1
|
Scheibel DM, Gitsov IPI, Gitsov I. Enzymes in "Green" Synthetic Chemistry: Laccase and Lipase. Molecules 2024; 29:989. [PMID: 38474502 DOI: 10.3390/molecules29050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.
Collapse
Affiliation(s)
- Dieter M Scheibel
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
| | - Ioan Pavel Ivanov Gitsov
- Science and Technology, Medtronic Incorporated, 710 Medtronic Parkway, Minneapolis, MN 55432, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
3
|
Pistone A, de Gaetano A, Piperopoulos E, Abate C. Effect of Sodium Hydroxide and Tripolyphosphate on Curcumin Release from Chitosan-Based Macroparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5850. [PMID: 37687542 PMCID: PMC10488734 DOI: 10.3390/ma16175850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
This work deals with the synthesis of bare and curcumin (CUR)-loaded chitosan (CS)-based macroparticles by ionic gelation using sodium hydroxide (NaOH) or sodium tripolyphosphate (TPP). The resulting spherical-shaped macroparticles were studied using various characterization techniques, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). The release of CUR from the CS-based particles with respect to time was analyzed, and the encapsulation efficiency and degree of swelling were studied. All formulations showed excellent CUR trapping efficiency, exceeding 90%. In particular, the TPP-crosslinked macrobeads released 34 wt% of the charged CUR within minutes, while the remaining 66 wt% was released slowly. The results indicate that the correct choice of gelling agent and its concentration leads to spherical particles capable of encapsulating CUR and releasing it in a wide range of kinetics so that macrospheres can be used in different applications.
Collapse
Affiliation(s)
- Alessandro Pistone
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (A.d.G.); (E.P.); (C.A.)
| | | | | | | |
Collapse
|
4
|
Sulej J, Piątek-Gołda W, Grąz M, Szałapata K, Waśko P, Janik-Zabrotowicz E, Osińska-Jaroszuk M. Immobilisation of Cellobiose Dehydrogenase and Laccase on Chitosan Particles as a Multi-Enzymatic System for the Synthesis of Lactobionic Acid. J Funct Biomater 2023; 14:383. [PMID: 37504878 PMCID: PMC10381469 DOI: 10.3390/jfb14070383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the synthesis of LBA using immobilised enzymes (cellobiose dehydrogenase from Phanerochaete chrysosporium (PchCDH) and laccase from Cerrena unicolor (CuLAC)) on chitosan microspheres. We used three different crosslinking agents: genipin, glutaraldehyde, and polyethyleneimine to activate the chitosan. The FTIR and CellDrop techniques were used to characterise the activated microspheres. Quantitative (HPLC) and qualitative (TLC) methods were used to determine the obtained LBA. The results show that the type of activator used influences the efficiency of the binding of the enzyme to the matrix. Furthermore, the amount of LBA formed depends on the type of system used. The use of a system in which one of the enzymes is immobilised on a PEI-activated carrier (PchCDH) and the other is free (CuLAC) proved to be the most optimal, as it yielded almost 100% conversion of lactose to lactobionic acid. Summarising the data obtained the following: lactobionic acid immobilised on chitosan microspheres has great potential for medical applications.
Collapse
Affiliation(s)
- Justyna Sulej
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Wiktoria Piątek-Gołda
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Katarzyna Szałapata
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Piotr Waśko
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
- Core Facility of Biospectroscopy, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Ewa Janik-Zabrotowicz
- Core Facility of Biospectroscopy, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| |
Collapse
|
5
|
Ahmed Z, Arshad A, Bilal M, Iqbal HMN, Ahmed I. Nano-biocatalytic Systems for Cellulose de-polymerization: A Drive from Design to Applications. Top Catal 2023; 66:592-605. [DOI: 10.1007/s11244-023-01785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/24/2023]
|
6
|
Garcia-Gonzalez M, Narmontaite E, Cervantes FV, Plou FJ, Betancor L, Fernandez-Lobato M. Continuous production of honey oligosaccharides in packed-bed reactors with immobilized α-glucosidase from Metschnikowia reukaufii. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Heshmati Aghda N, Zhang Y, Wang J, Lu A, Pillai AR, Maniruzzaman M. A Novel 3D Printing Particulate Manufacturing Technology for Encapsulation of Protein Therapeutics: Sprayed Multi Adsorbed-Droplet Reposing Technology (SMART). Bioengineering (Basel) 2022; 9:653. [PMID: 36354564 PMCID: PMC9687125 DOI: 10.3390/bioengineering9110653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 10/27/2023] Open
Abstract
Recently, various innovative technologies have been developed for the enhanced delivery of biologics as attractive formulation targets including polymeric micro and nanoparticles. Combined with personalized medicine, this area can offer a great opportunity for the improvement of therapeutics efficiency and the treatment outcome. Herein, a novel manufacturing method has been introduced to produce protein-loaded chitosan particles with controlled size. This method is based on an additive manufacturing technology that allows for the designing and production of personalized particulate based therapeutic formulations with a precise control over the shape, size, and potentially the geometry. Sprayed multi adsorbed-droplet reposing technology (SMART) consists of the high-pressure extrusion of an ink with a well determined composition using a pneumatic 3D bioprinting approach and flash freezing the extrudate at the printing bed, optionally followed by freeze drying. In the present study, we attempted to manufacture trypsin-loaded chitosan particles using SMART. The ink and products were thoroughly characterized by dynamic light scattering, rheometer, Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red (FTIR) and Circular Dichroism (CD) spectroscopy. These characterizations confirmed the shape morphology as well as the protein integrity over the process. Further, the effect of various factors on the production were investigated. Our results showed that the concentration of the carrier, chitosan, and the lyoprotectant concentration as well as the extrusion pressure have a significant effect on the particle size. According to CD spectra, SMART ensured Trypsin's secondary structure remained intact regardless of the ink composition and pressure. However, our study revealed that the presence of 5% (w/v) lyoprotectant is essential to maintain the trypsin's proteolytic activity. This study demonstrates, for the first time, the viability of SMART as a single-step efficient process to produce biologics-based stable formulations with a precise control over the particulate morphology which can further be expanded across numerous therapeutic modalities including vaccines and cell/gene therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA
| |
Collapse
|
8
|
Ahmad MZ, Sabri AHB, Anjani QK, Domínguez-Robles J, Abdul Latip N, Hamid KA. Design and Development of Levodopa Loaded Polymeric Nanoparticles for Intranasal Delivery. Pharmaceuticals (Basel) 2022; 15:370. [PMID: 35337167 PMCID: PMC8951268 DOI: 10.3390/ph15030370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Intranasal delivery is an alternative administration route to deliver levodopa (L-Dopa) to the brain. This drug delivery route offers high drug permeability across the nasal epithelium and rapid absorption into the central nervous system (CNS) while bypassing first-pass metabolism. In this study, we developed a library of polymeric nanocarrier systems for L-Dopa utilising poly(lactic-co-glycolic acid) (PLGA) and chitosan. A total of three PLGA nanoparticles formulations (P1, P2 and P3) were prepared using a modified water-in-oil-in-water (W/O/W) solvent evaporation technique, while four formulations of chitosan nanoparticles (C1, C2, C3 and C4) were prepared by ionic gelation method with sodium tripolyphosphate (TPP) as a cross-linking agent. Upon characterising nanocarriers developed, it was discovered that C2 demonstrated the best results with regard to droplet size (553 ± 52 nm), polydispersity index (0.522), zeta potential (+46.2 ± 2.3 mV), and encapsulation efficiency (82.38% ± 1.63). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) further corroborated the particle size analysis highlighting that C2 displayed uniform particle size with spherical morphology. Additionally, X-ray diffraction analysis (XRD) revealed that C2 was in an amorphous state while Fourier transform infrared (FTIR) analysis showed that there were no chemical interactions that might change the chemical structure of L-Dopa within the polymeric nanoparticle matrix. Lastly, an in-vivo intranasal study in male Wistar rats showed that the absorption of L-Dopa when formulated as chitosan nanoparticles was significantly enhanced (p < 0.05) by approximately two-fold compared to unmodified L-Dopa. Therefore, this work illustrates that formulating L-Dopa into chitosan nanoparticles for intranasal delivery is a potentially viable formulation strategy to improve the bioavailability of the drug for the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Mohd Zulhelmy Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Malaysia;
| | - Akmal Hidyat Bin Sabri
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.H.B.S.); (Q.K.A.); (J.D.-R.)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.H.B.S.); (Q.K.A.); (J.D.-R.)
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.H.B.S.); (Q.K.A.); (J.D.-R.)
| | - Normala Abdul Latip
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRINS), Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Malaysia;
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Malaysia;
| |
Collapse
|
9
|
Bibi Z, Sattar H, Asif Nawaz M, Karim A, Pervez S, Ali Ul Qader S, Aman A. Polyacrylamide hydrogel carrier (matrix-type macrogel beads): Improvement in the catalytic behavior, stability, and reusability of industrially valuable xylanase from a thermophile Geobacillus stearothermophilus. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Koh KY, Chen Z, Zhang S, Chen JP. Cost-effective phosphorus removal from aqueous solution by a chitosan/lanthanum hydrogel bead: Material development, characterization of uptake process and investigation of mechanisms. CHEMOSPHERE 2022; 286:131458. [PMID: 34284222 DOI: 10.1016/j.chemosphere.2021.131458] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Excessive phosphorus is one of the main reasons leading to eutrophication that causes severe ecosystem imbalance and negative human health impacts. In this study, several chitosan (CS)/lanthanum (La) hydrogel beads were first synthesized and tested for phosphorus removal. The stable cross-linked CS/La hydrogel bead prepared with the optimized conditions of 10 wt% La/CS and 1.5 mL of 5% glutaraldehyde demonstrated exceptional performance in the removal. It removed phosphate effectively from an aqueous solution in the pH range from 2 to 7. The complete phosphate uptake was achieved at contact time of 6 h under the completely mixing batch condition. The experimental maximum adsorption capacity of 107.7 mg g-1 was observed at solution pH 4. The phosphate adsorption was well described by the Freundlich isotherm and the intraparticle surface diffusion model. Furthermore, the adsorbent was effectively regenerated and reused in a five-cycle adsorption-desorption operation. The removal of phosphate can be attributed to electrostatic attraction and ion exchange. Moreover, the bead was capable of removing heavy metals: copper, zinc and lead. This adsorbent may be served as a cost-effective material for the treatment of phosphorus-contaminated water so as to minimize the occurrence of eutrophication.
Collapse
Affiliation(s)
- Kok Yuen Koh
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore.
| | - Zhihao Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - J Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore.
| |
Collapse
|
11
|
Hassan HAFM, Ali AI, ElDesawy EM, ElShafeey AH. Pharmacokinetic and pharmacodynamic evaluation of gemifloxacin chitosan nanoparticles as an antibacterial ocular dosage form. J Pharm Sci 2021; 111:1497-1508. [PMID: 34929155 DOI: 10.1016/j.xphs.2021.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Ocular infections are classified into superficial keratitis, conjunctivitis or deep infections such as corneal abscesses and blepharitis. Herein, we focused on the development of formulation approaches that could prolong the residence time of gemifloxacin (GM) and enhance its corneal penetration to facilitate GM effects both superficially and at the deep tissues. Ionic gelation method was used to prepare eight forms of GM nanoparticles (NPs) formulated from chitosan polymer using sodium tripolyphosphate (TPP)-induced precipitation method. Differential scanning colorimetry (DSC) and X-ray diffraction (XRD) demonstrated the interaction between the chitosan and GM. Particle size, entrapment efficiency and cumulative in vitro release were used to select the optimal formula using Design Expert® software. The mean diameter of the selected NPs was 158. 4 nm. The average entrapment efficiency and cumulative release exhibited by the formulated NPs were 46.6% and 74.9%, respectively. Pharmacokinetics studies carried out on rabbits revealed that the ocularly-administered NPs significantly increased the loaded GM concentration in the tear and aqueous humour samples that suggested enhancement of precorneal retention and transcorneal permeation, respectively. Furthermore, ocular pharmacodynamic studies conducted on rabbits following ocular infection with Staphylococcus aureus or Pseudomonas aeruginosa showed that the administered NPs augmented the antibacterial activity of the delivered GM. This was demonstrated via the histopathological examination of the dissected corneas that showed preserved histological features and reduced bacterial keratitis on using the GM NPs rather than GM solution. Moreover, the GM NPs-treated corneas showed lower viable bacterial counts than the GM solution-treated corneas. Accordingly, our study illustrated the capability of the chitosan NPs to promote the antibacterial activity of GM against eye infections via ocular administration.
Collapse
Affiliation(s)
- Hatem A F M Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University, South Sinai, Egypt.
| | | | | | - Ahmed H ElShafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Chitosan: An Overview of Its Properties and Applications. Polymers (Basel) 2021; 13:polym13193256. [PMID: 34641071 PMCID: PMC8512059 DOI: 10.3390/polym13193256] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chitosan has garnered much interest due to its properties and possible applications. Every year the number of publications and patents based on this polymer increase. Chitosan exhibits poor solubility in neutral and basic media, limiting its use in such conditions. Another serious obstacle is directly related to its natural origin. Chitosan is not a single polymer with a defined structure but a family of molecules with differences in their composition, size, and monomer distribution. These properties have a fundamental effect on the biological and technological performance of the polymer. Moreover, some of the biological properties claimed are discrete. In this review, we discuss how chitosan chemistry can solve the problems related to its poor solubility and can boost the polymer properties. We focus on some of the main biological properties of chitosan and the relationship with the physicochemical properties of the polymer. Then, we review two polymer applications related to green processes: the use of chitosan in the green synthesis of metallic nanoparticles and its use as support for biocatalysts. Finally, we briefly describe how making use of the technological properties of chitosan makes it possible to develop a variety of systems for drug delivery.
Collapse
|
13
|
Kalimuthu P, Kruse T, Bernhardt PV. A highly sensitive and stable electrochemical nitrate biosensor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Shams R, Rizvi QEH, Dar AH, Majid I, Khan SA, Singh A. Polysaccharides: Promising Constituent for the Preparation of Nanomaterials. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
15
|
Yuan Y, Li H, Leite W, Zhang Q, Bonnesen PV, Labbé JL, Weiss KL, Pingali SV, Hong K, Urban VS, Salmon S, O'Neill H. Biosynthesis and characterization of deuterated chitosan in filamentous fungus and yeast. Carbohydr Polym 2021; 257:117637. [PMID: 33541662 DOI: 10.1016/j.carbpol.2021.117637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/29/2020] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
Deuterated chitosan was produced from the filamentous fungus Rhizopus oryzae, cultivated with deuterated glucose in H2O medium, without the need for conventional chemical deacetylation. After extraction and purification, the chemical composition and structure were determined by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS). 13C NMR experiments provided additional information about the position of the deuterons in the glucoseamine backbone. The NMR spectra indicated that the deuterium incorporation at the non-exchangeable hydrogen positions of the aminoglucopyranosyl ring in the C3 - C5 positions was at least 60-80 %. However, the C2 position was deuterated at a much lower level (6%). Also, SANS showed that the structure of deuterated chitosan was very similar compared to the non-deuterated counterpart. The most abundant radii of the protiated and deuterated chitosan fibers were 54 Å and 60 Å, respectively, but there is a broader distribution of fiber radii in the protiated chitosan sample. The highly deuterated, soluble fungal chitosan described here can be used as a model material for studying chitosan-enzyme complexes for future neutron scattering studies. Because the physical behavior of non-deuterated fungal chitosan mimicked that of shrimp shell chitosan, the methods presented here represent a new approach to producing a high quality deuterated non-animal-derived aminopolysaccharide for studying the structure-function association of biocomposite materials in drug delivery, tissue engineering and other bioactive chitosan-based composites.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hui Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington Leite
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qiu Zhang
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Peter V Bonnesen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jessy L Labbé
- Fungal Systems Genetics and Biology Lab, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin L Weiss
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sai Venkatesh Pingali
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Volker S Urban
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sonja Salmon
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Hugh O'Neill
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
16
|
Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Kidibule PE, Costa J, Atrei A, Plou FJ, Fernandez-Lobato M, Pogni R. Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Adv 2021; 11:5529-5536. [PMID: 35423100 PMCID: PMC8694723 DOI: 10.1039/d0ra10409d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Chitin-active enzymes are of great biotechnological interest due to the wide industrial application of chitinolytic materials. Non-stability and high cost are among limitations that hinder industrial application of soluble enzymes. Here we report the production and characterization of chitooligosaccharides (COS) using the fungal exo-chitinase Chit42 immobilized on magnetic nanoparticles and food-grade chitosan beads with an immobilization yield of about 60% using glutaraldehyde and genipin linkers. The immobilized enzyme gained operational stability with increasing temperature and acidic pH values, especially when using chitosan beads-genipin that retained more than 80% activity at pH 3. Biocatalysts generated COS from colloidal chitin and different chitosan types. The immobilized enzyme showed higher hydrolytic activity than free enzyme on chitosan, and produced COS mixtures with higher variability of size and acetylation degree. In addition, biocatalysts were reusable, easy to handle and to separate from the reaction mixture.
Collapse
Affiliation(s)
- Peter E Kidibule
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid Nicolás Cabrera, 1. Cantoblanco 28049 Madrid Spain
| | - Jessica Costa
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| | - Andrea Atrei
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC Marie Curie, 2. Cantoblanco 28049 Madrid Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid Nicolás Cabrera, 1. Cantoblanco 28049 Madrid Spain
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| |
Collapse
|
18
|
Lima PC, Gazoni I, de Carvalho AMG, Bresolin D, Cavalheiro D, de Oliveira D, Rigo E. β-galactosidase from Kluyveromyces lactis in genipin-activated chitosan: An investigation on immobilization, stability, and application in diluted UHT milk. Food Chem 2021; 349:129050. [PMID: 33556730 DOI: 10.1016/j.foodchem.2021.129050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The objective of this research was to evaluate the immobilization of the enzyme β-galactosidase in a genipin-activated chitosan support. The influence of the number of spheres and substrate concentration on immobilization yield (IY) and enzyme activity (EA) was analyzed using experimental design. Thermal, operational and storage stabilities were assessed, and the enzymatic derivatives were characterized by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The TGA showed that the enzymatic derivatives kept their thermal behavior, and the SEM images revealed smooth surfaces in all the spheres. The optimized conditions for the immobilization process were 4.57 mg·mL-1 of spheres and a substrate concentration of 10 mM (IY = 84.13%; EA = 24.97 U·g-1). Thermal stability was enhanced at 10 and 37 °C, enabling four successive cycles of lactose hydrolysis in diluted UHT milk. Therefore, the immobilized enzyme in genipin-activated chitosan has potential for lactose hydrolysis and applications in the food industry.
Collapse
Affiliation(s)
- Pâmela Cristina Lima
- Department of Food and Chemical Engineering, Santa Catarina State University, Pinhalzinho, SC 89870-000, Brazil
| | - Isadora Gazoni
- Department of Food and Chemical Engineering, Santa Catarina State University, Pinhalzinho, SC 89870-000, Brazil
| | | | - Daniela Bresolin
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Darlene Cavalheiro
- Department of Food and Chemical Engineering, Santa Catarina State University, Pinhalzinho, SC 89870-000, Brazil.
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Elisandra Rigo
- Department of Food and Chemical Engineering, Santa Catarina State University, Pinhalzinho, SC 89870-000, Brazil.
| |
Collapse
|
19
|
Malar CG, Seenuvasan M, Kumar KS, Kumar MA. Synthesis and applications of Chitosan: A contemporary macromolecule. MICROBIAL AND NATURAL MACROMOLECULES 2021:73-86. [DOI: 10.1016/b978-0-12-820084-1.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
20
|
Mohapatra BR. Characterization of β-mannanase extracted from a novel Streptomyces species Alg-S25 immobilized on chitosan nanoparticles. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1858158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bidyut Ranjan Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Bridgetown, Barbados
| |
Collapse
|
21
|
Aricov L, Leonties AR, Gîfu IC, Preda D, Raducan A, Anghel DF. Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111326. [PMID: 32891981 DOI: 10.1016/j.jenvman.2020.111326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This study was focused on creating a new and effective immobilization method for Trametes versicolor laccase (Lc) by using chitosan (CS) microspheres activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride. The activation of the support alternated with immobilization of the enzyme, in repetitive procedures, led to obtaining three different products. Also, the physicochemical properties of the new products were investigated and compared with those of free laccase. The discoloration and reusability properties of the immobilized Lc were evaluated using indigo carmine (IC) as a model micropollutant. The ESEM and FT-IR methods demonstrated that the Lc was successfully immobilized. The relative reaction rate and the total amount of immobilized Lc were tripled using the iterative protocol as proved by specific and Bradford assays. The maximum amount of immobilized Lc was 8.4 mg Lc/g CS corresponding to the third immobilization procedure. Compared to the free Lc, the operational stability of the immobilized Lc was significantly improved, presenting a maximum activity plateau over a pH range of 3-5 and a temperature range of 25-50 °C. The thermal inactivation study at 55 °C proved that the immobilized enzyme is three times more stable than the free Lc. The isoconversional and Michaelis-Menten methods showed that the immobilization did not affect the enzyme catalytic properties. After 32 days of storage, the residual activities are 85% for the immobilized laccase and 40% for the free one. In similar conditions, the free and immobilized Lc (2.12 x 10-6 M) completely decolorized IC (7.15 x 10-5 M) within 14 min. The immobilized Lc activity remained almost constant (80%) during 10 reusability cycles. All these results highlight the substantial advantages of the new immobilization protocol and demonstrate that immobilized Lc can be used as a promising micropollutant removal from real wastewater.
Collapse
Affiliation(s)
- Ludmila Aricov
- Department of Colloid Chemistry, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Anca Ruxandra Leonties
- Department of Colloid Chemistry, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania.
| | - Ioana Catalina Gîfu
- Department of Polymer, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Daniel Preda
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Elisabeta 4-12, 030018, Bucharest, Romania
| | - Adina Raducan
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Elisabeta 4-12, 030018, Bucharest, Romania
| | - Dan-Florin Anghel
- Department of Colloid Chemistry, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| |
Collapse
|
22
|
Singh P, Kumari A, Chauhan K, Attri C, Seth A. Nitrile hydratase mediated green synthesis of lactamide by immobilizing Rhodococcus pyridinivorans NIT-36 cells on N, N'-Methylene bis-acrylamide activated chitosan. Int J Biol Macromol 2020; 161:168-176. [PMID: 32512095 DOI: 10.1016/j.ijbiomac.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
In this paper green synthesis of an important commodity chemical lactamide has been undertaken using chitosan immobilized Rhodococcus pyridinivorans NIT-36 harbouring nitrile hydratase (NHase) enzyme. The cells immobilization (300 mg/g) is based on the partial entrapment of cells by suspension cross-linking technique facilitated by N, N'-Methylene bis-acrylamide. In the repeated-use experiments, the immobilized cells retained 80% of its initial activity when stored at 4 °C for 30 days. NHase activity of free and immobilized cells was studied over temperature ranging from 25 °C to 60 °C. The activity for free cells showed a sharp decline of 70% when the reaction temperature was elevated from 45 °C to 50 °C whereas chitosan immobilized cells retained their activity in the same temperature range. A fed-batch reaction was designed and the immobilized cells showed 100% similar enzymatic pattern for five consecutive rounds which gradually decreased in following cycles. A volumetric productivity of 20 g/L and catalytic productivity of 8.33 g/g dcw/h for lactamide were achieved.
Collapse
Affiliation(s)
- Poonam Singh
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bajhol, Solan (H.P.), India
| | - Ansu Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bajhol, Solan (H.P.), India
| | - Kalpana Chauhan
- Department of Chemistry, School of Engineering and Technology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Chandrika Attri
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bajhol, Solan (H.P.), India
| | - Amit Seth
- Department of Life Sciences (Botany), Manipur University, Imphal, Manipur, India.
| |
Collapse
|
23
|
Ferreira IM, Fiamingo A, Campana-Filho SP, Porto ALM. Biotransformation of (E)-2-Methyl-3-Phenylacrylaldehyde Using Mycelia of Penicillium citrinum CBMAI 1186, Both Free and Immobilized on Chitosan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:348-356. [PMID: 32080775 DOI: 10.1007/s10126-020-09954-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
This study applied the use of marine-derived fungus Penicillium citrinum CBMAI 1186 in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde 1. The fungus immobilized on chitosan, obtained by multistep ultrasound-assisted deacetylation process (Ch-USAD), produced the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 49%, 40% ee) isomer and (±)-2-methyl-3-phenylacrilic acid 4 (c = 35%); in contrast, immobilized mycelia on commercial chitosan (Ch-C) yielded the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 48%, 10% ee) and (±)-2-methyl-3-phenylpropanal 1a (c = 41%). The reaction using free mycelia gave a 40% yield of (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 with 10% ee. These results showed that the crystallinity form and molecular weight of chitosan (Ch-C or Ch-USAD) used to immobilized mycelia of P. citrinum CBMAI 1186 influenced in the biotransformation of (E)-2-methyl-3-phenylacrylaldehyde 1. Therefore, marine-derived fungus P. citrinum CBMAI 1186 immobilized on chitosan can be a potential alternative in the studies of hydrogenation of the α,β-unsaturated carbon-carbon (α,β-C=C) double bond. Marine-derived fungus Penicillium citrinum CBMAI 1186 immobilized on chitosan in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde.
Collapse
Affiliation(s)
- Irlon M Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas, Universidade Federal do Amapá, Rod. JK KM 02, Macapa, Amapá, 68902-280, Brazil.
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil.
| | - Anderson Fiamingo
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil
| | - Sergio P Campana-Filho
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina,, Sao Carlos, São Paulo, 13563-120, Brazil.
| |
Collapse
|
24
|
Hyun K, Kang S, Kim J, Kwon Y. New Biocatalyst Including a 4-Nitrobenzoic Acid Mediator Embedded by the Cross-Linking of Chitosan and Genipin and Its Use in an Energy Device. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23635-23643. [PMID: 32343553 DOI: 10.1021/acsami.0c05564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new anodic catalyst consisting of carbon nanotube, 4-nitrobenzoic acid, chitosan, genipin, and glucose oxidase (GOx) (CNT/4-NBA/[Chit/GOx/GP]) is suggested to promote the glucose oxidation reaction (GOR) and the performance of enzymatic biofuel cell (EBC). In this catalyst, through the cross-linked structure of chitosan and genipin and the proper distribution of amine groups within chitosan, many GOx molecules are maximally captured, their leaching out is suppressed, and the GOR is improved upon. In addition, 4-nitrobenzoic acid plays the role of mediator well. The effect induced by the cross-linked structure is evaluated by ultraviolet-visible (UV-vis) spectroscopy, pH measurements, and electrochemical characterizations. According to the characterizations, the new CNT/4-NBA/[Chit/GOx/GP] catalyst contains a large amount of GOx (17.8 mg/mL) and produces a high anodic current (331 μA/cm2 at 0.3 V vs Ag/AgCl) with a low onset potential (0.05 V vs Ag/AgCl) because its catalytic activity follows the desirable reaction pathway that minimizes creation of a protonated amine group that interferes with GOR. When the performance of EBC using this catalyst as an anodic electrode is measured, the EBC shows a high open-circuit voltage of 0.54 V and a maximum power density of 38 μW/cm2.
Collapse
Affiliation(s)
- Kyuhwan Hyun
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Suhyeon Kang
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Jiyong Kim
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yongchai Kwon
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
25
|
Abstract
Abstract
In the review we describe a method for concentration of anionic liposomes with encapsulated water-soluble substances within a small volume via electrostatic liposome adsorption on the surface of polymer particles with grafted cationic chains (spherical polycationic brushes), or cationic microgel particles. Dozens of intact liposomes can be bound to each polymer particle, the resulting polymer/liposome complex does not dissociate into the original components in a physiological solution. This allows fabrication of multi-liposomal complexes (MLCs) with a required ratio of encapsulated substances. Two approaches are discussed for the synthesis of stimuli-sensitive MLCs. The first is to incorporate the conformation switch, morpholinocyclohexanol-based lipid, into the liposomal membrane thus forming pH-sensitive liposomes capable of releasing their cargo when acidifying the surrounding solution. These liposomes complexed with the brushes release encapsulated substances much faster than the uncomplexed liposomes. The second is to adsorb liposomes on cationic thermo-responsive microgels. The resulting MLCs contracts upon heating over a volume phase transition temperature from the swollen to the collapsed state of microgel, thus causing the adsorbed liposomes to change drastically their morphology and release an encapsulated substance. Complexation of anionic liposomes with chitosan microgels and polylactide micelles gives MLCs which degrade in the presence of enzymes down to small particles, 10–15 nm in diameter. A novel promising approach suggests that immobilized liposomes can act as a capacious depot for biologically active compounds and ensure their controllable leakage to surrounding solution.
Collapse
Affiliation(s)
- Alexander A. Yaroslavov
- Lomonosov Moscow State University , Department of Chemistry , Leninskie Gory 1-3 , Moscow 119991 , Russian Federation
| | - Andrey V. Sybachin
- Lomonosov Moscow State University , Department of Chemistry , Leninskie Gory 1-3 , Moscow 119991 , Russian Federation
| |
Collapse
|
26
|
Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Mohapatra BR. Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Bagal-Kestwal DR, Chiang BH. Exploration of Chitinous Scaffold-Based Interfaces for Glucose Sensing Assemblies. Polymers (Basel) 2019; 11:E1958. [PMID: 31795230 PMCID: PMC6960682 DOI: 10.3390/polym11121958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023] Open
Abstract
: The nanomaterial-integrated chitinous polymers have promoted the technological advancements in personal health care apparatus, particularly for enzyme-based devices like the glucometer. Chitin and chitosan, being natural biopolymers, have attracted great attention in the field of biocatalysts engineering. Their remarkable tunable properties have been explored for enhancing enzyme performance and biosensor advancements. Currently, incorporation of nanomaterials in chitin and chitosan-based biosensors are also widely exploited for enzyme stability and interference-free detection. Therefore, in this review, we focus on various innovative multi-faceted strategies used for the fabrication of biological assemblies using chitinous biomaterial interface. We aim to summarize the current development on chitin/chitosan and their nano-architecture scaffolds for interdisciplinary biosensor research, especially for analytes like glucose. This review article will be useful for understanding the overall multifunctional aspects and progress of chitin and chitosan-based polysaccharides in the food, biomedical, pharmaceutical, environmental, and other diverse applications.
Collapse
Affiliation(s)
- Dipali R. Bagal-Kestwal
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Been-Huang Chiang
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| |
Collapse
|
29
|
Efficient inhibition of uveal melanoma via ternary siRNA complexes. Int J Pharm 2019; 573:118894. [PMID: 31765784 DOI: 10.1016/j.ijpharm.2019.118894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022]
Abstract
Uveal melanoma (UM) is rare yet the most common and malignant primary intraocular tumor in adults. Due to the lack of effective treatment, the mortality rate of UM has remained high over the past few decades. In the present study, hyaluronic acid (HA) coated chitosan (Chi)/siRNA ternary complexes have been developed and characterized as a novel therapeutic strategy molecularly targeting hypoxia-inducible factor 1α (HIF-1α) pathway for the treatment of UM. The cytotoxicity, cellular uptake, and siRNA silencing effect of the developed siRNA complexes were evaluated. In addition, whether the developed ternary complexes can inhibit UM migration and invasion was investigated. Results showed that the developed ternary siRNA complexes were negatively charged and with a particle size below 190 nm. The ternary siRNA complexes showed excellent cellular uptake and lysosome escape ability with low cytotoxicity. In addition, the ternary complexes were able to downregulate both HIF-1α and VEGF expression in UM cells, and successfully inhibit UM migration and invasion. These results demonstrated that the biocompatible ternary siRNA complexes are promising for local treatment of UM in the posterior segment with future clinical application potential.
Collapse
|
30
|
Pervez S, Nawaz MA, Jamal M, Jan T, Maqbool F, Shah I, Aman A, Ul Qader SA. Improvement of catalytic properties of starch hydrolyzing fungal amyloglucosidase: Utilization of agar-agar as an organic matrix for immobilization. Carbohydr Res 2019; 486:107860. [PMID: 31683070 DOI: 10.1016/j.carres.2019.107860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
Abstract
In this study, amyloglucosidase was immobilized within agar-agar through entrapment technique for the hydrolysis of soluble starch. Enzymatic activities of soluble and entrapped amyloglucosidase were compared using soluble starch as a substrate. Partially purified enzyme was immobilized and maximum immobilization yield (80%) was attained at 40 gL-1 of agar-agar. Enzyme catalysis reaction time shifted from 5.0 min to 10 min after immobilization. Similarly, a five-degree shift in temperature (60 °C-65 °C) and a 0.5 unit increase in pH (pH-5.0 to pH-5.5) were also observed. Substrate saturation kinetics revealed that Km of entrapped amyloglucosidase increased from 1.41 mg ml-1 (soluble enzyme) to 3.39 mg ml-1 (immobilized enzyme) whereas, Vmax decreased from 947 kU mg-1 (soluble enzyme) to 698 kU mg-1 (immobilized enzyme). Entrapped amyloglucosidase also exhibited significant catalytic performance during thermal and storage stability when compared with soluble enzyme. Reusability of entrapped amyloglucosidase for hydrolysis of soluble starch demonstrated its recycling efficiency up to six cycles which is an exceptional characteristic for continuous bioprocessing of soluble starch into glucose.
Collapse
Affiliation(s)
- Sidra Pervez
- Department of Microbiology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Khyber Pakhtunkhwa, Pakistan.
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdrara, Khyber Pakhtunkhwa, Pakistan
| | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ismail Shah
- Department of Pharmacy, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, 75270, Karachi, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
31
|
Thangaraj B, Solomon PR. Immobilization of Lipases – A Review. Part II: Carrier Materials. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baskar Thangaraj
- Jiangsu UniversitySchool of Food and Biological Engineering 301 Xuefu road 212013 Zhenjiang Jiangsu Province China
| | - Pravin Raj Solomon
- SASTRA Deemed UniversitySchool of Chemical & Biotechnology, Tirumalaisamudram 613401 Thanjavur Tamil Nadu India
| |
Collapse
|
32
|
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243. [PMID: 31612131 PMCID: PMC6776590 DOI: 10.3389/fbioe.2019.00243] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Chitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years. These proteins are already useful tools toward the biotechnological transformation of chitin into chitosan and chitooligosaccharides, especially when a controlled non-degradative and well-defined process is required. This review describes traditional and novel enzymatic methods of modification of chitin and its derivatives. Recent advances in chitin processing, discovery of increasing number of new, well-characterized enzymes and development of genetic engineering methods result in rapid expansion of the field. Enzymatic modification of chitin and chitosan may soon become competitive to conventional conversion methods.
Collapse
Affiliation(s)
- Michal Benedykt Kaczmarek
- Institute of Technical Biochemistry, Lodz University of Technology, Łódź, Poland.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
33
|
Dal Magro L, de Moura KS, Backes BE, de Menezes EW, Benvenutti EV, Nicolodi S, Klein MP, Fernandez-Lafuente R, Rodrigues RC. Immobilization of pectinase on chitosan-magnetic particles: Influence of particle preparation protocol on enzyme properties for fruit juice clarification. ACTA ACUST UNITED AC 2019; 24:e00373. [PMID: 31516853 PMCID: PMC6728273 DOI: 10.1016/j.btre.2019.e00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Magnetic-chitosan particles were prepared following three different protocols enabling the preparation of particles with different sizes - nano (Nano-CMag, Micro (Micro-CMag) and Macro (Macro-CMag) - and used for pectinase immobilization and clarification of grape, apple and orange juices. The particle size had a great effect in the kinetic parameters, Nano-CMag biocatalyst presented the highest Vmax value (78.95 mg. min-1), followed by Micro-CMag and Macro-CMag, with Vmax of 57.20 mg.min-1 and 46.03 mg.min-1, respectively. However, the highest thermal stability was achieved using Macro-CMag, that was 8 and 3-times more stable than Nano-CMag and Micro-CMag biocatalysts, respectively. Pectinase immobilized on Macro-CMag kept 85% of its initial activity after 25 batch cycles in orange juice clarification. These results suggested that the chitosan magnetic biocatalysts presented great potential application as clarifying catalysts for the fruit juice industry and the great importance of the chitosan particles preparation on the final biocatalyst properties.
Collapse
Affiliation(s)
- Lucas Dal Magro
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, ZC 28049, Madrid, Spain
| | - Kelly Silva de Moura
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Betina Elys Backes
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Eliana Weber de Menezes
- Laboratory of Solids and Surfaces, Institute of Chemistry, UFRGS, P.O. Box 15003, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Edilson Valmir Benvenutti
- Laboratory of Solids and Surfaces, Institute of Chemistry, UFRGS, P.O. Box 15003, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Sabrina Nicolodi
- Magnetism Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, P.O. Box 15051, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Manuela P. Klein
- Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), ZC 90050-170, Porto Alegre, RS, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, ZC 28049, Madrid, Spain
- Corresponding authors.
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
- Corresponding authors.
| |
Collapse
|
34
|
Multi-enzymatic Systems Immobilized on Chitosan Beads for Pomegranate Juice Treatment in Fluidized Bed Reactor: Effect on Haze-Active Molecules and Chromatic Properties. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02315-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Aljaeid BM, El-Say KM, Hosny KM. Chitosan-TPP nanoparticles stabilized by poloxamer for controlling the release and enhancing the bioavailability of doxazosin mesylate: in vitro, and in vivo evaluation. Drug Dev Ind Pharm 2019; 45:1130-1139. [PMID: 30884977 DOI: 10.1080/03639045.2019.1597105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: Control the release and enhance the bioavailability of chitosan-doxazosin mesylate nanoparticles (DM-NPs). Significance: Improve DM bioavailability for the treatment of benign prostatic hyperplasia and hypertension. Methods: Plackett-Burman design was utilized to screen the variables affecting the quality of DM-NPs prepared by ionic gelation method. The investigated variables were initial drug load (X1), chitosan percentage (X2), tripolyphosphate sodium (TPP) percentage (X3), poloxamer percentage (X4), homogenization speed (X5), homogenization time (X6) and TPP addition rate (X7). The prepared DM-loaded NPs have been fully evaluated for particle size (Y1), Zeta potential (Y2), production yield (Y3), entrapment efficiency (Y4), loading capacity (Y5), initial burst (Y6), and cumulative drug release (Y7). Finally, DM pharmacokinetic has been investigated on healthy albino male rabbits by means of non-compartmental analysis. Results: The combination of variables showed variability of Y1, Y2, and Y3 equal to 122-710 nm, 3.49-23.63 mV, and 47.31-92.96%, respectively. While Y4 and Y5, reached 99.87%, and 8.53%, respectively. The prepared NPs revealed that X2, X3, and X4 are the variables that play the important role in controlling the release behavior of DM from the NPs. The in vivo pharmacokinetic results indicated the enhancement in bioavailability of DM by 7 folds compared to drug suspension and the mean residence time prolonged to 23.72 h compared to 4.7 h of drug suspension. Conclusion: The study proved that controlling the release of DM from NPs enhance its bioavailability and improve the compliance of patients with hypertension or benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Bader M Aljaeid
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Khalid M El-Say
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia.,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Khaled M Hosny
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia.,c Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Beni-Suef University , Beni-Suef , Egypt
| |
Collapse
|
36
|
Biocompatibility and safety of insulin-loaded chitosan nanoparticles/ PLGA-PEG-PLGA hydrogel (ICNPH) delivered by subconjunctival injection in rats. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Marschelke C, Müller M, Köpke D, Matura A, Sallat M, Synytska A. Hairy Particles with Immobilized Enzymes: Impact of Particle Topology on the Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1645-1654. [PMID: 30525381 DOI: 10.1021/acsami.8b17703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enzymes are described as ideal green biocatalysts because they are highly specific and selective. However, their practical application is hampered because of the low stability and missing reusability of free enzymes. One method to overcome these problems is the immobilization of enzymes onto carriers. Although numerous publications discuss different immobilization strategies, optimization of these carriers for the highest enzyme activity and loading capacity, enzyme selectivity, reusability, and reactor system configuration still remains a challenging task. In this contribution, we aim to address the role of the core-shell particle design with respect to their geometry as well as the polymer shell thickness on the immobilization of biomolecules. We discovered that spherical particles with a core diameter of 200 nm and intermediate shell thickness as well as platelet-like particles exhibited excellent results with a maximum immobilization yield of laccase from Trametes versicolor of up to 92% and an activity on the carrier material of 5.722 U/(g particle). Especially, the platelet-like particles offered a scalable and convenient alternative for the immobilization of laccase. Circular dichroism measurements proved that the secondary structure of the enzyme is not impaired by immobilization onto all kinds of carrier particles. Moreover, the immobilized laccase was successfully used for the decolorization of Cibacron blue P-3R in up to 18 cycles. Finally, particle separation was achieved via citrate-induced flocculation within 10 min. This detailed study contributes to the understanding of rational design of catalytically active hybrid materials and their effective performance at interfaces for applications in textile industry and environmental technologies.
Collapse
Affiliation(s)
- Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
| | | | | | - Marco Sallat
- Sächsisches Textilforschungsinstitut e.V. , Annaberger Straße 240 , 09125 Chemnitz , Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
| |
Collapse
|
38
|
Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M. Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications. SUSTAINABLE AGRICULTURE REVIEWS 35 2019. [DOI: 10.1007/978-3-030-16538-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Wang D, Jiang W. Preparation of chitosan-based nanoparticles for enzyme immobilization. Int J Biol Macromol 2018; 126:1125-1132. [PMID: 30594622 DOI: 10.1016/j.ijbiomac.2018.12.243] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023]
Abstract
The aim of the present work was to prepare high loading capacity carriers for immobilizing glucoamylase. Different sizes of chitosan based particles were successfully prepared by different methods to evaluate the performance in immobilization. Chitosan particles on millimeter size were prepared by dripping granulation method, chitosan covered magnetic nanoparticles and chitosan mixted graphene oxide nanosheets covered magnetic nanoparticles were synthesized by one-step method, chitosan-glucoamylase nanoparticles were synthesized by ionic cross linking method with Sodium tripolyphosphate. These particles were characterized by SEM, TEM, FTIR and DLS analysis. The performance of the immobilized enzyme was also investigated. The results showed that the loading capacity was greatly increased on chitosan based nanoparticles. The reaction conditions of immobilized enzyme were optimized, the reusability and storage stability was also investigated. The results showed the pH durance and storage stability of the immobilized enzyme on nanosize particles were enhanced.
Collapse
Affiliation(s)
- Deqiang Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China.
| | - Weifeng Jiang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| |
Collapse
|
40
|
Urrutia P, Bernal C, Wilson L, Illanes A. Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. Int J Biol Macromol 2018; 116:182-193. [DOI: 10.1016/j.ijbiomac.2018.04.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/23/2022]
|
41
|
Seenuvasan M, Vinodhini G, Malar CG, Balaji N, Kumar KS. Magnetic nanoparticles: a versatile carrier for enzymes in bio-processing sectors. IET Nanobiotechnol 2018; 12:535-548. [PMID: 30095410 PMCID: PMC8676490 DOI: 10.1049/iet-nbt.2017.0041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/21/2017] [Accepted: 07/17/2017] [Indexed: 08/01/2023] Open
Abstract
Many industrial processes experience the advantages of enzymes which evolved the demand for enzymatic technologies. The enzyme immobilisation technology using different carriers has trustworthy applications in industrial biotechnology as these techniques encompass varied advantages such as enhanced stability, activity along with reusability. Immobilisation onto nanomaterial is highly favourable as it includes almost all aspects of science. Among the various techniques of immobilisation, the uses of nanoparticles are remarkably well perceived as these possess high-specific surface area leading to high enzyme loadings. The magnetic nanoparticles (MNPs) are burgeoning in the field of immobilisation as it possess some of the unique properties such as high surface area to volume ratio, uniform particle size, biocompatibility and particularly the recovery of enzymes with the application of an external magnetic field. Immobilisation of industrially important enzymes onto nanoparticles offers overall combined benefits. In this review, the authors here focus on the current scenario in synthesis and functionalisation of MNPs which makes it more compatible for the enzyme immobilisation and its application in the biotechnological industries.
Collapse
Affiliation(s)
| | | | - Carlin Geor Malar
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Nagarajan Balaji
- Department of Biotechnology, Madha Engineering College, Chennai, India
| | | |
Collapse
|
42
|
Chen Y, Mu X, Wang F. Preparation and Drug Release of PVA Composite Nanofibers Loaded Chitosan Microsphere. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18030112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Sattar H, Aman A, Qader SAU. Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. Int J Biol Macromol 2018; 111:917-922. [DOI: 10.1016/j.ijbiomac.2018.01.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 01/12/2023]
|
44
|
Maltose Production Using Starch from Cassava Bagasse Catalyzed by Cross-Linked β-Amylase Aggregates. Catalysts 2018. [DOI: 10.3390/catal8040170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
45
|
Tegl G, Stagl V, Mensah A, Huber D, Somitsch W, Grosse-Kracht S, Guebitz GM. The chemo enzymatic functionalization of chitosan zeolite particles provides antioxidant and antimicrobial properties. Eng Life Sci 2018; 18:334-340. [PMID: 32624913 DOI: 10.1002/elsc.201700120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/20/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022] Open
Abstract
Silicate-based microporous materials like zeolites are nano enabled particles and used for various applications including pharmaceutical formulations. This study reports on the chemo-enzymatic functionalization of chitosan-zeolite particles (CTS-zeolites) with caffeic acid (CA) and glucose oxidase (GOX) to impart combined antioxidant and antimicrobial properties. CA was grafted on the chitosan moieties by using laccase generating stable particles (zeta potential -36.7 mV) of high antioxidant activity (44% DPPH inhibition). GOX was immobilized both on CTS-zeolites and on CA modified CTS-zeolites and creating a hydrogen peroxide generation system continuously and in-situ producing this oxidative and antimicrobial agent. The system prevented bacterial growth of E. coli and S. aureus over 24 h whereby a steady-state concentration of around 60 μM hydrogen peroxide in the culture medium was observed. CA and GOX functionalized CTS-zeolite particles additionally showed combinatorial antioxidant and antimicrobial properties providing a powerful bioactive system for medical applications. These particles proved their suitability for incorporation in bioactive formulations which could be used, inter alia, for topical wound treatments.
Collapse
Affiliation(s)
- Gregor Tegl
- Institute of Environmental Biotechnology BOKU-University of Natural Resources and Life Sciences Vienna Tulln an der Donau Austria
| | - Viktoria Stagl
- Institute of Environmental Biotechnology BOKU-University of Natural Resources and Life Sciences Vienna Tulln an der Donau Austria
| | - Anna Mensah
- Institute of Environmental Biotechnology BOKU-University of Natural Resources and Life Sciences Vienna Tulln an der Donau Austria
| | - Daniela Huber
- Institute of Environmental Biotechnology BOKU-University of Natural Resources and Life Sciences Vienna Tulln an der Donau Austria
| | | | | | - Georg M Guebitz
- Institute of Environmental Biotechnology BOKU-University of Natural Resources and Life Sciences Vienna Tulln an der Donau Austria.,ACIB-Austrian Centre of Industrial Biotechnology Tulln Austria
| |
Collapse
|
46
|
Sattar H, Aman A, Javed U, Ul Qader SA. Polyacrylamide beads: Polymer entrapment increases the catalytic efficiency and thermal stability of protease. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Yang M, Hong H, Liu S, Zhao X, Wu Z. Immobilization of Staphylococcus aureus Sortase A on Chitosan Particles and Its Applications in Peptide-to-Peptide Ligation and Peptide Cyclization. Molecules 2018; 23:molecules23010192. [PMID: 29351256 PMCID: PMC6017383 DOI: 10.3390/molecules23010192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 11/16/2022] Open
Abstract
Chitosan macro-particles prepared by the neutralization method were applied to Sortase A (SrtA) immobilization using glutaraldehyde as a crosslinking agent. The particles were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Response surface methodology (RSM) was employed to optimize the immobilization process. An average specific activity of 3142 U (mg protein)-1 was obtained under optimized immobilization conditions (chitosan concentration 3%, SrtA concentration 0.5 mg·mL-1, glutaraldehyde concentration 0.5%, crosslinking and immobilization at 20 °C, crosslinking for 3 h, and an immobilization time of 8 h). The transpeptidase activity of immobilized SrtA was proved by a peptide-to-peptide ligation with a conversion yield approximately at 80%, and the immobilized catalyst was successfully reused for five cycles without obvious activity loss. Moreover, the scale-up capability of using immobilized SrtA to catalyze a head-to-tail peptide cyclization was investigated in a batch reaction and the conversion yield was more than 95% when using 20 mg of peptide as a substrate.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Shaozhong Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xinrui Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
48
|
Vyas V, Kaur T, Thirugnanam A. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering. Int J Biol Macromol 2017; 104:1946-1954. [DOI: 10.1016/j.ijbiomac.2017.04.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
|
49
|
Arena A, Scandurra G, Ciofi C. Copper Oxide Chitosan Nanocomposite: Characterization and Application in Non-Enzymatic Hydrogen Peroxide Sensing. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2198. [PMID: 28946638 PMCID: PMC5676777 DOI: 10.3390/s17102198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/16/2017] [Accepted: 09/22/2017] [Indexed: 11/17/2022]
Abstract
Electrochemical dissolution of metallic copper into slightly acidic aqueous solutions of chitosan yields a clear and stable dispersion of Copper Oxide nanoparticles into the organic polymer host. The electrochemically synthesized chitosan:CuOx nanocomposite is characterized by means of spectrophotometry, frequency domain electrical measurements and morphological analysis. Solid state electrochemical cells having pure chitosan as the electrolyte and using chitosan:CuOx as the electrode, are developed and characterized by means of electrical measurements performed in the ±1 V voltage window. The current-voltage loops of the cells, measured in deionized water, are found to reversibly change in response to hydrogen peroxide added to the water in 0.2 μM subsequent steps. Such changes, clearly distinguishable from changes recorded in response to other analytes, can be exploited in order to develop a hydrogen peroxide sensor able to work without the need for any supporting electrolyte.
Collapse
Affiliation(s)
- Antonella Arena
- Department of Engineering, Messina University, Messina 98166, Italy.
| | | | - Carmine Ciofi
- Department of Engineering, Messina University, Messina 98166, Italy.
| |
Collapse
|
50
|
Estevinho BN, Lopes AR, Sousa V, Rocha F, Nunes OC. Microencapsulation of Gulosibacter molinativorax ON4 T cells by a spray-drying process using different biopolymers. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:85-92. [PMID: 28531662 DOI: 10.1016/j.jhazmat.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Molinate is a thiocarbamate herbicide used in rice crop protection. As other pesticides, molinate is a recognized environmental pollutant and bio-accumulated by some wildlife forms. Gulosibacter molinativorax ON4T is able to hydrolyse molinate into metabolites which are further degraded by other un-related bacteria. Hence, it can be used in molinate bioremediation processes. The aim of this work was to investigate the possibility of producing G. molinativorax ON4T microparticles, using different non-toxic biopolymers (arabic gum, modified chitosan, calcium alginate and sodium alginate) as encapsulating agents by a spray-drying process. Several formulations of microparticles were prepared, and their physicochemical structures were analyzed by scanning electron microscopy (SEM), laser granulometry analysis and zeta potential analysis. The obtained microparticles were evaluated considering their ability to degrade molinate, the metabolic activity (by colour development of the tetrazolium violet redox), and also the survival rate and shelf-life/storage stability of microparticles. Based on their molinate degrading activity, the biopolymers calcium alginate and modified chitosan cross-linked with tripolyphosphate appear to be the best options for the microencapsulation of the G. molinativorax ON4T. However, the microparticles produced with modified chitosan cross-linked with tripolyphosphate present the best combination of physical properties and activity degradation of molinate.
Collapse
Affiliation(s)
- Berta N Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - A Rita Lopes
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Sousa
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|