1
|
Tausif YM, Thekkekkara D, Sai TE, Jahagirdar V, Arjun HR, Meheronnisha SK, Babu A, Banerjee A. Heat shock protein paradigms in cancer progression: future therapeutic perspectives. 3 Biotech 2024; 14:96. [PMID: 38449709 PMCID: PMC10912419 DOI: 10.1007/s13205-024-03951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024] Open
Abstract
Heat-shock proteins (HSPs), also known as stress proteins, are ubiquitously present in all forms of life. They play pivotal roles in protein folding and unfolding, the formation of multiprotein complexes, the transportation and sorting of proteins into their designated subcellular compartments, the regulation of the cell cycle, and signalling processes. These HSPs encompass HSP27, HSP40, HSP70, HSP60, and HSP90, each contributing to various cellular functions. In the context of cancer, HSPs exert influence by either inhibiting or activating diverse signalling pathways, thereby impacting growth, differentiation, and cell division. This article offers an extensive exploration of the functions of HSPs within the realms of pharmacology and cancer biology. HSPs are believed to play substantial roles in the mechanisms underlying the initiation and progression of cancer. They hold promise as valuable clinical markers for cancer diagnosis, potential targets for therapeutic interventions, and indicators of disease progression. In times of cellular stress, HSPs function as molecular chaperones, safeguarding the structural and functional integrity of proteins and aiding in their proper folding. Moreover, HSPs play a crucial role in cancer growth, by regulating processes such as angiogenesis, cell proliferation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Y. Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Thummuru Ekshita Sai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Vaishnavi Jahagirdar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - H. R. Arjun
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - S. K. Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Aniruddha Banerjee
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| |
Collapse
|
2
|
Rizvi SF, Hasan A, Parveen S, Mir SS. Untangling the complexity of heat shock protein 27 in cancer and metastasis. Arch Biochem Biophys 2023; 736:109537. [PMID: 36738981 DOI: 10.1016/j.abb.2023.109537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Heat shock protein 27 is a type of molecular chaperone whose expression gets up-regulated due to reaction towards different stressful triggers including anticancer treatments. It is known to be a major player of resistance development in cancer cells, whereby cells are sheltered against the therapeutics that normally activate apoptosis. Heat shock protein 27 (HSP27) is one of the highly expressed proteins during various cellular insults and is a strong tumor survival factor. HSP27 influences various cellular pathways associated with cancer cell survival and growth such as apoptosis, autophagy, metastasis, angiogenesis, epithelial to mesenchymal transition, etc. HSP27 is molecular machinery which prevents the clumping of numerous substrates or client proteins which get mutated in cancer. It has been reported in several studies that targeting HSP27 is difficult because of its dynamic structure and absence of an ATP-binding site. Here, in this review, we have summarized different modulators of HSP27 and their mechanism of action as well. Effect of deregulated HSP27 in various cancer models, limitations of targeting HSP27, resistance against the conventional drugs generated due to the overexpression of HSP27, and measures to counteract this effect have also been discussed here in detail.
Collapse
Affiliation(s)
- Suroor Fatima Rizvi
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
3
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The Role of Heat Shock Protein 27 in Carcinogenesis and Treatment of Colorectal Cancer. Curr Pharm Des 2022; 28:2677-2685. [PMID: 35490324 DOI: 10.2174/1381612828666220427140640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
Abstract
The incidence of colorectal cancer (CRC) has significantly increased in recent decades, which has made this disease an important global health issue. Despite many efforts, there is no useful prognostic or diagnostic biomarker for CRC. Heat shock protein 27 (Hsp27) is one of the most studied members of the Hsp family. It has attracted particular attention in CRC pathogenesis since it is involved in fundamental cell functions for cell survival. Evidence shows that Hsp27 plays important role in CRC progression and metastasis. Hsp27 overexpression has been observed in CRC and is suggested to be associated with CRC's poor prognosis. In the present review, we focus on the current knowledge of the role of Hsp27 in CRC carcinogenesis and the underlying mechanisms. In addition, we discuss the value of targeting Hsp27 in CRC treatment.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Abstract
Heat shock proteins (HSPs) are a kind of proteins which mostly found in bacterial, plant and animal cells, in which they are involved in the monitoring and regulation of cellular life activities. HSPs protect other proteins under environmental and cellular stress by regulating protein folding and supporting the correctly folded structure of proteins as chaperones. During viral infection, some HSPs can have an antiviral effect by inhibiting viral proliferation through interaction and activating immune pathways to protect the host cell. However, although the biological function of HSPs is to maintain the homeostasis of cells, some HSPs will also be hijacked by viruses to help their invasion, replication, and maturation, thereby increasing the chances of viral survival in unfavorable conditions inside the host cell. In this review, we summarize the roles of the heat shock protein family in various stages of viral infection and the potential uses of these proteins in antiviral therapy.
Collapse
Affiliation(s)
- Xizhen Zhang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
- *Correspondence: Wei Yu,
| |
Collapse
|
5
|
Dai R, Liu M, Xiang X, Li Y, Xi Z, Xu H. OMICS Applications for Medicinal Plants in Gastrointestinal Cancers: Current Advancements and Future Perspectives. Front Pharmacol 2022; 13:842203. [PMID: 35185591 PMCID: PMC8855055 DOI: 10.3389/fphar.2022.842203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancers refer to a group of deadly malignancies of the gastrointestinal tract and organs of the digestive system. Over the past decades, considerable amounts of medicinal plants have exhibited potent anticancer effects on different types of gastrointestinal cancers. OMICS, systems biology approaches covering genomics, transcriptomics, proteomics and metabolomics, are broadly applied to comprehensively reflect the molecular profiles in mechanistic studies of medicinal plants. Single- and multi-OMICS approaches facilitate the unravelling of signalling interaction networks and key molecular targets of medicinal plants with anti-gastrointestinal cancer potential. Hence, this review summarizes the applications of various OMICS and advanced bioinformatics approaches in examining therapeutic targets, signalling pathways, and the tumour microenvironment in response to anticancer medicinal plants. Advances and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xincheng Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Zhichao Xi, ; Hongxi Xu,
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhichao Xi, ; Hongxi Xu,
| |
Collapse
|
6
|
Crosstalk of Multi-Omics Platforms with Plants of Therapeutic Importance. Cells 2021; 10:cells10061296. [PMID: 34071113 PMCID: PMC8224614 DOI: 10.3390/cells10061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
From time immemorial, humans have exploited plants as a source of food and medicines. The World Health Organization (WHO) has recorded 21,000 plants with medicinal value out of 300,000 species available worldwide. The promising modern "multi-omics" platforms and tools have been proven as functional platforms able to endow us with comprehensive knowledge of the proteome, genome, transcriptome, and metabolome of medicinal plant systems so as to reveal the novel connected genetic (gene) pathways, proteins, regulator sequences and secondary metabolite (molecule) biosynthetic pathways of various drug and protein molecules from a variety of plants with therapeutic significance. This review paper endeavors to abridge the contemporary advancements in research areas of multi-omics and the information involved in decoding its prospective relevance to the utilization of plants with medicinal value in the present global scenario. The crosstalk of medicinal plants with genomics, transcriptomics, proteomics, and metabolomics approaches will be discussed.
Collapse
|
7
|
Jheng JR, Chen YS, Horng JT. Regulation of the proteostasis network during enterovirus infection: A feedforward mechanism for EV-A71 and EV-D68. Antiviral Res 2021; 188:105019. [PMID: 33484748 DOI: 10.1016/j.antiviral.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
The proteostasis network guarantees successful protein synthesis, folding, transportation, and degradation. Mounting evidence has revealed that this network maintains proteome integrity and is linked to cellular physiology, pathology, and virus infection. Human enterovirus A71 (EV-A71) and EV-D68 are suspected causative agents of acute flaccid myelitis, a severe poliomyelitis-like neurologic syndrome with no known cure. In this context, further clarification of the molecular mechanisms underlying EV-A71 and EV-D68 infection is paramount. Here, we summarize the components of the proteostasis network that are intercepted by EV-A71 and EV-D68, as well as antivirals that target this network and may help develop improved antiviral drugs.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019; 9:cells9010060. [PMID: 31878360 PMCID: PMC7017199 DOI: 10.3390/cells9010060] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across cancers as they are implicated in a variety of cancer-related activities such as cell proliferation, metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-, and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Hyung Joo Kim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea
- Correspondence: ; Tel.: +82-02-709-2029
| |
Collapse
|
9
|
Hsp27 Responds to and Facilitates Enterovirus A71 Replication by Enhancing Viral Internal Ribosome Entry Site-Mediated Translation. J Virol 2019; 93:JVI.02322-18. [PMID: 30814282 PMCID: PMC6475798 DOI: 10.1128/jvi.02322-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target. Enterovirus 71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease (HFMD) and fatal neurological diseases, and no effective treatment is available. Characterization of key host factors is important for understanding its pathogenesis and developing antiviral drugs. Here we report that Hsp27 is one of the most upregulated proteins in response to EV-A71 infection, as revealed by two-dimensional gel electrophoresis-based proteomics studies. Depletion of Hsp27 by small interfering RNA or CRISPR/Cas9-mediated knockout significantly inhibited viral replication, protein expression, and reproduction, while restoration of Hsp27 restored such virus activities. Furthermore, we show that Hsp27 plays a crucial role in regulating viral internal ribosome entry site (IRES) activities by two different mechanisms. Hsp27 markedly promoted 2Apro-mediated eukaryotic initiation factor 4G cleavage, an important process for selecting and initiating IRES-mediated translation. hnRNP A1 is a key IRES trans-acting factor (ITAF) for enhancing IRES-mediated translation. Surprisingly, knockout of Hsp27 differentially blocked hnRNP A1 but not FBP1 translocation from the nucleus to the cytoplasm and therefore abolished the hnRNP A1 interaction with IRES. Most importantly, the Hsp27 inhibitor 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), a compound isolated from a traditional Chinese herb, significantly protected against cytopathic effects and inhibited EV-A71 infection. Collectively, our results demonstrate new functions of Hsp27 in facilitating virus infection and provide novel options for combating EV-A71 infection by targeting Hsp27. IMPORTANCE Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target.
Collapse
|
10
|
Zhang BJ, Fu WW, Wu R, Yang JL, Yao CY, Yan BX, Tan HS, Zheng CW, Song ZJ, Xu HX. Bioactive scalemic caged xanthones from the leaves of Garcinia bracteata. Bioorg Chem 2019; 82:274-283. [PMID: 30396061 DOI: 10.1016/j.bioorg.2018.10.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 01/22/2023]
|
11
|
Liu Y, Wang WM, Zou LY, Li L, Feng L, Pan MZ, Lv MY, Cao Y, Wang H, Kung HF, Pang JX, Fu WM, Zhang JF. Ubiquitin specific peptidase 5 mediates Histidine-rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14-P53 signaling. Proteomics 2017; 17. [PMID: 28523650 DOI: 10.1002/pmic.201600350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 04/07/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022]
Abstract
Hpn is a small histidine-rich cytoplasmic protein from Helicobacter pylori and has been recognized as a high-risk factor for several cancers including gastric cancer, colorectal cancer, and MALT lymphoma. However, the relationship between Hpn and cancers remains elusive. In this study, we discovered that Hpn protein effectively suppressed cell growth and induced apoptosis in hepatocellular carcinoma (HCC). A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics was performed to find the molecular targets of Hpn in HCC cells. It was identified that twelve proteins were differentially expressed, with USP5 being one of the most significantly downregulated protein. The P14ARF -P53 signaling was activated by USP5 knockdown in HCC cells. Furthermore, USP5 overexpression significantly rescued the suppressive effect of Hpn on the viability of HCC cells. In conclusion, our study suggests that Hpn plays apoptosis-inducing roles through suppressing USP5 expression and activating the P14ARF -P53 signaling. Therefore, Hpn may be a potential candidate for developing novel anti-HCC drugs.
Collapse
Affiliation(s)
- Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Wei-Mao Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Li-Yi Zou
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P. R. China
| | - Ming-Zhu Pan
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Min-Yi Lv
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hua Wang
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Hsiang-Fu Kung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, P. R. China.,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Jian-Xin Pang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jin-Fang Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P. R. China.,School of medicine, South China Unversity of Technlogy, Guangzhou, P. R. China
| |
Collapse
|
12
|
Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci 2017; 18:ijms18091978. [PMID: 28914774 PMCID: PMC5618627 DOI: 10.3390/ijms18091978] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of "client" proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail.
Collapse
|
13
|
Ma LN, Liu XY, Lu ZH, Wu LG, Tang YY, Luo X, Hu YC, Yan TT, Wang Q, Ding XC, Xie Y. Assessment of high-sensitivity C-reactive protein tests for the diagnosis of hepatocellular carcinoma in patients with hepatitis B-associated liver cirrhosis. Oncol Lett 2017; 13:3457-3464. [PMID: 28521452 PMCID: PMC5431324 DOI: 10.3892/ol.2017.5890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide, with high morbidity and mortality. Chronic infection with hepatitis B virus (HBV) is a major risk factor for the development of hepatocellular carcinoma and the majority (~80%) of hepatocellular carcinoma patients in China exhibit co-morbidity with HBV-associated liver cirrhosis. The goal of reliable early diagnostic and prognostic techniques for HBV-associated HCC remains unrealized. The aim of the present study was to explore the efficacy of serum high-sensitivity C-reactive protein (hs-CRP) tests in the early diagnosis of HCC in patients with HBV-associated liver cirrhosis. A cohort of 493 patients with HBV-associated liver disease was divided into three groups: Chronic HBV (CHB) group; liver cirrhosis without HCC (LC) group; and liver cirrhosis with HCC (HCC) group. A further 47 healthy individuals comprised the healthy control (CN) group. Comparative analyses of clinical symptoms, histopathology, ultrasound imagery, computed tomography, magnetic resonance imaging, biochemistry [α-fetoprotein (AFP) and liver function enzymes], and hs-CRP tests were conducted across these four groups. Immunohistochemical analysis showed that CRP is strongly expressed in HCC tumor tissue, but is not expressed elsewhere. Analyses of the correlations between serum hs-CRP levels and HCC clinical parameters indicated that there was no correlation between serum hs-CRP levels, tumor Edmondson grade, tumor-node-metastasis stage and AFP status. Serum hs-CRP and AFP levels were found to be significantly elevated in the HCC group compared to those in the LC, CHB and CN groups (P<0.01). Receiver operator characteristic analysis showed that measurement of serum hs-CRP could differentiate HCC from HBV-associated liver cirrhosis, as well as increase the accuracy of HCC diagnoses. Additionally, measurement of hs-CRP and AFP together improved diagnostic accuracy for HCC compared with either test alone. Serum hs-CRP could have potential as an effective diagnostic tool to complement AFP in diagnosing HCC and improving the identification of AFP-negative HCC in patients with HBV-associated liver cirrhosis. The present findings may facilitate the earlier diagnosis of hepatocellular carcinoma, permitting more effective treatment and a broader spectrum of treatment modalities for patients with advanced hepatic disease.
Collapse
Affiliation(s)
- Li-Na Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiao-Yan Liu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhen-Hui Lu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Li-Gang Wu
- Department of Oncological Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yuan-Yuan Tang
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xia Luo
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yan-Chao Hu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ting-Ting Yan
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qi Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiang-Chun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland QLD 4059, Australia
| |
Collapse
|
14
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
15
|
Zhang H, Zheng D, Ding ZJ, Lao YZ, Tan HS, Xu HX. UPLC-PDA-QTOFMS-guided isolation of prenylated xanthones and benzoylphloroglucinols from the leaves of Garcinia oblongifolia and their migration-inhibitory activity. Sci Rep 2016; 6:35789. [PMID: 27767059 PMCID: PMC5073302 DOI: 10.1038/srep35789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
A UPLC-PDA-QTOFMS-guided isolation strategy was employed to screen and track potentially new compounds from Garcinia oblongifolia. As a result, two new prenylated xanthones, oblongixanthones D and E (1–2), six new prenylated benzoylphloroglucinol derivatives, oblongifolins V–Z (3–7) and oblongifolin AA (8), as well as a known compound oblongifolin L (9), were isolated from the EtOAc-soluble fraction of an acetone extract of the leaves of Garcinia oblongifolia guided by UPLC-PDA-QTOFMS analysis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analysis and mass spectrometry. Experimental and calculated ECD spectra were used to determine the absolute configurations. The results of wound healing and transwell migration assay showed that oblongixanthones D (1), E (2), and oblongifolin L (9) have the ability to inhibit cancer cell migration in lower cytotoxic concentrations. Western blotting results showed that these compounds exhibited an anti-metastasis effect mainly through downregulating RAF protein levels. In addition, 2 and 9 could inhibit phospho-MEK and phospho-ERK at downstream. Moreover, 1, 2, and 9 could inhibit snail protein level, suggesting that they could regulate the EMT pathway.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.,Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Zhi-Jie Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.,Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China
| | - Hong-Sheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.,Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.,Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China
| |
Collapse
|
16
|
Liang WC, Liang PP, Wong CW, Ng TB, Huang JJ, Zhang JF, Waye MMY, Fu WM. CRISPR/Cas9 Technology Targeting Fas Gene Protects Mice From Concanavalin-A Induced Fulminant Hepatic Failure. J Cell Biochem 2016; 118:530-536. [PMID: 27585307 DOI: 10.1002/jcb.25722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/31/2016] [Indexed: 01/03/2023]
Abstract
Fulminant hepatic failure is a life-threatening disease which occurs in patients without preexisting liver disease. Nowadays, there is no ideal therapeutic tool in the treatment of fulminant hepatic failure. Recent studies suggested that a novel technology termed CRISPR/Cas9 may be a promising approach for the treatment of fulminant hepatic failure. In this project, we have designed single chimeric guide RNAs specifically targeting the genomic regions of mouse Fas gene. The in vitro and in vivo effects of sgRNAs on the production of Fas protein were examined in cultured mouse cells and in a hydrodynamic injection-based mouse model, respectively. The in vivo delivery of CRISPR/Cas9 could maintain liver homeostasis and protect hepatocytes from Fas-mediated cell apoptosis in the fulminant hepatic failure model. Our study indicates the clinical potential of developing the CRISPR/Cas9 system as a novel therapeutic strategy to rescue Concanavalin-A-induced fulminant hepatic failure in the mouse model. J. Cell. Biochem. 118: 530-536, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei-Cheng Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Pu-Ping Liang
- Key Laboratory of Gene Engineering of Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Cheuk-Wa Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Tzi-Bun Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Jun-Jiu Huang
- Key Laboratory of Gene Engineering of Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jin-Fang Zhang
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P. R. China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P. R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P. R. China
| | - Mary Miu-Yee Waye
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China.,The Nethersole School of Nursing, The Chinese University of HongKong, Shatin, Hong Kong, P. R. China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
17
|
Barbosa J, Lima RT, Sousa D, Gomes AS, Palmeira A, Seca H, Choosang K, Pakkong P, Bousbaa H, Pinto MM, Sousa E, Vasconcelos MH, Pedro M. Screening a Small Library of Xanthones for Antitumor Activity and Identification of a Hit Compound which Induces Apoptosis. Molecules 2016; 21:81. [PMID: 26771595 PMCID: PMC6274047 DOI: 10.3390/molecules21010081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 11/17/2022] Open
Abstract
Our previous work has described a library of thioxanthones designed to have dual activity as P-glycoprotein modulators and antitumor agents. Some of these compounds had shown a significant cell growth inhibitory activity towards leukemia cell lines, without affecting the growth of non-tumor human fibroblasts. However, their effect in cell lines derived from solid tumors has not been previously studied. The present work aimed at: (i) screening this small series of compounds from an in-house library, for their in vitro cell growth inhibitory activity in human tumor cell lines derived from solid tumors; and (ii) initiate a study of the effect of the most potent compound on apoptosis. The tumor cell growth inhibitory effect of 27 compounds was first analysed in different human tumor cell lines, allowing the identification of a hit compound, TXA1. Its hydrochloride salt TXA1·HCl was then synthesized, to improve solubility and bioavailability. Both TXA1 and TXA1·HCl inhibited the growth of MCF-7, NCI-H460, A375-C5, HeLa, 786-O, Caki-2 and AGS cell lines. The effect of TXA1·HCl in MCF-7 cells was found to be irreversible and was associated, at least in part, with an increase in cellular apoptosis.
Collapse
Affiliation(s)
- João Barbosa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, IUCS-Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal.
- Department of Pathology and Oncology, FMUP-Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
| | - Diana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal.
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
| | - Ana Sara Gomes
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP-Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP-Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
| | - Hugo Seca
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal.
| | - Kantima Choosang
- Faculty of Medicinal Technology, Rangsit University, 52/347 Muang Ake, Phaholyothin Road, Lakhok, Pathumthani 10210, Thailand.
| | - Pannee Pakkong
- Applied Radiation and Isotopes Department, Faculty of Science, Kasetsart University, Jatujak, Bangkok 10930, Thailand.
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, IUCS-Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| | - Madalena M Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP-Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
- CIIMAR/CIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP-Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
- CIIMAR/CIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal.
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
| | - Madalena Pedro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, IUCS-Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| |
Collapse
|
18
|
Recent Advance in Applications of Proteomics Technologies on Traditional Chinese Medicine Research. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:983139. [PMID: 26557869 PMCID: PMC4629032 DOI: 10.1155/2015/983139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
Proteomics technology, a major component of system biology, has gained comprehensive attention in the area of medical diagnosis, drug development, and mechanism research. On the holistic and systemic theory, proteomics has a convergence with traditional Chinese medicine (TCM). In this review, we discussed the applications of proteomic technologies in diseases-TCM syndrome combination researches. We also introduced the proteomic studies on the in vivo and in vitro effects and underlying mechanisms of TCM treatments using Chinese herbal medicine (CHM), Chinese herbal formula (CHF), and acupuncture. Furthermore, the combined studies of proteomics with other “-omics” technologies in TCM were also discussed. In summary, this report presents an overview of the recent advances in the application of proteomic technologies in TCM studies and sheds a light on the future global and further research on TCM.
Collapse
|
19
|
Fu WM, Tang LP, Zhu X, Lu YF, Zhang YL, Lee WYW, Wang H, Yu Y, Liang WC, Ko CH, Xu HX, Kung HF, Zhang JF. MiR-218-targeting-Bmi-1 mediates the suppressive effect of 1,6,7-trihydroxyxanthone on liver cancer cells. Apoptosis 2015; 20:75-82. [PMID: 25416134 DOI: 10.1007/s10495-014-1047-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional Chinese medicine is recently emerged as anti-cancer therapy or adjuvant with reduced side-effects and improved quality of life. In the present study, an active ingredient, 1,6,7-trihydroxyxanthone (THA), derived from Goodyera oblongifolia was found to strongly suppress cell growth and induce apoptosis in liver cancer cells. MicroRNAs are a group of small non-coding RNAs that regulate gene expression at post-transcriptional levels. Our results demonstrated that miR-218 was up-regulated and oncogene Bmi-1 was down-regulated by THA treatment. Further investigation showed that THA-induced-miR-218 up-regulation could lead to activation of tumor suppressor P16(Ink4a) and P14(ARF), the main down-stream targets of Bmi-1. In conclusion, THA might be a potential anti-cancer drug candidate, at least in part, through the activation of miR-218 and suppression of Bmi-1 expression.
Collapse
Affiliation(s)
- Wei-Ming Fu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, Qin W. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int J Cancer 2015; 138:1824-34. [PMID: 26853533 DOI: 10.1002/ijc.29723] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved proteins, which are expressed at low levels under normal conditions, but significantly induced in response to cellular stresses. As molecular chaperones, HSPs play crucial roles in protein homeostasis, apoptosis, invasion and cellular signaling transduction. The induction of HSPs is an important part of heat shock response, which could help cancer cells to adapt to stress conditions. Because of the constant stress condition in tumor microenvironment, HSPs overexpression is widely reported in many human cancers. In light of the significance of HSPs for cancer cells to survive and obtain invasive phenotype under stress condition, HSPs are often associated with poor prognosis and treatment resistance in many types of human cancers. It has been described that upregulation of HSPs may serve as diagnostic and prognostic markers in hepatocellular carcinoma (HCC). Targeting HSPs with specific inhibitor alone or in combination with chemotherapy regimens holds promise for the improvement of outcomes for HCC patients. In this review, we summarize the expression profiles, functions and molecular mechanisms of HSPs (HSP27, HSP70 and HSP90) as well as a HSP-like protein (clusterin) in HCC. In addition, we address progression and challenges in targeting these HSPs as novel therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Inhibition of protein kinase C by isojacareubin suppresses hepatocellular carcinoma metastasis and induces apoptosis in vitro and in vivo. Sci Rep 2015; 5:12889. [PMID: 26245668 PMCID: PMC4526861 DOI: 10.1038/srep12889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/14/2015] [Indexed: 01/12/2023] Open
Abstract
Targeted inhibition of protein kinase C (PKC) inhibits hepatocellular carcinoma (HCC) proliferation and metastasis. We previously reported the cytotoxicity of a series of synthetic phenyl-substituted polyoxygenated xanthone derivatives against human HCC. In the current study, the most potent natural product, isojacareubin (ISJ), was synthesized, and its cellular-level antihepatoma activities were evaluated. ISJ significantly inhibited cell proliferation and was highly selective for HCC cells in comparison to nonmalignant QSG-7701 hepatocytes. Moreover, ISJ exhibited pro-apoptotic effects on HepG2 hepatoma cells, as well as impaired HepG2 cell migration and invasion. Furthermore, ISJ was a potent inhibitor of PKC, with differential actions against various PKC isotypes. ISJ selectively inhibited the expression of aPKC (PKCζ) in the cytosol and the translocation of cytosolic PKCζ to membrane site. ISJ also directly interacted with cPKC (PKCα) and nPKC (PKCδ, PKCε and PKCμ) and thereby inhibited the early response of major MAPK phosphorylation and the late response of HCC cell invasion and proliferation. In a hepatoma xenograft model, ISJ pretreatment resulted in significant antihepatoma activity in vivo. These findings identify ISJ as a promising lead compound for the development of new antihepatoma agents and may guide the search for additional selective PKC inhibitors.
Collapse
|
22
|
Xia Z, Zhang H, Xu D, Lao Y, Fu W, Tan H, Cao P, Yang L, Xu H. Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells. Molecules 2015; 20:11387-99. [PMID: 26102071 PMCID: PMC6272390 DOI: 10.3390/molecules200611387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022] Open
Abstract
Two new xanthones, cowaxanthones G (1) and H (2), and 23 known analogues were isolated from an acetone extract of the leaves of Garcinia cowa. The isolated compounds were evaluated for cytotoxicity against three cancer cell lines and immortalized HL7702 normal liver cells, whereby compounds 1, 5, 8, and 15-17 exhibited significant cytotoxicity. Cell cycle analysis using flow cytometry showed that 5 induced cell cycle arrest at the S phase in a dose-dependent manner, 1 and 16 at the G2/M phase, and 17 at the G1 phase, while 16 and 17 induced apoptosis. Moreover, autophagy analysis by GFP-LC3 puncta formation and western blotting suggested that 17 induced autophagy. Taken together, our results suggest that these xanthones possess anticancer activities targeting cell cycle, apoptosis, and autophagy signaling pathways.
Collapse
Affiliation(s)
- Zhengxiang Xia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Danqing Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Peng Cao
- Jiangsu Province Academy of Traditional Chinese Medicine, No. 100 Shizi Street, Hongshan Road, Nanjing 210028, China.
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhong-shan Road, Dalian 116023, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| |
Collapse
|
23
|
Wu JR, Hu CT, You RI, Ma PL, Pan SM, Lee MC, Wu WS. Preclinical trials for prevention of tumor progression of hepatocellular carcinoma by LZ-8 targeting c-Met dependent and independent pathways. PLoS One 2015; 10:e0114495. [PMID: 25607934 PMCID: PMC4301873 DOI: 10.1371/journal.pone.0114495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal cancers. Mounting studies highlighted the essential role of the HGF/c-MET axis in driving HCC tumor progression. Therefore, c-Met is a potential therapeutic target for HCC. However, several concerns remain unresolved in c-Met targeting. First, the status of active c-Met in HCC must be screened to determine patients suitable for therapy. Second, resistance and side effects have been observed frequently when using conventional c-Met inhibitors. Thus, a preclinical system for screening the status of c-Met signaling and identifying efficient and safe anti-HCC agents is urgently required. In this study, immunohistochemical staining of phosphorylated c-Met (Tyr1234) on tissue sections indicated that HCCs with positive c-Met signaling accounted for approximately 46% in 26 cases. Second, many patient-derived HCC cell lines were established and characterized according to motility and c-Met signaling status. Moreover, LZ8, a medicinal peptide purified from the herb Lingzhi, featuring immunomodulatory and anticancer properties, was capable of suppressing cell migration and slightly reducing the survival rate of both c-Met positive and negative HCCs, HCC372, and HCC329, respectively. LZ8 also suppressed the intrahepatic metastasis of HCC329 in SCID mice. On the molecular level, LZ8 suppressed the expression of c-Met and phosphorylation of c-Met, ERK and AKT in HCC372, and suppressed the phosphorylation of JNK, ERK, and AKT in HCC329. According to receptor array screening, the major receptor tyrosine kinase activated in HCC329 was found to be the epidermal growth factor receptor (EGFR). Moreover, tyrosine-phosphorylated EGFR (the active EGFR) was greatly suppressed in HCC329 by LZ8 treatment. In addition, LZ8 blocked HGF-induced cell migration and c-Met-dependent signaling in HepG2. In summary, we designed a preclinical trial using LZ8 to prevent the tumor progression of patient-derived HCCs with c-Met-positive or -negative signaling.
Collapse
Affiliation(s)
- Jia-Ru Wu
- Institute of Medical Sciences, Tzu Chi University, Hualein, Taiwan
| | - Chi-Tan Hu
- Research Centre for Hepatology, Buddhist Tzu Chi General Hospital and Department of Internal Medicine Tzu Chi University, Hualien, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
| | - Pei-Ling Ma
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
| | - Siou-Mei Pan
- Research Centre for Hepatology, Buddhist Tzu Chi General Hospital and Department of Internal Medicine Tzu Chi University, Hualien, Taiwan
| | - Ming-Che Lee
- Department of Surgery, Buddhist Tzu Chi General Hospital, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sheng Wu
- Institute of Medical Sciences, Tzu Chi University, Hualein, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Hu H, Ding X, Yang Y, Zhang H, Li H, Tong S, An X, Zhong Q, Liu X, Ma L, Liu Q, Liu B, Lu Z, Zhang D, Hu P, Ren H. Changes in glucose-6-phosphate dehydrogenase expression results in altered behavior of HBV-associated liver cancer cells. Am J Physiol Gastrointest Liver Physiol 2014; 307:G611-22. [PMID: 24994855 DOI: 10.1152/ajpgi.00160.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is regarded as a major global health care issue, and chronic hepatitis B virus (HBV) infection is considered to be involved in pathogenesis of HCC. To increase knowledge of HCC pathogenesis, as well as discover potential novel molecules for anti-cancer therapy, mass spectrometry and isobaric tag for relative and absolute quantitation (iTARQ) were employed. The differences between nine HBV-related HCC and adjacent non-HCC tissue specimens were studied. In total, 222 proteins were analyzed for differential expression in the two types of samples. Among these proteins, several were further confirmed by immunohistochemical, immunoblotting, and real-time RT-PCR analysis. RNA interference induced downregulation of glucose-6-phosphate dehydrogenase (G6PD) and decreased HBV replication by fivefold by the IFN pathway. Decreased G6PD expression resulted in decreased hepatoma cell migration and invasion in cell culture. In summary, the investigation provides new information on pathogenesis of HBV infection and suggests G6PD as a novel anti-HCC target. G6PD suppression may contribute to treatment strategies for inhibiting tumor progression.
Collapse
Affiliation(s)
- Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiangchun Ding
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiwen Tong
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan An
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhong
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Liu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Lina Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Qing Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Bin Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Zhenhui Lu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Dazhi Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China;
| |
Collapse
|
25
|
Tam JCW, Ko CH, Zhang C, Wang H, Lau CP, Chan WY, Leung PC, Fung KP, Zhang JF, Lau CBS. Comprehensive proteomic analysis of a Chinese 2-herb formula (Astragali Radix and Rehmanniae Radix) on mature endothelial cells. Proteomics 2014; 14:2089-103. [PMID: 25044676 DOI: 10.1002/pmic.201300547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 06/08/2014] [Accepted: 07/07/2014] [Indexed: 01/09/2023]
Abstract
Endothelial cells are crucially involved in wound healing angiogenesis, restoring blood flow to wound tissues. Our previous study demonstrated that the Chinese 2-herb formula (NF3) possesses significant wound healing effect in diabetic foot ulcer rats with promising in vitro proangiogenic effects on human umbilical vein endothelial cells (HUVEC). Here, we present the comparative global proteome analysis of NF3-treated HUVEC in static or scratch conditions, screening the comprehensive molecular targets in governing the proangiogenic response in wound healing. Our results suggest plasminogen activator inhibitor-1, specifically down-regulated in static condition and Annexin A1 and Annexin A2, up-regulated in scratch condition, as principal proteins responsible for the proangiogenesis in wound healing. We also identified a panel of cytoskeleton regulatory proteins in static and scratch condition, mediating the migratory behavior of NF3-treated HUVEC. The key proteins in static state include myosin regulatory light polypeptide 9, SPAST, tropomyosin (TPM)2, and Vimentin while that in scratch state contained prelamin-A/C, TPM1, TPM2, and Vimentin. In addition, NF3 was shown to regulate transcription and translation, cell-cell interaction, and ROS defense in HUVEC. Proliferation and migration assays further confirmed the identified principal proteins plasminogen activator inhibitor-1 and Annexin A2 which are responsible for NF3-induced proangiogenesis of HUVEC in wound healing. This is the first study on the global proteome expression of NF3-treated HUVEC with the identification of the differences at the molecular level, between static and scratch conditions involved in wound healing angiogenesis.
Collapse
Affiliation(s)
- Jacqueline Chor Wing Tam
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lao Y, Wang X, Xu N, Zhang H, Xu H. Application of proteomics to determine the mechanism of action of traditional Chinese medicine remedies. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1-8. [PMID: 24862488 DOI: 10.1016/j.jep.2014.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/18/2014] [Accepted: 05/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rationale for using traditional Chinese medicine (TCM) is based on the experience that has been gained from its wide use over thousands of years. However, the mechanisms of action of many TCM are still unclear. Proteomics, which mainly characterizes protein functions, protein-protein interactions, and protein modification in tissues or animals, can be used to investigate signaling pathway perturbations in cells or the whole body. Proteomics has improved the discovery process of effective TCM compounds, and has helped to elucidate their possible mechanisms of action. Therefore, a systematic review of the application of proteomics on TCM research is of great importance and necessity. This review strives to describe the literature on the application of proteomics to elucidate the mechanism of action of TCM on various diseases, and provide the essential discussion on the further utilization of proteomics data to accelerate TCM research. MATERIALS AND METHODS Literature survey was performed via electronic search on Pubmed with keywords 'Proteomics' and 'Traditional Chinese Medicine'. The papers written in English were acquired and analyzed in this review. RESULTS This review mainly summarizes the application of proteomics to investigate TCM remedies for neuronal disease, cancer, cardiovascular disease, diabetes, and immunology-related disease. CONCLUSIONS Researchers have applied proteomics to study the mechanism of action of TCM and made substantial progresses. Further studies are required to determine the protein targets of the active compounds, analyze the mechanism of actions in patients, compare the clinical effects with western medicine.
Collapse
Affiliation(s)
- Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Xiaoyu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Naihan Xu
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Hongmei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China.
| |
Collapse
|
27
|
Fu WM, Wang WM, Wang H, Zhu X, Liang Y, Kung HF, Zhang JF. 1,3,5-Trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone directly targets heat shock protein 27 in hepatocellular carcinoma. Cell Biol Int 2013; 38:272-6. [PMID: 24123829 DOI: 10.1002/cbin.10193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023]
Abstract
We previously showed that the small molecule 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP) induces apoptosis in hepatocellular carcinoma (HCC) by suppressing Hsp27 expression, although the mechanism is not fully understood. To investigate the functional association between TDP and Hsp27 protein in HCC, recombinant Hsp27 protein was incubated with TDP at room temperature, and assayed by mass spectrum (MS) and natural electrophoresis. TDP effectively stimulated Hsp27 to form aggregates ex vitro, leading to suppression of its chaperone activity. The aggregates were degraded by the ubiquitin-proteasome (UPS) pathway. TDP directly interacted with Asp17 and Phe55 in chain C of Hsp27 on the basis of bioinformatic prediction. In conclusion, Hsp27 is a direct target of TDP in its anti-cancer activity, which provides strong support for a clinical application.
Collapse
Affiliation(s)
- Wei-Ming Fu
- Institute Guangzhou of Advanced Technology, Chinese Academy of Sciences, Guanzhou, P.R. China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | | | | | | | | | | | | |
Collapse
|
28
|
Zeng L, Tan J, Lu W, Lu T, Hu Z. The potential role of small heat shock proteins in mitochondria. Cell Signal 2013; 25:2312-9. [PMID: 23917209 DOI: 10.1016/j.cellsig.2013.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
Abstract
Mitochondria play a central role in cellular metabolism, calcium homeostasis, redox signaling and cell fates. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies. Small heat shock proteins are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy. The mechanisms that lie behind the cytoprotection of small heat shock proteins are related to the regulation of mitochondrial functions. This review recapitulates the current knowledge of the expression of various small heat shock proteins in mitochondria and discusses their implication in the role of mitochondria and their regulation. Based on their involvement in mitochondrial normal physiology and pathology, a better understanding of their roles and regulation will pave the way for innovative approaches for the successful treatment of a range of stress-related syndromes whose etiology is based upon dysfunction of mitochondria.
Collapse
Affiliation(s)
- Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | | | | | | | | |
Collapse
|