li S, Zhou H, Huang Q, Wang X. Comparative Proteomics of Mulberry Leaves at Different Developmental Stages Identify Novel Proteins Function Related to Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:797631. [PMID: 35003187 PMCID: PMC8739898 DOI: 10.3389/fpls.2021.797631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Mulberry leaves at different positions are different in photosynthetic rate, nutrient substance and feeding impact to silkworms. Here, we investigated the proteomic differences of the first (L1), sixth (L6), and twentieth (L20) mulberry leaves at different stem positions (from top to the base) using a label-free quantitative proteomics approach. L1 contained less developed photosynthetic apparatus but was more active in protein synthesis. L20 has more channel proteins and oxidoreductases relative to L6. Proteins that detected in all measured leaves were classified into three groups according to their expression patterns in L1, L6, and L20. The protein group that displayed the maximum amount in L6 has the highest possibility that function related to photosynthesis. Nine function unknown proteins belong to this group were further analyzed in the light responsive expression, evolutionary tree and sub-cellular localization analysis. Based on the results, five proteins were suggested to be involved in photosynthesis. Taken together, these results reveal the molecular details of different roles of mulberry leaves at different developmental stages and contribute to the identification of five proteins that might function related to photosynthesis.
Collapse
Affiliation(s)
- Zhiwei Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Dashun Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Na Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yan Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Luoling Yang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Shuxuan Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hong Zhou
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Qintao Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Wang T, Lu Q, Song H, Hu N, Wei Y, Li P, Liu Y, Zhao Z, Liu J, Zhang B, Peng R. DNA Methylation and RNA-Sequencing Analysis Show Epigenetic Function During Grain Filling in Foxtail Millet ( Setaria italica L.). FRONTIERS IN PLANT SCIENCE 2021; 12:741415. [PMID: 34512708 PMCID: PMC8429616 DOI: 10.3389/fpls.2021.741415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Grain filling is a crucial process for crop yield and quality. Certain studies already gained insight into the molecular mechanism of grain filling. However, it is unclear whether epigenetic modifications are associated with grain filling in foxtail millet. Global DNA methylation and transcriptome analysis were conducted in foxtail millet spikelets during different stages to interpret the epigenetic effects of the grain filling process. The study employed the whole-genome bisulfite deep sequencing and advanced bioinformatics to sequence and identify all DNA methylation during foxtail millet grain filling; the DNA methylation-mediated gene expression profiles and their involved gene network and biological pathway were systematically studied. One context of DNA methylation, namely, CHH methylation, was accounted for the largest percentage, and it was gradually increased during grain filling. Among all developmental stages, the methylation levels were lowest at T2, followed by T4, which mainly occurred in CHG. The distribution of differentially methylated regions (DMR) was varied in the different genetic regions for three contexts. In addition, gene expression was negatively associated with DNA methylation. Evaluation of the interconnection of the DNA methylome and transcriptome identified some stage-specific differentially expressed genes associated with the DMR at different stages compared with the T1 developmental stage, indicating the potential function of epigenetics on the expression regulation of genes related to the specific pathway at different stages of grain development. The results demonstrated that the dynamic change of DNA methylation plays a crucial function in gene regulation, revealing the potential function of epigenetics in grain development in foxtail millet.
Collapse
Affiliation(s)
- Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
- Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Quanwei Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, Anyang, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yangyang Wei
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Pengtao Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuling Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zilin Zhao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
7
|
Elattar MA, Karikari B, Li S, Song S, Cao Y, Aslam M, Hina A, Abou-Elwafa SF, Zhao T. Identification and Validation of Major QTLs, Epistatic Interactions, and Candidate Genes for Soybean Seed Shape and Weight Using Two Related RIL Populations. Front Genet 2021; 12:666440. [PMID: 34122518 PMCID: PMC8195344 DOI: 10.3389/fgene.2021.666440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic mechanism underlying seed size, shape, and weight is essential for enhancing soybean cultivars. High-density genetic maps of two recombinant inbred line (RIL) populations, LM6 and ZM6, were evaluated across multiple environments to identify and validate M-QTLs as well as identify candidate genes behind major and stable quantitative trait loci (QTLs). A total of 239 and 43 M-QTLs were mapped by composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM) approaches, from which 180 and 18, respectively, are novel QTLs. Twenty-two QTLs including four novel major QTLs were validated in the two RIL populations across multiple environments. Moreover, 18 QTLs showed significant AE effects, and 40 pairwise of the identified QTLs exhibited digenic epistatic effects. Thirty-four QTLs associated with seed flatness index (FI) were identified and reported here for the first time. Seven QTL clusters comprising several QTLs for seed size, shape, and weight on genomic regions of chromosomes 3, 4, 5, 7, 9, 17, and 19 were identified. Gene annotations, gene ontology (GO) enrichment, and RNA-seq analyses of the genomic regions of those seven QTL clusters identified 47 candidate genes for seed-related traits. These genes are highly expressed in seed-related tissues and nodules, which might be deemed as potential candidate genes regulating the seed size, weight, and shape traits in soybean. This study provides detailed information on the genetic basis of the studied traits and candidate genes that could be efficiently implemented by soybean breeders for fine mapping and gene cloning, and for marker-assisted selection (MAS) targeted at improving these traits individually or concurrently.
Collapse
Affiliation(s)
- Mahmoud A Elattar
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,Agronomy Department, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Benjamin Karikari
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shuguang Li
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shiyu Song
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yongce Cao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Muhammed Aslam
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Khalofah A, Khan MI, Arif M, Hussain A, Ullah R, Irfan M, Mahpara S, Shah RU, Ansari MJ, Kintl A, Brtnicky M, Danish S, Datta R. Deep placement of nitrogen fertilizer improves yield, nitrogen use efficiency and economic returns of transplanted fine rice. PLoS One 2021; 16:e0247529. [PMID: 33630922 PMCID: PMC7906316 DOI: 10.1371/journal.pone.0247529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Rice (Oryza sativa L.) feeds to two-third of the global population by serving as staple food. It is the main export commodity of several countries; thus, contributes towards foreign exchange earnings. Unfortunately, average global rice yield is far below than its genetic potential. Low nitrogen (N) use efficiency (NUE) is among the major reasons for low average yield. Current study evaluated the impact of nitrogen fertilizer application methods (conventional and deep placement) on growth, yield-related traits, chlorophyll contents, photosynthesis rate, agronomic N-use efficiency (ANUE), partial factors productivity of applied N (PFP) and economic returns of two different transplanted rice varieties (Basmati-515 and Super-Basmati). Fertilizer application methods significantly affected allometry, yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns. Deep placement of N-fertilizer (DPNF) observed better allometric traits, high chlorophyll contents, photosynthesis rate, ANUE, PFP, yield attributes and economic returns compared to conventional application of N-fertilizer (CANF). Similarly, Basmati-515 had better allometric and yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns than Super-Basmati. Regarding interactions among N-fertilizer application methods and rice varieties, Basmati-515 with DPNF resulted in higher chlorophyll contents, photosynthesis rate, ANUE, PFP, allometric and yield related traits and economic returns than CANF. The lowest values of these traits were observed for Super-Basmati with no application of N-fertilizer. Both varieties had better yield and economic returns with DPNF compared to CANF. It is concluded that DPNF improved yield, ANUE and economic returns; therefore, should be opted to improve productivity of transplanted fine rice. Nonetheless, lower nitrogen doses need to be tested for DPNF to infer whether it could lower N use in rice crop.
Collapse
Affiliation(s)
- Ahlam Khalofah
- Faculty of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
- * E-mail: (MIK); (RD)
| | - Muhammad Arif
- Department of Plant Protection, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ansar Hussain
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Rehmat Ullah
- Soil and Water Testing Laboratory, Dera Ghazi Khan, Pakistan
| | - Muhammad Irfan
- Faculty of Agricultural Sciences and Technology, Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahzadi Mahpara
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Rahmat Ullah Shah
- Faculty of Agricultural Sciences and Technology, Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Bareilly, India
| | - Antonin Kintl
- Agriculture Research, Ltd., Troubsko, Czech Republic
- Faculty of Agrisciences, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Brno, Czech Republic
| | - Martin Brtnicky
- Agriculture Research, Ltd., Troubsko, Czech Republic
- Faculty of Agrisciences, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Brno, Czech Republic
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czech Republic
| | - Subhan Danish
- Faculty of Agricultural Sciences and Technology, Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Rahul Datta
- Faculty of Forestry and Wood Technology, Department of Geology and Soil Science, Mendel University in Brno, Brno, Czech Republic
- * E-mail: (MIK); (RD)
| |
Collapse
|
9
|
Zhang H, Chen J, Shan S, Cao F, Chen G, Zou Y, Huang M, Abou-Elwafa SF. Proteomic profiling reveals differentially expressed proteins associated with amylose accumulation during rice grain filling. BMC Genomics 2020; 21:714. [PMID: 33059592 PMCID: PMC7561244 DOI: 10.1186/s12864-020-07105-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amylose accumulation in rice grains is controlled by genetic and environmental factors. Amylose content is a determinant factor of rice quality in terms of cooking and eating. Great variations in amylose content in indica rice cultivars have been observed. The current study was to identify differentially expressed proteins in starch and sucrose metabolism and glycolysis/gluconeogenesis pathways and their relationships to amylose synthesis using two rice cultivars possess contrasting phenotypes in grain amylose content. RESULTS Synthesis and accumulation of amylose in rice grains significantly affected the variations between rice cultivars in amylose contents. The high amylose content cultivar has three down-regulated differentially expressed proteins, i.e., LOC_Os01g62420.1, LOC_Os02g36600.1, and LOC_Os08g37380.2 in the glycolysis/gluconeogenesis pathway, which limit the glycolytic process and decrease the glucose-1-phosphate consumption. In the starch and sucrose metabolic pathway, an up-regulated protein, i.e., LOC_Os06g04200.1 and two down-regulated proteins, i.e., LOC_Os05g32710.1 and LOC_Os04g43360.1 were identified (Figure 4). Glucose-1-phosphate is one of the first substrates in starch synthesis and glycolysis that are catalyzed to form adenosine diphosphate glucose (ADPG), then the ADPG is catalyzed by granule-bound starch synthase I (GBSS I) to elongate amylose. CONCLUSIONS The results indicate that decreasing the consumption of glucose-1-phosphate in the glycolytic process is essential for the formation of ADPG and UDPG, which are substrates for amylose synthesis. In theory, amylose content in rice can be regulated by controlling the fate of glucose-1-phosphate.
Collapse
Affiliation(s)
- Hengdong Zhang
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.,Qianxinan Institute of Karst Regional Development Xingyi, Xingyi, 652400, Guizhou, China
| | - Jiana Chen
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shuanglü Shan
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Fangbo Cao
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Guanghui Chen
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yingbin Zou
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Min Huang
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Salah F Abou-Elwafa
- Agronomy Department, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|