1
|
Xie X, Ren Z, Su H, Abou-Elwafa SF, Shao J, Ku L, Jia L, Tian Z, Wei L. Functional study of ZmHDZ4 in maize (Zea mays) seedlings under drought stress. BMC PLANT BIOLOGY 2024; 24:1209. [PMID: 39701983 DOI: 10.1186/s12870-024-05951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Maize is a major feed and industrial crop and pivotal for ensuring global food security. In light of global warming and climate change, improving maize tolerance to water deficit is crucial. Identification and functional analysis of drought tolerance genes have potential practical importance in understanding the molecular mechanisms of drought stress. RESULTS Here, we identified a maize Homeodomain-Leucine Zipper I, ZmHDZ4, in maize seedlings that is associated with drought tolerance. We demonstrated that ZmHDZ4 has transcriptional activation activity, exclusively localized in the nucleus. Several Cis-acting elements associated with abiotic stress have been identified in the core promoter region of ZmHDZ4. Under drought-stressed conditions, transgenic maize plants overexpressing ZmHDZ4 exhibited significantly higher relative water content and peroxidase (POD) and superoxidase dismutase (SOD) activities compared to wide-type plants, while displaying lower malondialdehyde (MAD) content. The expressions of ZmMFS1-88, ZmGPM573, and ZmPHD9 were significantly repressed in the ZmHDZ4-OE plants under drought-stressed conditions, indicating that ZmMFS1-88, ZmGPM573, and ZmPHD9 were the candidate target genes of ZmHDZ4. CONCLUSIONS ZmHDZ4 is involved in the regulation of drought stress tolerance in maize by participating in osmotic regulation, sugar metabolism pathways, and hormone regulation.
Collapse
Affiliation(s)
- Xiaowen Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhenzhen Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | | | - Jing Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lin Jia
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Zhiqiang Tian
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Li Wei
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
2
|
Dai K, Zhang Z, Wang S, Yang J, Wang L, Jia T, Li J, Wang H, Song S, Lu Y, Li H. Molecular mechanisms of heterosis under drought stress in maize hybrids Zhengdan7137 and Zhengdan7153. FRONTIERS IN PLANT SCIENCE 2024; 15:1487639. [PMID: 39439513 PMCID: PMC11494150 DOI: 10.3389/fpls.2024.1487639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Maize is one of the most successful crops in utilizing heterosis which significantly improves maize stresses resistance and yield. Drought is a destructive abiotic stress that significantly reduces crop yield, particularly in maize. Drought stress and re-watering frequently occur during the growth and development of maize; however, the molecular mechanisms of heterosis under drought stress and re-watering have rarely been systematically investigated. Zhengdan7137 and Zhengdan7153 are two maize hybrid varieties with robust heterosis, and separately belongs to the SS×NSS and Reid×Tangsipingtou heterotic groups. 54 transcriptomes of these two hybrids and their parental inbred lines were analyzed under well-watering (WW), water-deficit (WD), and re-watering (RW) conditions using RNA-Seq. In this study, we identified 3,411 conserved drought response genes (CDRGs) and 3,133 conserved re-watering response genes (CRRGs) between Zhengdan7137 and Zhengdan7153. When comparing CDRGs and CRRGs to overdominance and underdominance genes, we identified 303 and 252 conservative drought response overdominance genes (DODGs) and underdominance genes (DUDGs), respectively, and 165 and 267 conservative re-watering response overdominance genes (RODGs) and underdominance genes (RUDGs), respectively. DODGs are involved in stress response-related processes, such as L-phenylalanine metabolism, carbohydrate metabolism, and heat response, whereas DUDGs are associated with glucose metabolism, pentose-phosphate shunt, and starch metabolism. RODGs and RUDGs contribute to the recovery of hybrids from drought stress by upregulating cell propagation and photosynthesis processes, and repressing stress response processes, respectively. It indicated overdominant and underdominant genes conservatively contributed to hybrid heterosis under drought stress. These results deepen our understanding of the molecular mechanisms of drought resistance, uncover conservative molecular mechanisms of heterosis under drought stress and re-watering, and provide potential targets for improving drought resistance in maize.
Collapse
Affiliation(s)
- Kai Dai
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Haerbin, China
| | - Zhanyi Zhang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Sen Wang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiwei Yang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lifeng Wang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Tengjiao Jia
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jingjing Li
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hao Wang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Song Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yuncai Lu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Haerbin, China
| | - Huiyong Li
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
3
|
Wang W, Liu Y, Kang Y, Liu W, Li S, Wang Z, Xia X, Chen X, Qian L, Xiong X, Liu Z, Guan C, He X. Genome-wide characterization of LEA gene family reveals a positive role of BnaA.LEA6.a in freezing tolerance in rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2024; 24:433. [PMID: 38773359 PMCID: PMC11106994 DOI: 10.1186/s12870-024-05111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Freezing stress is one of the major abiotic stresses that causes extensive damage to plants. LEA (Late embryogenesis abundant) proteins play a crucial role in plant growth, development, and abiotic stress. However, there is limited research on the function of LEA genes in low-temperature stress in Brassica napus (rapeseed). RESULTS Total 306 potential LEA genes were identified in B. rapa (79), B. oleracea (79) and B. napus (148) and divided into eight subgroups. LEA genes of the same subgroup had similar gene structures and predicted subcellular locations. Cis-regulatory elements analysis showed that the promoters of BnaLEA genes rich in cis-regulatory elements related to various abiotic stresses. Additionally, RNA-seq and real-time PCR results indicated that the majority of BnaLEA family members were highly expressed in senescent tissues of rapeseed, especially during late stages of seed maturation, and most BnaLEA genes can be induced by salt and osmotic stress. Interestingly, the BnaA.LEA6.a and BnaC.LEA6.a genes were highly expressed across different vegetative and reproductive organs during different development stages, and showed strong responses to salt, osmotic, and cold stress, particularly freezing stress. Further analysis showed that overexpression of BnaA.LEA6.a increased the freezing tolerance in rapeseed, as evidenced by lower relative electrical leakage and higher survival rates compared to the wild-type (WT) under freezing treatment. CONCLUSION This study is of great significance for understanding the functions of BnaLEA genes in freezing tolerance in rapeseed and offers an ideal candidate gene (BnaA.LEA6.a) for molecular breeding of freezing-tolerant rapeseed cultivars.
Collapse
Affiliation(s)
- Weiping Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yan Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yu Kang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wei Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shun Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhonghua Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaoyan Xia
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaoyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chunyun Guan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xin He
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
4
|
Liu H, Wu Z, Bao M, Gao F, Yang W, Abou-Elwafa SF, Liu Z, Ren Z, Zhu Y, Ku L, Su H, Chong L, Chen Y. ZmC2H2-149 negatively regulates drought tolerance by repressing ZmHSD1 in maize. PLANT, CELL & ENVIRONMENT 2024; 47:885-899. [PMID: 38164019 DOI: 10.1111/pce.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Drought is a major abiotic stress that limits maize production worldwide. Therefore, it is of great importance to improve drought tolerance in crop plants for sustainable agriculture. In this study, we examined the roles of Cys2 /His2 zinc-finger-proteins (C2H2-ZFPs) in maize's drought tolerance as C2H2-ZFPs have been implicated for plant stress tolerance. By subjecting 150 Ac/Ds mutant lines to drought stress, we successfully identified a Ds-insertion mutant, zmc2h2-149, which shows increased tolerance to drought stress. Overexpression of ZmC2H2-149 in maize led to a decrease in both drought tolerance and crop yield. DAP-Seq, RNA-Seq, Y1H and LUC assays additionally showed that ZmC2H2-149 directly suppresses the expression of a positive drought tolerance regulator, ZmHSD1 (hydroxysteroid dehydrogenase 1). Consistently, the zmhsd1 mutants exhibited decreased drought tolerance and grain yield under water deficit conditions compared to their respective wild-type plants. Our findings thus demonstrated that ZmC2H2-149 can regulate ZmHSD1 for drought stress tolerance in maize, offering valuable theoretical and genetic resources for maize breeding programmes that aim for improving drought tolerance.
Collapse
Affiliation(s)
- Huafeng Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhendong Wu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Miaomiao Bao
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fengran Gao
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjing Yang
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | | | - Zhixue Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lixia Ku
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Leelyn Chong
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Ren Z, Fu J, Abou-Elwafa SF, Ku L, Xie X, Liu Z, Shao J, Wen P, Al Aboud NM, Su H, Wang T, Wei L. Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea mays) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108292. [PMID: 38215602 DOI: 10.1016/j.plaphy.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Drought stress is one of the most limiting factors of maize productivity and can lead to a sharp reduction in the total biomass when it occurs at the seedling stage. Improving drought tolerance at the seedling stage is of great importance for maize breeding. The AP2/ERF transcription factor family plays a critical role in plant response to abiotic stresses. Here, we used a preliminary previously-generated ranscriptomic dataset to identify a highly drought-stress-responsive AP2 gene, i.e., ZmEREB24. Compared to the wild type, the overexpression of ZmEREB24 in maize significantly promotes drought tolerance of transgenic plants at the seedling stage. CRISPR/Cas9-based ZmEREB24-knockout mutants showed a drought-sensitive phenotype. RNA-seq analysis and EMSA assay revealed AATGG.CT and GTG.T.GCC motifs as the main binding sites of ZmEREB24 to the promoters of downstream target genes. DAP-seq identified four novel target genes involved in proline and sugar metabolism and hormone signal transduction of ZmEREB24. Our data indicate that ZmEREB24 plays important biological functions in regulating drought tolerance by binding to the promoters of drought stress genes and modulating their expression. The results further suggest a role of ZmEREB24 in regulating drought adaptation in maize, indicating its potential importance for employing molecular breeding in the development of high-yield drought-tolerant maize cultivars.
Collapse
Affiliation(s)
- Zhenzhen Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiaxu Fu
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaowen Xie
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhixue Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jing Shao
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengfei Wen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Nora M Al Aboud
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Tongchao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Li Wei
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Singh A, Pandey H, Pandey S, Lal D, Chauhan D, Aparna, Antre SH, B S, Kumar A. Drought stress in maize: stress perception to molecular response and strategies for its improvement. Funct Integr Genomics 2023; 23:296. [PMID: 37697159 DOI: 10.1007/s10142-023-01226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Given the future demand for food crops, increasing crop productivity in drought-prone rainfed areas has become essential. Drought-tolerant varieties are warranted to solve this problem in major crops, with drought tolerance as a high-priority trait for future research. Maize is one such crop affected by drought stress, which limits production, resulting in substantial economic losses. It became a more serious issue due to global climate change. The most drought sensitive among all stages of maize is the reproductive stages and the most important for overall maize production. The exact molecular basis of reproductive drought sensitivity remains unclear due to genes' complex regulation of drought stress. Understanding the molecular biology and signaling of the unexplored area of reproductive drought tolerance will provide an opportunity to develop climate-smart drought-tolerant next-generation maize cultivars. In recent decades, significant progress has been made in maize to understand the drought tolerance mechanism. However, improving maize drought tolerance through breeding is ineffective due to the complex nature and multigenic control of drought traits. With the help of advanced breeding techniques, molecular genetics, and a precision genome editing approach like CRISPR-Cas, candidate genes for drought-tolerant maize can be identified and targeted. This review summarizes the effects of drought stress on each growth stage of maize, potential genes, and transcription factors that determine drought tolerance. In addition, we discussed drought stress sensing, its molecular mechanisms, different approaches to developing drought-resistant maize varieties, and how molecular breeding and genome editing will help with the current unpredictable climate change.
Collapse
Affiliation(s)
- Ashutosh Singh
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | | | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Dalpat Lal
- College of Agriculture, Jodhpur Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - Divya Chauhan
- Banasthali University, Radha Kishanpura, Rajasthan, 304022, India
| | - Aparna
- Departments of Agriculture, Jagan Nath University, Jaipur, Rajasthan, 303901, India
| | - Suresh H Antre
- Advanced Centre of Plant Biotechnology, UAS, GKVK, Bangalore, Karnataka, 560065, India
| | - Santhosh B
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, MTTC & VTC, Selesih, CAU, Imphal, 795001, India
| |
Collapse
|