1
|
Cruz-Ojeda PDL, Navarro-Villarán E, Fuertes-Agudo M, Mata A, López-Lluch G, Navas P, Cadenas S, Casado M, Muntané J. PEROXYNITRITE IS INVOLVED IN THE MITOCHONDRIAL DYSFUNCTION INDUCED BY SORAFENIB IN LIVER CANCER CELLS. Free Radic Biol Med 2024:S0891-5849(24)01162-6. [PMID: 39743028 DOI: 10.1016/j.freeradbiomed.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Sorafenib is a tyrosine kinase inhibitor (TKI) that belongs to the landscape of treatments for advanced stages of hepatocellular carcinoma (HCC). The induction of cell death and cell cycle arrest by Sorafenib has been associated with mitochondrial dysfunction in liver cancer cells. Our research aim was to decipher underlying oxidative and nitrosative stress induced by Sorafenib leading to mitochondrial dysfunction in liver cancer cells. METHODS MnTBAP, catalase and the scavenger of peroxynitrite FeTPPs were administered to Sorafenib (0-10 μM)-treated HepG2 cells. Oxygen consumption and glycolytic flux were determined in cultured cells. Mitochondrial complex activities were measured in mitochondrial fraction and cell lysates. The protein and mRNA expression of subunits of electron transport chain (ETC) were assessed by immunoblot and RNA-seq. RESULTS Sorafenib (10 μM) increased nitric oxide (NO) and superoxide anion (O2.-) leading to peroxynitrite generation, and drastically reduced oxygen consumption. Moreover, Sorafenib led to mitochondrial network disorganization and loss of membrane potential. The administration of FeTPPs influenced the recovery of mitochondrial network and oxygen consumption, as well as associated ATP production. Sorafenib downregulated the mRNA expression of all mitochondrial-encoded subunits of ETC and, at to a lesser extent, nuclear-encoded mitochondrial genes. The protein expression of complex I, complex III and complex IV was greatly affected by Sorafenib. Furthermore, Sorafenib diminished the activity of complex I in in-gel assays, whose expression and activity were restored by FeTPPs. However, Sorafenib did not affect the assembly of mitochondrial supercomplexes. Sorafenib altered glycolysis and reduced Krebs cycle intermediates and increased NAD/NADH ratio. CONCLUSIONS The induction of cell death by Sorafenib was associated with peroxynitrite generation, which impacted the expression of electron transport chain (ETC) subunits and mitochondrial functionality in liver cancer cells.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Marina Fuertes-Agudo
- Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain; Institute of Biomedicine of Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the Instituto de Biomedicina de Valencia (IBV), Valencia, Spain
| | - Ana Mata
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre for Developmental Biology, University Pablo of Olavide, Seville, Spain; Biomedical Research Center for Rare Diseases (CIBERer), Madrid, Spain
| | - Plácido Navas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain; Department of Physiology, Anatomy and Cell Biology, Andalusian Centre for Developmental Biology, University Pablo of Olavide, Seville, Spain
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Marta Casado
- Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain; Institute of Biomedicine of Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the Instituto de Biomedicina de Valencia (IBV), Valencia, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain.
| |
Collapse
|
2
|
Rodríguez-Ruiz M, Ramos MC, Campos MJ, Díaz-Sánchez I, Cautain B, Mackenzie TA, Vicente F, Corpas FJ, Palma JM. Pepper Fruit Extracts Show Anti-Proliferative Activity against Tumor Cells Altering Their NADPH-Generating Dehydrogenase and Catalase Profiles. Antioxidants (Basel) 2023; 12:1461. [PMID: 37507999 PMCID: PMC10376568 DOI: 10.3390/antiox12071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is considered one of the main causes of human death worldwide, being characterized by an alteration of the oxidative metabolism. Many natural compounds from plant origin with anti-tumor attributes have been described. Among them, capsaicin, which is the molecule responsible for the pungency in hot pepper fruits, has been reported to show antioxidant, anti-inflammatory, and analgesic activities, as well as anti-proliferative properties against cancer. Thus, in this work, the potential anti-proliferative activity of pepper (Capsicum annuum L.) fruits from diverse varieties with different capsaicin contents (California < Piquillo < Padrón < Alegría riojana) against several tumor cell lines (lung, melanoma, hepatoma, colon, breast, pancreas, and prostate) has been investigated. The results showed that the capsaicin content in pepper fruits did not correspond with their anti-proliferative activity against tumor cell lines. By contrast, the greatest activity was promoted by the pepper tissues which contained the lowest capsaicin amount. This indicates that other compounds different from capsaicin have this anti-tumor potentiality in pepper fruits. Based on this, green fruits from the Alegría riojana variety, which has negligible capsaicin levels, was used to study the effect on the oxidative and redox metabolism of tumor cell lines from liver (Hep-G2) and pancreas (MIA PaCa-2). Different parameters from both lines treated with crude pepper fruit extracts were determined including protein nitration and protein S-nitrosation (two post-translational modifications (PTMs) promoted by nitric oxide), the antioxidant capacity, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), among others. In addition, the activity of the NADPH-generating enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and NADP-isocitrate dehydrogenase (NADP-ICDH) was followed. Our data revealed that the treatment of both cell lines with pepper fruit extracts altered their antioxidant capacity, enhanced their catalase activity, and considerably reduced the activity of the NADPH-generating enzymes. As a consequence, less H2O2 and NADPH seem to be available to cells, thus avoiding cell proliferation and possibly triggering cell death in both cell lines.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - María C Ramos
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - María J Campos
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Inmaculada Díaz-Sánchez
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Bastien Cautain
- Evotec, University Paul Sabatier Toulouse III, 31100 Toulouse, France
| | - Thomas A Mackenzie
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisca Vicente
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| |
Collapse
|
3
|
Chienwichai P, Reamtong O, Boonyuen U, Pisitkun T, Somparn P, Tharnpoophasiam P, Worakhunpiset S, Topanurak S. Hepatic protein Carbonylation profiles induced by lipid accumulation and oxidative stress for investigating cellular response to non-alcoholic fatty liver disease in vitro. Proteome Sci 2019; 17:1. [PMID: 30962768 PMCID: PMC6438040 DOI: 10.1186/s12953-019-0149-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/11/2019] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is caused by excessive accumulation of fat within the liver, leading to further severe conditions such as non-alcoholic steatohepatitis (NASH). Progression of healthy liver to steatosis and NASH is not yet fully understood in terms of process and response. Hepatic oxidative stress is believed to be one of the factors driving steatosis to NASH. Oxidative protein modification is the major cause of protein functional impairment in which alteration of key hepatic enzymes is likely to be a crucial factor for NAFLD biology. In the present study, we aimed to discover carbonylated protein profiles involving in NAFLD biology in vitro. METHODS Hepatocyte cell line was used to induce steatosis with fatty acids (FA) in the presence and absence of menadione (oxidative stress inducer). Two-dimensional gel electrophoresis-based proteomics and dinitrophenyl hydrazine derivatization technique were used to identify carbonylated proteins. Sequentially, in order to view changes in protein carbonylation pathway, enrichment using Funrich algorithm was performed. The selected carbonylated proteins were validated with western blot and carbonylated sites were further identified by high-resolution LC-MS/MS. RESULTS Proteomic results and pathway analysis revealed that carbonylated proteins are involved in NASH pathogenesis pathways in which most of them play important roles in energy metabolisms. Particularly, carbonylation level of ATP synthase subunit α (ATP5A), a key protein in cellular respiration, was reduced after FA and FA with oxidative stress treatment, whereas its expression was not altered. Carbonylated sites on this protein were identified and it was revealed that these sites are located in nucleotide binding region. Modification of these sites may, therefore, disturb ATP5A activity. As a consequence, the lower carbonylation level on ATP5A after FA treatment solely or with oxidative stress can increase ATP production. CONCLUSIONS The reduction in carbonylated level of ATP5A might occur to generate more energy in response to pathological conditions, in our case, fat accumulation and oxidative stress in hepatocytes. This would imply the association between protein carbonylation and molecular response to development of steatosis and NASH.
Collapse
Affiliation(s)
- Peerut Chienwichai
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Prapin Tharnpoophasiam
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Suwalee Worakhunpiset
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Supachai Topanurak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Center of Excellence of Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
4
|
Wang PW, Hung YC, Li WT, Yeh CT, Pan TL. Systematic revelation of the protective effect and mechanism of Cordycep sinensis on diethylnitrosamine-induced rat hepatocellular carcinoma with proteomics. Oncotarget 2018; 7:60270-60289. [PMID: 27531890 PMCID: PMC5312383 DOI: 10.18632/oncotarget.11201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Cordyceps sinensis (C. sinensis) has been reported to treat liver diseases. Here, we investigated the inhibitory effect of C. sinensis on hepatocarcinoma in a diethylnitrosamine (DEN)-induced rat model with functional proteome tools.In the DEN-exposed group, levels of serum alanine aminotransferase and aspartate aminotransferase were increased while C. sinensis application remarkably inhibited the activities of these enzymes. Histopathological analysis also indicated that C. sinensis could substantially restore hypertrophic hepatocytes caused by DEN, suggesting that C. sinensis is effective in preventing DEN-induced hepatocarcinogenesis.We therefore comprehensively delineated the global protein alterations using a proteome platform. The most meaningful changes were found among proteins involved in oxidative stress and detoxification. Meanwhile, C. sinensis application could attenuate the carbonylation level of several enzymes as well as chaperone proteins. Network analysis implied that C. sinensis could obviously alleviate hepatocarcinoma via modulating redox imbalance, protein ubiquitination and tumor growth-associated transcription factors.Our findings provide new insight into the potential effects of C. sinensis in preventing carcinogenesis and might help in developing novel therapeutic strategies against chemical-induced hepatocarcinoma.
Collapse
Affiliation(s)
- Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chiang Hung
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Chinese Internal Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung City, Taiwan
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Smith R, Wang J, Seymour C, Fernandez-Palomo C, Fazzari J, Schültke E, Bräuer-Krisch E, Laissue J, Schroll C, Mothersill C. Homogenous and Microbeam X-Ray Radiation Induces Proteomic Changes in the Brains of Irradiated Rats and in the Brains of Nonirradiated Cage Mate Rats. Dose Response 2018; 16:1559325817750068. [PMID: 29383012 PMCID: PMC5784471 DOI: 10.1177/1559325817750068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
To evaluate microbeam radiation therapy (MRT), for brain tumor treatment, the bystander effect in nonirradiated companion animals was investigated. Adult rats were irradiated with 35 or 350 Gy at the European Synchrotron Research Facility using homogenous irradiation (HR) or MRT to the right brain hemisphere. The irradiated rats were housed with nonirradiated rats. After 48 hours, all rats were euthanized and the frontal lobe proteome was analyzed using 2-dimensional electrophoresis and mass spectrometry. Proteome changes were determined by analysis of variance (P < .05). Homogenous irradiation increased serum albumin, heat shock protein 71 (HSP-71), triosephosphate isomerase (TPI), fructose bisphosphate aldolase (FBA), and prohibitin and decreased dihydrolipoyl dehydrogenase (DLD) and pyruvate kinase. Microbeam radiation therapy increased HSP-71, FBA, and prohibitin, and decreased aconitase, dihydropyrimidinase, TPI, tubulin DLD, and pyruvate kinase. Cage mates with HR irradiated rats showed increased HSP-71 and FBA and decreased pyruvate kinase, DLD, and aconitase. Cage mates with MRT irradiated rats showed increased HSP-71, prohibitin, and FBA and decreased aconitase and DLD. Homogenous irradiation proteome changes indicated tumorigenesis, while MRT proteome changes indicated an oxidative stress response. The bystander effect of proteome changes appeared antitumorigenic and inducing radioresistance. This investigation also supports the need for research into prohibitin interaction with HSP-70/71 chaperones and cancer therapy.
Collapse
Affiliation(s)
- Richard Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jiaxi Wang
- Mass Spectrometry Facility, Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cristian Fernandez-Palomo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Fazzari
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elisabeth Schültke
- Department of Radio-oncology, Rostock University Medical Centre, Rostock, Germany
| | | | - Jean Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Christian Schroll
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Centre, Freiburg, Germany
| | - Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Antitumoral gene-based strategy involving nitric oxide synthase type III overexpression in hepatocellular carcinoma. Gene Ther 2015; 23:67-77. [PMID: 26204498 DOI: 10.1038/gt.2015.79] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/14/2015] [Accepted: 07/16/2015] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO) synthase type III (NOS-3) overexpression induces cell death in hepatoblastoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. The first-generation adenoviruses were designed to overexpress NOS-3 or green fluorescent protein, and luciferase complementary DNA under the regulation of murine alpha-fetoprotein (AFP) and Rous Sarcoma Virus (RSV) promoters, respectively. Both adenovirus and Hepa 1-6 cells were used for in vitro and in vivo experiments. Adenoviruses were administered through the tail vein 2 weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8, -9 and -3 activities in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by Nω-nitro-l-arginine methyl ester hydrochloride, p53 and CD95 small interfering RNA. AFP-NOS-3/RSV-luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.
Collapse
|
7
|
Rodríguez-Hernández A, Navarro-Villarán E, González R, Pereira S, Soriano-De Castro LB, Sarrias-Giménez A, Barrera-Pulido L, Álamo-Martínez JM, Serrablo-Requejo A, Blanco-Fernández G, Nogales-Muñoz A, Gila-Bohórquez A, Pacheco D, Torres-Nieto MA, Serrano-Díaz-Canedo J, Suárez-Artacho G, Bernal-Bellido C, Marín-Gómez LM, Barcena JA, Gómez-Bravo MA, Padilla CA, Padillo FJ, Muntané J. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells. Redox Biol 2015; 6:174-182. [PMID: 26233703 PMCID: PMC4534573 DOI: 10.1016/j.redox.2015.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.
Collapse
Affiliation(s)
- A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - E Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - R González
- Departament of Biochemistry and Molecular Biology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - S Pereira
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - L B Soriano-De Castro
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - A Sarrias-Giménez
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - L Barrera-Pulido
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J M Álamo-Martínez
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - A Serrablo-Requejo
- Hepato-Biliary Surgery Unit, Hospital Universitario "Miguel Servet", Zaragoza, Spain
| | - G Blanco-Fernández
- Hepato-Biliary-Pancreatic and Liver Transplant Service, Hospital Universitario "Infanta Cristina", Badajoz, Spain
| | - A Nogales-Muñoz
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - A Gila-Bohórquez
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - D Pacheco
- Department of General Surgery and Department of Pathology, Hospital Universitario "Rio Hortega", Valladolid, Spain
| | - M A Torres-Nieto
- Department of Pathology, Hospital Universitario "Rio Hortega", Valladolid, Spain
| | - J Serrano-Díaz-Canedo
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - G Suárez-Artacho
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - C Bernal-Bellido
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - L M Marín-Gómez
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J A Barcena
- Departament of Biochemistry and Molecular Biology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - M A Gómez-Bravo
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - C A Padilla
- Departament of Biochemistry and Molecular Biology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - F J Padillo
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - J Muntané
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| |
Collapse
|
8
|
Linares CI, Ferrín G, Aguilar-Melero P, González-Rubio S, Rodríguez-Perálvarez M, Sánchez-Aragó M, Chicano-Gálvez E, Cuezva JM, Montero-Álvarez JL, Muntané J, de la Mata M. Sensitivity to anti-Fas is independent of increased cathepsin D activity and adrenodoxin reductase expression occurring in NOS-3 overexpressing HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1182-94. [PMID: 25712867 DOI: 10.1016/j.bbamcr.2015.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 01/24/2023]
Abstract
Stable overexpression of endothelial nitric oxide synthase (NOS-3) in HepG2 cells (4TO-NOS) leads to increased nitro-oxidative stress and upregulation of the cell death mediators p53 and Fas. Thus, NOS-3 overexpression has been suggested as a useful antiproliferative mechanism in hepatocarcinoma cells. We aimed to identify the underlying mechanism of cell death induced by NOS-3 overexpression at basal conditions and with anti-Fas treatment. The intracellular localization of NOS-3, the nitro-oxidative stress and the mitochondrial activity were analysed. In addition, the protein expression profile in 4TO-NOS was screened for differentially expressed proteins potentially involved in the induction of apoptosis. NOS-3 localization in the mitochondrial outer membrane was not associated with changes in the respiratory cellular capacity, but was related to the mitochondrial biogenesis increase and with a higher protein expression of mitochondrial complex IV. Nitro-oxidative stress and cell death in NOS-3 overexpressing cells occurred with the expression increase of pro-apoptotic genes and a higher expression/activity of the enzymes adrenodoxin reductase mitochondrial (AR) and cathepsin D (CatD). CatD overexpression in 4TO-NOS was related to the apoptosis induction independently of its catalytic activity. In addition, CatD activity inhibition by pepstatin A was not effective in blocking apoptosis induced by anti-Fas. In summary, NOS-3 overexpression resulted in an increased sensitivity to anti-Fas induced cell death, independently of AR expression and CatD activity.
Collapse
Affiliation(s)
- Clara I Linares
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Gustavo Ferrín
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain.
| | - Patricia Aguilar-Melero
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Sandra González-Rubio
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Servero Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Hospital 12 de Octubre, ISCIII, Universidad Autónoma, Madrid, Spain
| | - Eduardo Chicano-Gálvez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Servero Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Hospital 12 de Octubre, ISCIII, Universidad Autónoma, Madrid, Spain
| | - José L Montero-Álvarez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Jordi Muntané
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Manuel de la Mata
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| |
Collapse
|
9
|
Caneba CA, Yang L, Baddour J, Curtis R, Win J, Hartig S, Marini J, Nagrath D. Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells. Cell Death Dis 2014; 5:e1302. [PMID: 24967964 PMCID: PMC4611736 DOI: 10.1038/cddis.2014.264] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/25/2023]
Abstract
Ovarian cancer (OVCA) is among the most lethal gynecological cancers leading to high mortality rates among women. Increasing evidence indicate that cancer cells undergo metabolic transformation during tumorigenesis and growth through nutrients and growth factors available in tumor microenvironment. This altered metabolic rewiring further enhances tumor progression. Recent studies have begun to unravel the role of amino acids in the tumor microenvironment on the proliferation of cancer cells. One critically important, yet often overlooked, component to tumor growth is the metabolic reprogramming of nitric oxide (NO) pathways in cancer cells. Multiple lines of evidence support the link between NO and tumor growth in some cancers, including pancreas, breast and ovarian. However, the multifaceted role of NO in the metabolism of OVCA is unclear and direct demonstration of NO's role in modulating OVCA cells' metabolism is lacking. This study aims at indentifying the mechanistic links between NO and OVCA metabolism. We uncover a role of NO in modulating OVCA metabolism: NO positively regulates the Warburg effect, which postulates increased glycolysis along with reduced mitochondrial activity under aerobic conditions in cancer cells. Through both NO synthesis inhibition (using L-arginine deprivation, arginine is a substrate for NO synthase (NOS), which catalyzes NO synthesis; using L-Name, a NOS inhibitor) and NO donor (using DETA-NONOate) analysis, we show that NO not only positively regulates tumor growth but also inhibits mitochondrial respiration in OVCA cells, shifting these cells towards glycolysis to maintain their ATP production. Additionally, NO led to an increase in TCA cycle flux and glutaminolysis, suggesting that NO decreases ROS levels by increasing NADPH and glutathione levels. Our results place NO as a central player in the metabolism of OVCA cells. Understanding the effects of NO on cancer cell metabolism can lead to the development of NO targeting drugs for OVCAs.
Collapse
Affiliation(s)
- C A Caneba
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Bioengineering, Rice University, Houston, TX, USA
| | - L Yang
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - J Baddour
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - R Curtis
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - J Win
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - S Hartig
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - J Marini
- 1] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA [2] Pediatric Critical Care Medicine and USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - D Nagrath
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Bioengineering, Rice University, Houston, TX, USA [3] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
10
|
Chen Y, Li J, Guo Y, Guo XY. Nitric Oxide Synthase 3 Gene Variants and Colorectal Cancer: a Meta-Analysis. Asian Pac J Cancer Prev 2014; 15:3811-5. [DOI: 10.7314/apjcp.2014.15.8.3811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Effect of nitric oxide on microRNA-155 expression in human hepatic epithelial cells. Inflamm Res 2014; 63:591-6. [PMID: 24687397 DOI: 10.1007/s00011-014-0730-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/04/2014] [Accepted: 03/13/2014] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Nitric oxide (NO) is a signaling molecule and regulator of immunity and inflammation. MicroRNAs (miRNAs) regulate gene transcription and are involved in inflammatory processes and cancer. This study sought to determine if NO activity affects miRNA expression. METHODS Human liver epithelial (HepG2) cells were treated with the NO-releasing S-nitroso-N-acetylpenicillamine (SNAP) 100 μM for 4 h and subjected to microarray analysis. To examine the underlying mechanisms, cells were exposed to cGMP analog 8-bromo-cGMP, protein kinase inhibitor Rp-*-Br-PET-cGMPS (Rp-PET), or nitric synthase inhibitor L-NAME and evaluated with RT-PCR. RESULTS MiR-155 was the only miRNA of the 887 arrayed that showed a change in expression after SNAP treatment. Incubation of the cells with 8-bromo-cGMP increased miR-155 expression 4.0 ± 0.7-fold (p < 0.05); Rp-PET before SNAP had a dual, concentration-dependent effect. SNAP treatment induced a 3.1 ± 0.7-fold change in miRNA-155 expression, Rp-PET 25 μM, a 7.3 ± 2.2-fold change, and Rp-PET 100 μM, a 0.79 ± 0.09-fold change (SNAP vs SNAP + Rp-PET, p < 0.05). In unstimulated cells, Rp-PET or L-NAME treatment increased miR-155 expression by 3.5 ± 0.7-fold and 5.6 ± 2.2-fold, respectively (p < 0.05). CONCLUSION In HepG2 cells, exogenous NO increases miR-155 expression, but endogenous basal NO inhibits it. Both effects are mediated via cGMP/PKG signaling. The upregulation of miR-155 by NO provides a new link between NO, inflammation, and cancer.
Collapse
|
12
|
González R, Ferrín G, Aguilar-Melero P, Ranchal I, Linares CI, Bello RI, De la Mata M, Gogvadze V, Bárcena JA, Alamo JM, Orrenius S, Padillo FJ, Zhivotovsky B, Muntané J. Targeting hepatoma using nitric oxide donor strategies. Antioxid Redox Signal 2013; 18:491-506. [PMID: 22861189 DOI: 10.1089/ars.2011.4476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS The study evaluated the role of increased intracellular nitric oxide (NO) concentration using NO donors or stably NO synthase-3 (NOS-3) overexpression during CD95-dependent cell death in hepatoma cells. The expression of cell death receptors and caspase activation, RhoA kinase activity, NOS-3 expression/activity, oxidative/nitrosative stress, and p53 expression were analyzed. The antitumoral activity of NO was also evaluated in the subcutaneous implantation of NOS-3-overexpressing hepatoma cells, as well NO donor injection into wild-type hepatoma-derived tumors implanted in xenograft mouse models. RESULTS NO donor increased CD95 expression and activation of caspase-8 and 3 in HepG2, Huh7, and Hep3B cells. NOS-3 overexpression increased oxidative/nitrosative stress, p53 and CD95 expression, cellular Fas-associated death domain (FADD)-like IL-1beta converting enzyme (FLICE) inhibitory protein long (cFLIP(L)) and its short isoform (cFLIP(S)) shift, and cell death in HepG2 (4TO-NOS) cells. The inhibition of RhoA kinase and p53 knockdown using RNA interference reduced cell death in 4TO-NOS cells. The supplementation with hydrogen peroxide (H(2)O(2)) increased NOS-3 activity and cell death in 4TO-NOS cells. NOS-3 overexpression or NO donor injection into hepatoma-derived tumors reduced the size and increased p53 and cell death receptor expression in nude mice. INNOVATION AND CONCLUSIONS The increase of intracellular NO concentration promoted oxidative and nitrosative stress, Rho kinase activity, p53 and CD95 expression, and cell death in cultured hepatoma cells. NOS-3-overexpressed HepG2 cells or intratumoral NO donor administration reduced tumor cell growth and increased the expression of p53 and cell death receptors in tumors developed in a xenograft mouse model.
Collapse
Affiliation(s)
- Raúl González
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|