1
|
Pérez-Polo S, Mena AR, Barros L, Borrajo P, Pazos M, Carrera M, Gestal C. Decoding Octopus Skin Mucus: Impact of Aquarium-Maintenance and Senescence on the Proteome Profile of the Common Octopus ( Octopus vulgaris). Int J Mol Sci 2024; 25:9953. [PMID: 39337441 PMCID: PMC11431876 DOI: 10.3390/ijms25189953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The common octopus (Octopus vulgaris) is an excellent candidate for aquaculture diversification, due to its biological traits and high market demand. To ensure a high-quality product while maintaining welfare in captive environments, it is crucial to develop non-invasive methods for testing health biomarkers. Proteins found in skin mucus offer a non-invasive approach to monitoring octopus welfare. This study compares the protein profiles in the skin mucus of wild, aquarium-maintained, and senescent specimens to identify welfare biomarkers. A tandem mass tag (TMT) coupled with an Orbitrap Eclipse Tribrid mass spectrometer was used to create a reference dataset from octopus skin mucus, identifying 1496 non-redundant protein groups. Although similar profiles were observed, differences in relative abundances led to the identification of potential biomarkers, including caspase-3-like, protocadherin 4, deleted in malignant brain tumors, thioredoxin, papilin, annexin, cofilin and mucin-4 proteins. Some of these proteins also revealed potential as bioactive peptides. This investigation provides the most extensive analysis of the skin mucus proteome in the common octopus and is the first to explore how aquarium maintenance and senescence alter the mucus proteome. This research highlights the potential of skin mucus protein/peptides as non-invasive monitoring biomarkers in cultured animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Mónica Carrera
- Instituto de Investigaciones Marinas (IIM-CSIC), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (S.P.-P.); (A.R.M.); (L.B.); (P.B.); (M.P.)
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM-CSIC), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (S.P.-P.); (A.R.M.); (L.B.); (P.B.); (M.P.)
| |
Collapse
|
2
|
Abril AG, Calo-Mata P, Böhme K, Villa TG, Barros-Velázquez J, Sánchez-Pérez Á, Pazos M, Carrera M. Shotgun proteomic analyses of Pseudomonas species isolated from fish products. Food Chem 2024; 450:139342. [PMID: 38631198 DOI: 10.1016/j.foodchem.2024.139342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.
Collapse
Affiliation(s)
- Ana G Abril
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain.
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain.
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain.
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Manuel Pazos
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| |
Collapse
|
3
|
Abril AG, Calo-Mata P, Villa TG, Böhme K, Barros-Velázquez J, Sánchez-Pérez Á, Pazos M, Carrera M. Comprehensive shotgun proteomic characterization and virulence factors of seafood spoilage bacteria. Food Chem 2024; 448:139045. [PMID: 38537549 DOI: 10.1016/j.foodchem.2024.139045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
This article summarizes the characterization, by shotgun proteomics, of 11 bacterial strains identified as responsible for seafood spoilage. A total of 4455 peptide spectrum matches, corresponding to 4299 peptides and 3817 proteins were identified. Analyses of data determined the functional pathways they are involved in. The proteins identified were integrated into a protein-protein network that involves 371 nodes and 3016 edges. Those proteins are implicated in energy pathways, peptidoglycan biosynthesis, spermidine/putrescine metabolism. An additional 773 peptides were characterized as virulence factors, that participates in bacterial pathogenesis; while 14 peptides were defined as biomarkers, as they can be used to differentiate the bacterial species present. This report represents the most extensive proteomic repository available in the field of seafood spoilage bacteria; the data substantially advances the understanding of seafood decay, as well as provides fundamental bases for the recognition of the bacteria existent in seafood that cause spoilage during food processing/storage.
Collapse
Affiliation(s)
- Ana G Abril
- Institute of Marine Research (IIM-CSIC), Department of Food Technology, Spanish National Research Council (CSIC), 36208 Vigo, Spain; Faculty of Pharmacy, University of Santiago de Compostela, Department of Microbiology and Parasitology, 15898 Santiago de Compostela, Spain.
| | - Pilar Calo-Mata
- School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, 27002 Lugo, Spain.
| | - Tomás G Villa
- Faculty of Pharmacy, University of Santiago de Compostela, Department of Microbiology and Parasitology, 15898 Santiago de Compostela, Spain.
| | - Karola Böhme
- School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, 27002 Lugo, Spain.
| | - Jorge Barros-Velázquez
- School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, 27002 Lugo, Spain.
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Department of Food Technology, Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Department of Food Technology, Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| |
Collapse
|
4
|
Abril AG, Calo-Mata P, Villa TG, Böhme K, Barros-Velázquez J, Sánchez-Pérez Á, Pazos M, Carrera M. High-Resolution Comparative and Quantitative Proteomics of Biogenic-Amine-Producing Bacteria and Virulence Factors Present in Seafood. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4448-4463. [PMID: 38364257 PMCID: PMC10906483 DOI: 10.1021/acs.jafc.3c06607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/18/2024]
Abstract
The presence of biogenic amines (histamine, tyramine, putrescine, and cadaverine) in seafood is a significant concern for food safety. This review describes for the first time a shotgun quantitative proteomics strategy to evaluate and compare foodborne strains of bacteria that produce biogenic amines in seafoods. This approach recognized 35,621 peptide spectrum matches, belonging to 20,792 peptides, and 4621 proteins. It allowed the determination of functional pathways and the classification of the strains into hierarchical clusters. The study identified a protein-protein interaction network involving 1160 nodes/10,318 edges. Proteins were related to energy pathways, spermidine biosynthesis, and putrescine metabolism. Label-free quantitative proteomics allowed the identification of differentially regulated proteins in specific strains such as putrescine aminotransferase, arginine decarboxylase, and l-histidine-binding protein. Additionally, 123 peptides were characterized as virulence factors and 299 peptide biomarkers were selected to identify bacterial species in fish products. This study presents the most extensive proteomic repository and progress in the science of food biogenic bacteria and could be applied in the food industry for the detection of bacterial contamination that produces histamine and other biogenic amines during food processing/storage.
Collapse
Affiliation(s)
- Ana G. Abril
- Department
of Food Technology, Spanish National Research
Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
- Department
of Microbiology and Parasitology, Faculty
of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department
of Analytical Chemistry, Nutrition and Food Science, Food Technology
Division, School of Veterinary Sciences,
University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G. Villa
- Department
of Microbiology and Parasitology, Faculty
of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Karola Böhme
- Department
of Analytical Chemistry, Nutrition and Food Science, Food Technology
Division, School of Veterinary Sciences,
University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department
of Analytical Chemistry, Nutrition and Food Science, Food Technology
Division, School of Veterinary Sciences,
University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Ángeles Sánchez-Pérez
- Sydney
School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Manuel Pazos
- Department
of Food Technology, Spanish National Research
Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| | - Mónica Carrera
- Department
of Food Technology, Spanish National Research
Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| |
Collapse
|
5
|
Yi S, Liu X, Huo Y, Li X, Tang Y, Li J. Unrinsed Nemipterus virgatus surimi provides more nutrients than rinsed surimi and helps recover immunosuppressed mice treated with cyclophosphamide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4458-4469. [PMID: 36823492 DOI: 10.1002/jsfa.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The rinsing process in the production of surimi can cause the loss of some important nutrients. To investigate the differences in nutritional properties between rinsed surimi (RS) and unrinsed surimi (US), this study compared the elemental composition, amino acid composition, fatty acid composition, proteomics, and an immunosuppression mouse model of surimi before and after rinsing, and analyzed the nutritional and immunological properties of RS and US. RESULTS The results showed that the protein, fat, and ash contents of RS were decreased compared with those of US; specifically, the contents of essential amino acids, semi-essential amino acids, non-essential amino acids, saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were decreased. In the non-labeled quantitative proteomics analysis, three high-abundance quantifiable protein contents and 68 low-abundance quantifiable protein contents were found in RS (P-values < 0.05, ratio > 2). Immune function experiments in mice revealed that both RS and US contributed to the recovery of immunity in immunocompromised mice. The effect of US was better than that of RS. CONCLUSION The rinsing process in surimi processing leads to the loss of nutrients in surimi. US promotes the recovery of immunity in immunocompromised mice more effectively than RS. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shumin Yi
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xiang Liu
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yan Huo
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xuepeng Li
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jianrong Li
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| |
Collapse
|
6
|
Abril AG, Calo-Mata P, Böhme K, Villa TG, Barros-Velázquez J, Pazos M, Carrera M. Shotgun Proteomics Analysis, Functional Networks, and Peptide Biomarkers for Seafood-Originating Biogenic-Amine-Producing Bacteria. Int J Mol Sci 2023; 24:ijms24097704. [PMID: 37175409 PMCID: PMC10178689 DOI: 10.3390/ijms24097704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Biogenic amine-producing bacteria are responsible for the production of basic nitrogenous compounds (histamine, cadaverine, tyramine, and putrescine) following the spoilage of food due to microorganisms. In this study, we adopted a shotgun proteomics strategy to characterize 15 foodborne strains of biogenic-amine-producing bacteria. A total of 10,673 peptide spectrum matches belonging to 4081 peptides and corresponding to 1811 proteins were identified. Relevant functional pathways were determined, and strains were differentiated into hierarchical clusters. An expected protein-protein interaction network was created (260 nodes/1973 interactions). Most of the determined proteins were associated with networks/pathways of energy, putrescine metabolism, and host-virus interaction. Additionally, 556 peptides were identified as virulence factors. Moreover, 77 species-specific peptide biomarkers corresponding to 64 different proteins were proposed to identify 10 bacterial species. This represents a major proteomic dataset of biogenic-amine-producing strains. These results may also be suitable for new treatments for food intoxication and for tracking microbial sources in foodstuffs.
Collapse
Affiliation(s)
- Ana González Abril
- Department of Food Technology, Spanish National Research Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Manuel Pazos
- Department of Food Technology, Spanish National Research Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| |
Collapse
|
7
|
Pérez-Polo S, Imran MAS, Dios S, Pérez J, Barros L, Carrera M, Gestal C. Identifying Natural Bioactive Peptides from the Common Octopus ( Octopus vulgaris Cuvier, 1797) Skin Mucus By-Products Using Proteogenomic Analysis. Int J Mol Sci 2023; 24:ijms24087145. [PMID: 37108304 PMCID: PMC10138644 DOI: 10.3390/ijms24087145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The common octopus is a cephalopod species subject to active fisheries, with great potential in the aquaculture and food industry, and which serves as a model species for biomedical and behavioral studies. The analysis of the skin mucus allows us to study their health in a non-invasive way, by using a hardly exploited discard of octopus in the fishing sector. A shotgun proteomics approach combined with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap-Elite instrument was used to create a reference dataset from octopus skin mucus. The final proteome compilation was investigated by integrated in-silico studies, including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, network studies, and prediction and characterization analysis of potential bioactive peptides. This work presents the first proteomic analysis of the common octopus skin mucus proteome. This library was created by merging 5937 identified spectra of 2038 different peptides. A total of 510 non-redundant proteins were identified. Obtained results show proteins closely related to the defense, which highlight the role of skin mucus as the first barrier of defense and the interaction with the environment. Finally, the potential of the bioactive peptides with antimicrobial properties, and their possible application in biomedicine, pharmaceutical, and nutraceutical industry was addressed.
Collapse
Affiliation(s)
- Sara Pérez-Polo
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Md Abdus Shukur Imran
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Sonia Dios
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Jaime Pérez
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Lorena Barros
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Mónica Carrera
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
8
|
Dierickx K, Presslee S, Harvey VL. Rapid collagen peptide mass fingerprinting as a tool to authenticate Pleuronectiformes in the food industry. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022; 14:nu14204400. [PMID: 36297084 PMCID: PMC9609859 DOI: 10.3390/nu14204400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.
Collapse
|
10
|
Abril AG, Quintela-Baluja M, Villa TG, Calo-Mata P, Barros-Velázquez J, Carrera M. Proteomic Characterization of Virulence Factors and Related Proteins in Enterococcus Strains from Dairy and Fermented Food Products. Int J Mol Sci 2022; 23:ijms231810971. [PMID: 36142880 PMCID: PMC9503237 DOI: 10.3390/ijms231810971] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023] Open
Abstract
Enterococcus species are Gram-positive bacteria that are normal gastrointestinal tract inhabitants that play a beneficial role in the dairy and meat industry. However, Enterococcus species are also the causative agents of health care-associated infections that can be found in dairy and fermented food products. Enterococcal infections are led by strains of Enterococcus faecalis and Enterococcus faecium, which are often resistant to antibiotics and biofilm formation. Enterococci virulence factors attach to host cells and are also involved in immune evasion. LC-MS/MS-based methods offer several advantages compared with other approaches because one can directly identify microbial peptides without the necessity of inferring conclusions based on other approaches such as genomics tools. The present study describes the use of liquid chromatography−electrospray ionization tandem mass spectrometry (LC−ESI−MS/MS) to perform a global shotgun proteomics characterization for opportunistic pathogenic Enterococcus from different dairy and fermented food products. This method allowed the identification of a total of 1403 nonredundant peptides, representing 1327 proteins. Furthermore, 310 of those peptides corresponded to proteins playing a direct role as virulence factors for Enterococcus pathogenicity. Virulence factors, antibiotic sensitivity, and proper identification of the enterococcal strain are required to propose an effective therapy. Data are available via ProteomeXchange with identifier PXD036435. Label-free quantification (LFQ) demonstrated that the majority of the high-abundance proteins corresponded to E. faecalis species. Therefore, the global proteomic repository obtained here can be the basis for further research into pathogenic Enterococcus species, thus facilitating the development of novel therapeutics.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
| | - Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
- Correspondence:
| |
Collapse
|
11
|
Fish Hydrolysate Supplementation Prevents Stress-Induced Dysregulation of Hippocampal Proteins Relative to Mitochondrial Metabolism and the Neuronal Network in Mice. Foods 2022; 11:foods11111591. [PMID: 35681342 PMCID: PMC9180483 DOI: 10.3390/foods11111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past several decades, stress has dramatically increased in occidental societies. The use of natural resources, such as fish hydrolysates, may be an attractive strategy to improve stress management. Our previous study demonstrated the anxiolytic effects of fish hydrolysate supplementation in mice exposed to acute mild stress by limiting stress-induced corticosterone release and modulating the expression of a number of stress-responsive genes. Here, we explore hippocampal protein modulation induced by fish hydrolysate supplementation in mice submitted to acute mild stress, with the aim of better elucidating the underlying mechanisms. Hippocampi from the same cohort of Balb/c mice supplemented with fish hydrolysate (300 mg·kg−1 body weight) or vehicle daily for seven days before being submitted or not to an acute mild stress protocol (four groups, n = 8/group) were subjected to label-free quantitative proteomics analysis combined with gene ontology data mining. Our results show that fish hydrolysate supplementation prevented the observed stress-induced dysregulation of proteins relative to mitochondrial pathways and the neuronal network. These findings suggest that fish hydrolysate represents an innovative strategy to prevent the adverse effects of stress and participate in stress management.
Collapse
|
12
|
Li X, Deng X, Guo X, Wei Y, Zhao Y, Guo X, Zhu X, Zhang J, Hu L. Two-dimensional gel analysis to investigate the effect of hydroxyl radical oxidation on freshness indicator protein of Coregonus peled during 4 °C storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
14
|
Borawska-Dziadkiewicz J, Darewicz M, Tarczyńska AS. Properties of peptides released from salmon and carp via simulated human-like gastrointestinal digestion described applying quantitative parameters. PLoS One 2021; 16:e0255969. [PMID: 34375367 PMCID: PMC8354434 DOI: 10.1371/journal.pone.0255969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Apart from the classical (experimental) methods, biologically active peptides can be studied via bioinformatics approach, also known as in silico analysis. This study aimed to verify the following research hypothesis: ACE inhibitors and antioxidant peptides can be released from salmon and carp proteins during simulated in silico human-like gastrointestinal digestion. The potential to release biopeptides was evaluated using the BIOPEP-UWM quantitative criteria including the profile of biological activity, frequency of the occurrence (A)/release (AE) of fragments with an ACE inhibitory or antioxidant activity by selected enzymes, and relative frequency of release of bioactive fragments with a given activity by selected enzymes (W). Salmon collagen and myofibrillar proteins of carp turned out to be the best potential source of the searched peptides-ACE inhibitors and antioxidant peptides. Nonetheless, after digestion, the highest numbers of ACE inhibitors and antioxidant peptides were potentially released from the myofibrillar proteins of salmon and carp. Peptide Ranker Score, Pepsite2, and ADMETlab platform were applied to evaluate peptides' bioactivity potential, their safety and drug-like properties. Among the 63 sequences obtained after the simulated digestion of salmon and carp proteins, 30 were considered potential biopeptides. The amino acid sequences of ACE-inhibiting and antioxidant peptides were predominated by P, G, F, W, R, and L. The predicted high probability of absorption of most analyzed peptides and their low toxicity should be considered as their advantage.
Collapse
Affiliation(s)
- Justyna Borawska-Dziadkiewicz
- Faculty of Food Science, Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Małgorzata Darewicz
- Faculty of Food Science, Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Sylwia Tarczyńska
- Faculty of Food Science, Department of Dairy Science and Quality Management, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
15
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. Int J Mol Sci 2021; 22:8141. [PMID: 34360905 PMCID: PMC8348566 DOI: 10.3390/ijms22158141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Some Listeria species are important human and animal pathogens that can be found in contaminated food and produce a variety of virulence factors involved in their pathogenicity. Listeria strains exhibiting multidrug resistance are known to be progressively increasing and that is why continuous monitoring is needed. Effective therapy against pathogenic Listeria requires identification of the bacterial strain involved, as well as determining its virulence factors, such as antibiotic resistance and sensitivity. The present study describes the use of liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to do a global shotgun proteomics characterization for pathogenic Listeria species. This method allowed the identification of a total of 2990 non-redundant peptides, representing 2727 proteins. Furthermore, 395 of the peptides correspond to proteins that play a direct role in Listeria pathogenicity; they were identified as virulence factors, toxins and anti-toxins, or associated with either antibiotics (involved in antibiotic-related compounds production or resistance) or resistance to toxic substances. The proteomic repository obtained here can be the base for further research into pathogenic Listeria species and facilitate the development of novel therapeutics for these pathogens.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
16
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Proteomic Characterization of Bacteriophage Peptides from the Mastitis Producer Staphylococcus aureus by LC-ESI-MS/MS and the Bacteriophage Phylogenomic Analysis. Foods 2021; 10:799. [PMID: 33917943 PMCID: PMC8068337 DOI: 10.3390/foods10040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The present work describes LC-ESI-MS/MS MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses of tryptic digestion peptides from phages that infect mastitis-causing Staphylococcus aureus isolated from dairy products. A total of 1933 nonredundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 79 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, eighteen of the phage origin peptides found were specific to S. aureus strains. These diagnostic peptides could be useful for the identification and characterization of S. aureus strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides that are present in closely related phages and the existing links between bacteriophage phylogeny and the respective Staphylococcus spp. infected.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain;
| | - José-Luis R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
17
|
Shotgun Proteomics and Protein-Based Bioinformatics for the Characterization of Food-Derived Bioactive Peptides. Methods Mol Biol 2021. [PMID: 33687718 DOI: 10.1007/978-1-0716-1178-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A workflow for the characterization of food-derived bioactive peptides is described in this chapter. The workflow integrates two consecutive steps: a discovery phase and a protein-based bioinformatic phase. In the first step (discovery phase), a shotgun bottom-up proteomics approach is used to create a reference data set for a selected food proteome. Afterward, in a second step (bioinformatic phase), the reference proteome is subjected to several in silico protein-based bioinformatic analyses to predict and characterize potential bioactive peptides after an in silico human gastrointestinal digestion. Using this workflow, bioactive collagen peptides, antihypertensive, antimicrobial, and antitumor peptides were predicted as potential valuable bioactive peptides from seafood and marine by-products. It is concluded that the combination of the global shotgun proteomic analysis and the analysis by protein-based bioinformatics can provide a rapid strategy for the characterization of new potential food-derived bioactive peptides.
Collapse
|
18
|
Samutrtai P, Krobthong S, Roytrakul S. Proteomics for Toxicological Pathways Screening: A Case Comparison of Low-concentration Ionic and Nanoparticulate Silver. ANAL SCI 2020; 36:981-987. [PMID: 32115467 DOI: 10.2116/analsci.20p018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
LC-MS/MS-based proteomics coupled with an online bioinformatics platform was under evaluation for applicability to toxicological pathways evaluation at low cytotoxic concentration (LC10) of silver nanoparticles (AgNP) and ionic silver in human carcinoma cells after 48 h of exposure. Significantly, differentially-expressed proteins (One-way ANOVA, p < 0.05) with more than 4-fold compared to the control were subjected to functional pathway analysis by STITCH. SOTA clustering indicated a similarity of the protein expression between AgNP and the control group. We established a resemblance of proteins in the cell cycle pathway affected by both Ag substances. The differences in the toxicological pathways from AgNO3 were involved in the cellular organization and metabolic process of macromolecules, while the nucleic acid metabolic process was altered by AgNP. The present study supported the practicability of LC-MS/MS-based proteomics coupled with STITCH for the identification of toxicological pathways in both silvers. We appraised this platform technology to be promising and powerful for a toxicological screening of other new substances.
Collapse
Affiliation(s)
- Pawitrabhorn Samutrtai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA)
| | - Sucheewin Krobthong
- Proteomics Research Laboratory, Genome Technology Research Unit, BIOTEC, National Science and Technology Development Agency
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Technology Research Unit, BIOTEC, National Science and Technology Development Agency
| |
Collapse
|
19
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Characterization of Bacteriophage Peptides of Pathogenic Streptococcus by LC-ESI-MS/MS: Bacteriophage Phylogenomics and Their Relationship to Their Host. Front Microbiol 2020; 11:1241. [PMID: 32582130 PMCID: PMC7296060 DOI: 10.3389/fmicb.2020.01241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
The present work focuses on LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analysis of phage-origin tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2,546 non-redundant peptides belonging to 1,890 proteins were identified and analyzed. Among them, 65 phage-origin peptides were determined as specific Streptococcus spp. peptides. These peptides belong to proteins such as phage repressors, phage endopeptidases, structural phage proteins, and uncharacterized phage proteins. Studies involving bacteriophage phylogeny and the relationship between phages encoding the peptides determined and the bacteria they infect were also performed. The results show how specific peptides are present in closely related phages, and a link exists between bacteriophage phylogeny and the Streptococcus spp. they infect. Moreover, the phage peptide M∗ATNLGQAYVQIM∗PSAK is unique and specific for Streptococcus agalactiae. These results revealed that diagnostic peptides, among others, could be useful for the identification and characterization of mastitis-causing Streptococcus spp., particularly peptides that belong to specific functional proteins, such as phage-origin proteins, because of their specificity to bacterial hosts.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Jose L. R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
20
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Rama JLR, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance, and Production of Antimicrobial and Virulence Factors in Streptococcus Species Associated with Bovine Mastitis. Could Enzybiotics Represent Novel Therapeutic Agents Against These Pathogens? Antibiotics (Basel) 2020; 9:antibiotics9060302. [PMID: 32512932 PMCID: PMC7344566 DOI: 10.3390/antibiotics9060302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
Streptococcus spp. are major mastitis pathogens present in dairy products, which produce a variety of virulence factors that are involved in streptococcal pathogenicity. These include neuraminidase, pyrogenic exotoxin, and M protein, and in addition they might produce bacteriocins and antibiotic-resistance proteins. Unjustifiable misuse of antimicrobials has led to an increase in antibiotic-resistant bacteria present in foodstuffs. Identification of the mastitis-causing bacterial strain, as well as determining its antibiotic resistance and sensitivity is crucial for effective therapy. The present work focused on the LC–ESI–MS/MS (liquid chromatography–electrospray ionization tandem mass spectrometry) analysis of tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2706 non-redundant peptides belonging to 2510 proteins was identified and analyzed. Among them, 168 peptides were determined, representing proteins that act as virulence factors, toxins, anti-toxins, provide resistance to antibiotics that are associated with the production of lantibiotic-related compounds, or play a role in the resistance to toxic substances. Protein comparisons with the NCBI database allowed the identification of 134 peptides as specific to Streptococcus spp., while two peptides (EATGNQNISPNLTISNAQLNLEDKNK and DLWC*NM*IIAAK) were found to be species-specific to Streptococcus dysgalactiae. This proteomic repository might be useful for further studies and research work, as well as for the development of new therapeutics for the mastitis-causing Streptococcus strains.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain;
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - José-Luis R. Rama
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
- Correspondence:
| |
Collapse
|
21
|
Carrera M, Ezquerra-Brauer JM, Aubourg SP. Characterization of the Jumbo Squid ( Dosidicus gigas) Skin By-Product by Shotgun Proteomics and Protein-Based Bioinformatics. Mar Drugs 2019; 18:md18010031. [PMID: 31905758 PMCID: PMC7024357 DOI: 10.3390/md18010031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Jumbo squid (Dosidicus gigas) is one of the largest cephalopods, and represents an important economic fishery in several regions of the Pacific Ocean, from southern California in the United States to southern Chile. Large and considerable discards of this species, such as skin, have been reported to constitute an important source of potential by-products. In this paper, a shotgun proteomics approach was applied for the first time to the characterization of the jumbo squid (Dosidicus gigas) skin proteome. A total of 1004 different peptides belonging to 219 different proteins were identified. The final proteome compilation was investigated by integrated in-silico studies, including gene ontology (GO) term enrichment, pathways, and networks studies. Potential new valuable bioactive peptides such as antimicrobial, bioactive collagen peptides, antihypertensive and antitumoral peptides were predicted to be present in the jumbo squid skin proteome. The integration of the global proteomics results and the bioinformatics analysis of the jumbo squid skin proteome show a comprehensive knowledge of this fishery discard and provide potential bioactive peptides of this marine by-product.
Collapse
Affiliation(s)
- Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain;
- Correspondence: ; Tel.: +34-986-231930; Fax: +34-986-292762
| | | | - Santiago P. Aubourg
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain;
| |
Collapse
|
22
|
da Silva-Gomes RN, Gabriel Kuniyoshi ML, Oliveira da Silva Duran B, Thomazini Zanella BT, Paccielli Freire P, Gutierrez de Paula T, de Almeida Fantinatti BE, Simões Salomão RA, Carvalho RF, Delazari Santos L, Dal-Pai-Silva M. Prolonged fasting followed by refeeding modifies proteome profile and parvalbumin expression in the fast-twitch muscle of pacu (Piaractus mesopotamicus). PLoS One 2019; 14:e0225864. [PMID: 31856193 PMCID: PMC6922423 DOI: 10.1371/journal.pone.0225864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Here, we analyzed the fast-twitch muscle of juvenile Piaractus mesopotamicus (pacu) submitted to prolonged fasting (30d) and refeeding (6h, 24h, 48h and 30d). We measured the relative rate of weight and length increase (RRIlength and RRIweight), performed shotgun proteomic analysis and did Western blotting for PVALB after 30d of fasting and 30d of refeeding. We assessed the gene expression of igf-1, mafbx and pvalb after 30d of fasting and after 6h, 24h, 48h and 30d of refeeding. We performed a bioinformatic analysis to predict miRNAs that possibly control parvalbumin expression. After fasting, RRIlength, RRIweight and igf-1 expression decreased, while the mafbx expression increased, which suggest that prolonged fasting caused muscle atrophy. After 6h and 24h of refeeding, mafbx was not changed and igf-1 was downregulated, while after 48h of refeeding mafbx was downregulated and igf-1 was not changed. After 30d of refeeding, RRIlength and RRIweight were increased and igf-1 and mafbx expression were not changed. Proteomic analysis identified 99 proteins after 30d of fasting and 71 proteins after 30d of refeeding, of which 23 and 17, respectively, were differentially expressed. Most of these differentially expressed proteins were related to cytoskeleton, muscle contraction, and metabolism. Among these, parvalbumin (PVALB) was selected for further validation. The analysis showed that pvalb mRNA was downregulated after 6h and 24h of refeeding, but was not changed after 30d of fasting or 48h and 30d of refeeding. The Western blotting confirmed that PVALB protein was downregulated after 30d of fasting and 30d of refeeding. The downregulation of the protein and the unchanged expression of the mRNA after 30d of fasting and 30d of refeeding suggest a post-transcriptional regulation of PVALB. Our miRNA analysis predicted 444 unique miRNAs that may target pvalb. In conclusion, muscle atrophy and partial compensatory growth caused by prolonged fasting followed by refeeding affected the muscle proteome and PVALB expression.
Collapse
Affiliation(s)
- Rafaela Nunes da Silva-Gomes
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maria Laura Gabriel Kuniyoshi
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Tassiana Gutierrez de Paula
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucilene Delazari Santos
- Center for the Studies of Venoms and Venomous Animals (CEVAP)/ Graduate Program in Tropical Diseases (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
23
|
Ahmed F, Kumar G, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100625. [PMID: 31639560 DOI: 10.1016/j.cbd.2019.100625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Proteomic analyses techniques are considered strong tools for identifying and quantifying the protein contents in different organisms, organs and secretions. In fish biotechnology, the proteomic analyses have been used for wide range of applications such as identification of immune related proteins during infections and stresses. The proteomic approach has a significant role in understanding pathogen surviving strategies, host defence responses and subsequently, the fish pathogen interactions. Proteomic analyses were employed to highlight the virulence related proteins secreted by the pathogens to invade the fish host's defence barriers and to monitor the kinetics of protein contents of different fish organs in response to infections. The immune related proteins of fish and the virulence related proteins of pathogens are up or down regulated according to their functions in defence or pathogenesis. Therefore, the proteomic analyses are useful in understanding the virulence mechanisms of microorganisms and the fish pathogen interactions thereby supporting the development of new effective therapies. In this review, we focus and summarise the recent proteomic profiling studies exploring pathogen virulence activities and fish immune responses to stressors and infections.
Collapse
Affiliation(s)
- Fatma Ahmed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Faiza M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
24
|
Carrera M, González-Fernández Á, Magadán S, Mateos J, Pedrós L, Medina I, Gallardo JM. Molecular characterization of B-cell epitopes for the major fish allergen, parvalbumin, by shotgun proteomics, protein-based bioinformatics and IgE-reactive approaches. J Proteomics 2019; 200:123-133. [PMID: 30974223 DOI: 10.1016/j.jprot.2019.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/30/2019] [Accepted: 04/07/2019] [Indexed: 12/01/2022]
Abstract
Parvalbumins beta (β-PRVBs) are the main fish allergens. The only proven and effective treatment for this type of hypersensitivity is to consume a diet free of fish. We present the molecular characterization of B-cell epitopes by shotgun proteomics of different β-PRVBs combined with protein-based bioinformatics and IgE-reactive approaches. The final goal of this work is to identify potential peptide vaccine candidates for fish allergy. Purified β-PRVBs from the main fifteen different fish species that cause allergy were analyzed by shotgun proteomics. Identified β-PRVBs peptide sequences and ninety-eight β-PRVB protein sequences from UniProtKB were combined, aligned and analyzed to determine B-cell epitopes using the Kolaskar and Tongaonkar algorithm. The highest rated predicted B-cell peptide epitopes were evaluated by ELISA using the corresponding synthetic peptides and sera from healthy and fish allergic patients. A total of 35 peptides were identified as B-cell epitopes. The top B-cell peptide epitopes (LKLFLQV, ACAHLCK, FAVLVKQ and LFLQNFV) that may induce protective immune responses were selected as potential peptide vaccine candidates. The 3D model of these peptides were located in the surface of the protein. This study provides the global characterization of B-cell epitopes for all β-PRVBs sequences that will facilitate the design of new potential immunotherapies. SIGNIFICANCE: This work provides the global characterization of B-cell epitopes for all β-PRVBs sequences by Shotgun Proteomics combined with Protein-based Bioinformatics and IgE-reactive approaches. This study will increase our understanding of the molecular mechanisms whereby fish allergens elicit allergic reactions and will facilitate the design of new potential peptide vaccine candidates.
Collapse
Affiliation(s)
- Mónica Carrera
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Food Technology, Vigo, Pontevedra, Spain.
| | - África González-Fernández
- Biomedical Research Center (CINBIO) (Centro Singular de Investigación de Galicia), University of Vigo, Immunology, Vigo, Pontevedra, Spain
| | - Susana Magadán
- Biomedical Research Center (CINBIO) (Centro Singular de Investigación de Galicia), University of Vigo, Immunology, Vigo, Pontevedra, Spain
| | - Jesús Mateos
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Food Technology, Vigo, Pontevedra, Spain
| | - Lelia Pedrós
- Hospital Meixoeiro of Vigo, Galicia Sur Health Research Institute, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Pontevedra, Spain
| | - Isabel Medina
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Food Technology, Vigo, Pontevedra, Spain
| | - José M Gallardo
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Food Technology, Vigo, Pontevedra, Spain
| |
Collapse
|
25
|
Carrera M, Cañas B, Gallardo JM. Advanced proteomics and systems biology applied to study food allergy. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Carrera M, Böhme K, Gallardo JM, Barros-Velázquez J, Cañas B, Calo-Mata P. Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Networks, Virulence Factors and Species-Specific Peptide Biomarkers. Front Microbiol 2017; 8:2458. [PMID: 29312172 PMCID: PMC5732212 DOI: 10.3389/fmicb.2017.02458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
In the present work, we applied a shotgun proteomics approach for the fast and easy characterization of 20 different foodborne strains of Staphylococcus aureus (S. aureus), one of the most recognized foodborne pathogenic bacteria. A total of 644 non-redundant proteins were identified and analyzed via an easy and rapid protein sample preparation procedure. The results allowed the differentiation of several proteome datasets from the different strains (common, accessory, and unique datasets), which were used to determine relevant functional pathways and differentiate the strains into different Euclidean hierarchical clusters. Moreover, a predicted protein-protein interaction network of the foodborne S. aureus strains was created. The whole confidence network contains 77 nodes and 769 interactions. Most of the identified proteins were surface-associated proteins that were related to pathways and networks of energy, lipid metabolism and virulence. Twenty-seven virulence factors were identified, and most of them corresponded to autolysins, N-acetylmuramoyl-L-alanine amidases, phenol-soluble modulins, extracellular fibrinogen-binding proteins and virulence factor EsxA. Potential species-specific peptide biomarkers were screened. Twenty-one species-specific peptide biomarkers, belonging to eight different proteins (nickel-ABC transporter, N-acetylmuramoyl-L-alanine amidase, autolysin, clumping factor A, gram-positive signal peptide YSIRK, cysteine protease/staphopain, transcriptional regulator MarR, and transcriptional regulator Sar-A), were proposed to identify S. aureus. These results constitute the first major dataset of peptides and proteins of foodborne S. aureus strains. This repository may be useful for further studies, for the development of new therapeutic treatments for S. aureus food intoxications and for microbial source-tracking in foodstuffs.
Collapse
Affiliation(s)
- Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - José M. Gallardo
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
27
|
Proteomic signature of muscle fibre hyperplasia in response to faba bean intake in grass carp. Sci Rep 2017; 7:45950. [PMID: 28367976 PMCID: PMC5377455 DOI: 10.1038/srep45950] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
Abstract
Fish muscle growth is important for the rapidly developing global aquaculture industry, particularly with respect to production and quality. Changes in muscle fibre size are accomplished by altering the balance between protein synthesis and proteolysis. However, our understanding regarding the effects of different protein sources on fish muscle proteins is still limited. Here we report on the proteomic profile of muscle fibre hyperplasia in grass carp fed only with whole faba bean. From the results, a total of 99 significantly changed proteins after muscle hyperplasia increase were identified (p < 0.05, ratio <0.5 or >2). Protein–protein interaction analysis demonstrated the presence of a network containing 56 differentially expressed proteins, and muscle fibre hyperplasia was closely related to a protein–protein network of 12 muscle component proteins. Muscle fibre hyperplasia was also accompanied by decreased abundance in the fatty acid degradation and calcium signalling pathways. In addition, metabolism via the pentose phosphate pathway decreased in grass carp after ingestion of faba bean, leading to haemolysis. These findings could provide a reference for the prevention and treatment of human glucose-6-phosphate dehydrogenase deficiency (“favism”).
Collapse
|
28
|
Huang J, Liu Q, Xue B, Chen L, Wang Y, Ou S, Peng X. Angiotensin-I-Converting Enzyme Inhibitory Activities andIn VivoAntihypertensive Effects of Sardine Protein Hydrolysate. J Food Sci 2016; 81:H2831-H2840. [DOI: 10.1111/1750-3841.13508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/24/2016] [Accepted: 08/27/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Jiacheng Huang
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Qianyue Liu
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Bin Xue
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Long Chen
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Yong Wang
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Shiyi Ou
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Xichun Peng
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| |
Collapse
|
29
|
Nessen MA, van der Zwaan DJ, Grevers S, Dalebout H, Staats M, Kok E, Palmblad M. Authentication of Closely Related Fish and Derived Fish Products Using Tandem Mass Spectrometry and Spectral Library Matching. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3669-3677. [PMID: 27086584 DOI: 10.1021/acs.jafc.5b05322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteomics methodology has seen increased application in food authentication, including tandem mass spectrometry of targeted species-specific peptides in raw, processed, or mixed food products. We have previously described an alternative principle that uses untargeted data acquisition and spectral library matching, essentially spectral counting, to compare and identify samples without the need for genomic sequence information in food species populations. Here, we present an interlaboratory comparison demonstrating how a method based on this principle performs in a realistic context. We also increasingly challenge the method by using data from different types of mass spectrometers, by trying to distinguish closely related and commercially important flatfish, and by analyzing heavily contaminated samples. The method was found to be robust in different laboratories, and 94-97% of the analyzed samples were correctly identified, including all processed and contaminated samples.
Collapse
Affiliation(s)
- Merel A Nessen
- RIKILT Wageningen UR , P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | | | - Sander Grevers
- Center for Proteomics and Metabolomics, Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Hans Dalebout
- Center for Proteomics and Metabolomics, Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Martijn Staats
- RIKILT Wageningen UR , P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Esther Kok
- RIKILT Wageningen UR , P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
30
|
Aiello D, Materazzi S, Risoluti R, Thangavel H, Di Donna L, Mazzotti F, Casadonte F, Siciliano C, Sindona G, Napoli A. A major allergen in rainbow trout (Oncorhynchus mykiss): complete sequences of parvalbumin by MALDI tandem mass spectrometry. MOLECULAR BIOSYSTEMS 2016; 11:2373-82. [PMID: 26111497 DOI: 10.1039/c5mb00148j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fish parvalbumin (PRVB) is an abundant and stable protein in fish meat. The variation in cross-reactivity among individuals is well known and explained by a broad repertoire of molecular forms and differences between IgE-binding epitopes in fish species. PVRB has "sequential" epitopes, which retain their IgE-binding capacity and allergenicity also after heating and digestion using proteolytic enzymes. From the allergonomics perspective, PRVB is still a challenging target due to its multiple isoforms present at different degrees of distribution. Little information is available in the databases about PVRBs from Oncorhynchus mykiss. At present, only two validated, incomplete isoforms of this species are included in the protein databases: parvalbumin beta 1 (P86431) and parvalbumin beta 2 (P86432). A simple and rapid protocol has been developed for selective solubilization of PRVB from the muscle of farmed rainbow trout (Oncorhynchus mykiss), followed by calcium depletion, proteolytic digestion, MALDI MS, and MS/MS analysis. With this strategy thermal allergen release was assessed and PRVB1 (P86431), PRVB1.1, PRVB2 (P86432) and PRVB2.1 variants from the rainbow trout were sequenced. The correct ordering of peptide sequences was aided by mapping the overlapping enzymatic digests. The deduced peptide sequences were arranged and the theoretical molecular masses (Mr) of the resulting sequences were calculated. Experimental masses (Mr) of each PRVB variant were measured by linear MALDI-TOF.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A 2016; 1428:193-201. [DOI: 10.1016/j.chroma.2015.07.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 11/19/2022]
|
32
|
Minkiewicz P, Darewicz M, Iwaniak A, Sokołowska J, Starowicz P, Bucholska J, Hrynkiewicz M. Common Amino Acid Subsequences in a Universal Proteome--Relevance for Food Science. Int J Mol Sci 2015; 16:20748-73. [PMID: 26340620 PMCID: PMC4613229 DOI: 10.3390/ijms160920748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023] Open
Abstract
A common subsequence is a fragment of the amino acid chain that occurs in more than one protein. Common subsequences may be an object of interest for food scientists as biologically active peptides, epitopes, and/or protein markers that are used in comparative proteomics. An individual bioactive fragment, in particular the shortest fragment containing two or three amino acid residues, may occur in many protein sequences. An individual linear epitope may also be present in multiple sequences of precursor proteins. Although recent recommendations for prediction of allergenicity and cross-reactivity include not only sequence identity, but also similarities in secondary and tertiary structures surrounding the common fragment, local sequence identity may be used to screen protein sequence databases for potential allergens in silico. The main weakness of the screening process is that it overlooks allergens and cross-reactivity cases without identical fragments corresponding to linear epitopes. A single peptide may also serve as a marker of a group of allergens that belong to the same family and, possibly, reveal cross-reactivity. This review article discusses the benefits for food scientists that follow from the common subsequences concept.
Collapse
Affiliation(s)
- Piotr Minkiewicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Małgorzata Darewicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Anna Iwaniak
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Jolanta Sokołowska
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Piotr Starowicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Justyna Bucholska
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Monika Hrynkiewicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| |
Collapse
|
33
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Capriotti AL, Cavaliere C, Foglia P, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A. Development of an analytical strategy for the identification of potential bioactive peptides generated by in vitro tryptic digestion of fish muscle proteins. Anal Bioanal Chem 2014; 407:845-54. [PMID: 25168116 DOI: 10.1007/s00216-014-8094-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 11/28/2022]
Abstract
In the last years, food proteins and peptides are attracting great attention because of the emergence of a new field, that of food-derived bioactive peptides. This paper presents a comparison and evaluation of four different experiments for the identification of sarcoplasmic and myofibrillar fish peptides. This study is aimed at the development of a simple and fast method for the identification of peptides that could arise from fish meat if trypsin was the only digestive enzyme acting on fish meat proteins. In particular, we tested the use of ultrafiltration membranes with a molecular weight cutoff of 3,000 Da. Data analysis has shown that the experiment in which there is neither precipitation nor an ultrafiltration step performed better and allowed the identification of a larger number of peptides and potential antimicrobial peptides (AMPs); this workflow provided 473 and 398 total identified peptides and 44 and 18 AMPs for sarcoplasmic and myofibrillar extracts, respectively. This protocol is found to be faster and more straightforward than the other three tested workflows. The developed strategy could be also useful for other food matrices and could provide information about food quality and safety control.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
35
|
Gobert M, Sayd T, Gatellier P, Santé-Lhoutellier V. Application to proteomics to understand and modify meat quality. Meat Sci 2014; 98:539-43. [PMID: 25041652 DOI: 10.1016/j.meatsci.2014.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
The use of proteomics in the field of meat science has gained in robustness and accuracy. This is consistent with the genomic and bioinformatic tools. Its application to sensorial and technological meat quality traits is discussed as well as the emergence of sanitary and nutritional issue which will grow in a next future.
Collapse
Affiliation(s)
- M Gobert
- INRA QuaPA, F 63122 saint Genès Champanelle, France
| | - T Sayd
- INRA QuaPA, F 63122 saint Genès Champanelle, France
| | - P Gatellier
- INRA QuaPA, F 63122 saint Genès Champanelle, France
| | | |
Collapse
|