1
|
Gao K, He S, Shi J, Xue SJ, Li X, Sun H. Impact of pH-Shifting and Autoclaving on the Allergenic Potential of Red Kidney Bean ( Phaseolus vulgaris L.) Lectins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28109-28121. [PMID: 39611564 DOI: 10.1021/acs.jafc.4c07528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The ingestion of red kidney bean products is hindered by the persistent allergenicity of lectins, even after autoclaving. This study examined the modification of lectin allergenicity in red kidney beans by pH-shifting and autoclaving treatments, utilizing BALB/c mouse sensitization, in situ recirculating perfusion, and a bone marrow-derived dendritic cell (BMDC) model for allergenicity evaluation. Compared to autoclaving alone, combined pH-shifting and autoclaving reduced allergic symptoms in BALB/c mice, as evidenced by lower serum IgE, mMCPT-1, GM-CSF, HIS, IL-2, IL-4, IL-9, IL-13, and IL-17 levels and higher IgG1, IgG2a, IL-10, IFN-γ, and IFN-α cytokine release. Moreover, lectin continued to affect intestinal permeability and damaged the barrier despite undergoing pH-shifting and autoclaving treatments. Additionally, the uptake of lectin by BMDCs through mannose receptor-mediated endocytosis was diminished, with an increased susceptibility to endolysosomal degradation. The T-cell polarization was consistent with the mouse experiments, where the balance of Th1 and Th2 cells remained in lectin with pH-shifting and autoclaving treatments though the decreased abundance ratios of peptide YKYDSNAHT and increased abundance ratios of peptide ITKGNVETN in endolysosomal degradation. Therefore, the immunogenicity of lectins could be decreased by pH-shifting and autoclaving treatments, offering insights into the development of hypoallergenic legume products.
Collapse
Affiliation(s)
- Kuan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Sophia Jun Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| |
Collapse
|
2
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
3
|
Wang P, Hu J, Min S, Chen C, Zhu Y, Pan Y, Wei D, Wang X. Recombinant Phaseolus vulgaris phytohemagglutinin L-form expressed in the Bacillus brevis exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. Int Immunopharmacol 2023; 120:110322. [PMID: 37269742 DOI: 10.1016/j.intimp.2023.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
Leukocyte phytohemagglutinin (PHA-L) is a tetrameric isomer of phytohemagglutinin (PHA) purified from the red kidney bean (Phaseolus vulgaris) and is a well-known human lymphocyte mitogen. Due to its antitumor and immunomodulatory effects, PHA-L may serve as a potential antineoplastic agent in future cancer therapeutics. However, various negative consequences of PHA have been reported in the literature as a result of the restricted acquisition methods, including oral toxicity, hemagglutinating activity, and immunogenicity. There is a critical need to explore a new method to obtain PHA-L with high purity, high activity and low toxicity. In this report active recombinant PHA-L protein was successfully prepared by Bacillus brevius expression system, and the antitumor and immunomodulatory activities of recombinant PHA-L were characterized by in vitro and in vivo experiments. The results showed that recombinant PHA-L protein had stronger antitumor effect, and its anti-tumor mechanism was realized through direct cytotoxicity and immune regulation. Importantly, compared with natural PHA-L, the recombinant PHA-L protein showed the lower erythrocyte agglutination toxicity in vitro and immunogenicity in mice. Altogether, our study provides a new strategy and important experimental basis for the development of drugs with dual effects of immune regulation and direct antitumor activity.
Collapse
Affiliation(s)
- Peipei Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junmei Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shitong Min
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Congliang Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yue Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan Pan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dapeng Wei
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xia Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Sharma A, Vashisht S, Mishra R, Gaur SN, Prasad N, Lavasa S, Batra JK, Arora N. Molecular and immunological characterization of cysteine protease from Phaseolus vulgaris and evolutionary cross-reactivity. J Food Biochem 2022; 46:e14232. [PMID: 35592951 DOI: 10.1111/jfbc.14232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
A commonly consumed legume in India, the kidney bean (Phaseolus vulgaris) is associated with allergy. We report molecular and immunological characterization of cysteine protease allergen and its cross-reactivity. In silico allergenicity assessment and phylogenetic analysis of kidney bean cysteine protease showed significant sequence homology (upto 67%) with allergens from kiwi, papaya, soybean, ragweed pollen and mites. Physicochemical properties and motif-analysis depicted cysteine protease as probable allergen. Multiple sequence alignment and phylogenetic analysis indicated structural conservation between kidney bean and homologous cysteine protease sequences. The gene was cloned, expressed and affinity purified. Cysteine protease was resolved at 42 kDa and exhibited high IgE binding (up to 89%) with hypersensitive sera. Cysteine protease showed functional property on cross-linking IgE receptors and upregulated expression of CD203c on activated basophils. In inhibition studies, 8.4 ng of cysteine protease was required for 50% self-inhibition, whereas significant inhibition was also observed with kidney bean (52 ng), black gram (155 ng), chick pea (437 ng), mesquite pollen (36 ng), house dust mite (64.85 ng), Alternaria alternata (78.8 ng) and Curvularia lunata (73.6 ng) extracts. ConSurf analysis indicated conserved active site and catalytic residues in mature domain among proteases from legumes, fruits, pollens, mites and fungus. In summary, P. vulgaris cysteine protease was molecularly characterized having functional activity. This study demonstrated, cross-reactivity between food and aeroallergens based on evolutionary conservancy that showed its clinical importance as cross-reactive allergen. PRACTICAL APPLICATIONS: Adaptation of sustainable lifestyle has led to a surge in consumption of plant-based foods especially legumes. Their high nutritional content lowers the risk of developing cardiovascular diseases, diabetes, obesity, and stroke. Kidney beans, a commonly consumed legume in Indian subcontinent, have a potential to be used as nutraceutical and functional food. Despite its alimentary nature, it elicits allergic reactions. Being a major sensitizer, trivial information regarding its allergic components has led to an urgent need for exploring its allergen repertoire. Our study reported biochemical and immunological characterization of its major cysteine protease allergen. Cysteine proteases are major cross-reactive allergens from insects, fruits and fungal sources. Identification and molecular characterization of such immunodominant allergens by RDT offers the prospect of using recombinant proteins for accurate diagnosis and therapeutic purposes. This study suggests that a potential major cross-reactive allergen may aid in developing allergy management interventions for a wide range of allergenic sources.
Collapse
Affiliation(s)
- Akansha Sharma
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Srishti Vashisht
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Richa Mishra
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shailendra Nath Gaur
- Department of Respiratory Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | | | | | - Janendra Kumar Batra
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
5
|
Wang Y, He S, Zhou F, Sun H, Cao X, Ye Y, Li J. Detection of Lectin Protein Allergen of Kidney Beans ( Phaseolus vulgaris L.) and Desensitization Food Processing Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14723-14741. [PMID: 34251800 DOI: 10.1021/acs.jafc.1c02801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increase of food allergy events related to not properly cooked kidney beans (Phaseolus vulgaris L.), more and more researchers are paying attention to the sensitization potential of lectin, one of the major storage and defensive proteins with the specific carbohydrate-binding activity. The immunoglobulin E (IgE), non-IgE, and mixed allergic reactions induced by the lectins were inducted in the current paper, and the detection methods of kidney bean lectin, including the purification strategies, hemagglutination activity, specific polysaccharide or glycoprotein interactions, antibody combinations, mass spectrometry methods, and allergomics strategies, were summarized, while various food processing aspects, such as the physical thermal processing, physical non-thermal processing, chemical modifications, and biological treatments, were reviewed in the potential of sensitization reduction. It might be the first comprehensive review on lectin allergen detection from kidney bean and the desensitization strategy in food processing and will provide a basis for food safety control.
Collapse
Affiliation(s)
- Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jing Li
- College of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
6
|
He S, Zhao J, Zhang Y, Zhu Y, Li X, Cao X, Ye Y, Li J, Sun H. Effects of Low-pH Treatment on the Allergenicity Reduction of Black Turtle Bean ( Phaseolus vulgaris L.) Lectin and Its Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1379-1390. [PMID: 33464885 DOI: 10.1021/acs.jafc.0c06524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A high content of potentially allergenic lectin in Phaseolus vulgaris L. beans is of increasing health concerns; however, understanding of the protein allergenicity mechanism on the molecular basis is scarce. In the present study, low-pH treatments were applied to modify black turtle bean lectin allergen, and a sensitization procedure was performed using the BALB/c mice for the allergenicity evaluation, while the conformational changes were monitored by the spectral analyses and the details were explored by the molecular dynamics simulation. Much milder anaphylactic responses were observed in BALB/c mice experiments. At the molecular level, the protein was unfolded in low acidic environments because of protonation, and α-helix was reduced with the exposure of trypsin cleavage sites, especially the improvement of protease accessibility for Lys121, 134, and 157 in the B cell epitope structural alterations. These results indicate that a low-pH treatment might be an efficient method to improve the safety of legume protein consumption.
Collapse
Affiliation(s)
- Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 255003, Shandong, PR China
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3 V9, Canada
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xingjiang Li
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Jing Li
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230009, Anhui PR China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| |
Collapse
|
7
|
Functional Component Isolated from Phaseolus vulgaris Lectin Exerts In Vitro and In Vivo Anti-Tumor Activity Through Potentiation of Apoptosis and Immunomodulation. Molecules 2021; 26:molecules26020498. [PMID: 33477737 PMCID: PMC7832403 DOI: 10.3390/molecules26020498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/25/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
Phytohemagglutinin (PHA), the lectin purified from red kidney bean (Phaseolus vulgaris), is a well-known mitogen for human lymphocyte. Because it has obvious anti-proliferative and anti-tumor activity, PHA may serve as a potential antineoplastic drug in future cancer therapeutics. However, the literature is also replete with data on detrimental effects of PHA including oral toxicity, hemagglutinating activity, and immunogenicity. There is a critical need to evaluate the functional as well as the toxic components of PHAs to assist the rational designs of treatment with it. In this report, we performed SDS-PAGE to identify components of PHA-L, the tetrameric isomer of PHA with four identical L-type subunits, and then characterized biological function or toxicity of the major protein bands through in vitro experiments. It was found that the protein appearing as a 130 kD band in SDS-PAGE gel run under the condition of removal of β-mercaptoethanol from the sample buffer together with omission of a heating step could inhibit tumor cell growth and stimulate lymphocyte proliferation, while most of the 35 kD proteins are likely non-functional impurity proteins and 15 kD protein may be related to hemolytic effect. Importantly, the 130 kD functional protein exhibits promising in vivo anti-tumor activity in B16-F10 melanoma C57 BL/6 mouse models, which may be achieved through potentiation of apoptosis and immunomodulation. Altogether, our results suggest that PHA-L prepared from crude extracts of red kidney bean by standard strategies is a mixture of many ingredients, and a 130 kD protein of PHA-L was purified and identified as the major functional component. Our study may pave the way for PHA-L as a potential anticancer drug.
Collapse
|
8
|
Barre A, Damme EJV, Simplicien M, Benoist H, Rougé P. Are Dietary Lectins Relevant Allergens in Plant Food Allergy? Foods 2020; 9:foods9121724. [PMID: 33255208 PMCID: PMC7760050 DOI: 10.3390/foods9121724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/17/2023] Open
Abstract
Lectins or carbohydrate-binding proteins are widely distributed in seeds and vegetative parts of edible plant species. A few lectins from different fruits and vegetables have been identified as potential food allergens, including wheat agglutinin, hevein (Hev b 6.02) from the rubber tree and chitinases containing a hevein domain from different fruits and vegetables. However, other well-known lectins from legumes have been demonstrated to behave as potential food allergens taking into account their ability to specifically bind IgE from allergic patients, trigger the degranulation of sensitized basophils, and to elicit interleukin secretion in sensitized people. These allergens include members from the different families of higher plant lectins, including legume lectins, type II ribosome-inactivating proteins (RIP-II), wheat germ agglutinin (WGA), jacalin-related lectins, GNA (Galanthus nivalis agglutinin)-like lectins, and Nictaba-related lectins. Most of these potentially active lectin allergens belong to the group of seed storage proteins (legume lectins), pathogenesis-related protein family PR-3 comprising hevein and class I, II, IV, V, VI, and VII chitinases containing a hevein domain, and type II ribosome-inactivating proteins containing a ricin B-chain domain (RIP-II). In the present review, we present an exhaustive survey of both the structural organization and structural features responsible for the allergenic potency of lectins, with special reference to lectins from dietary plant species/tissues consumed in Western countries.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Els J.M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
9
|
Nie J, Qin X, Li Z. Revealing the anti-melanoma mechanism of n-BuOH fraction from the red kidney bean coat extract based on network pharmacology and transcriptomic approach. Food Res Int 2020; 140:109880. [PMID: 33648198 DOI: 10.1016/j.foodres.2020.109880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022]
Abstract
Red kidney bean coat (RKBC) extract contains bioactive compounds that are known to exhibit anti-melanoma activity in vitro. However, knowledge on antitumor component and mechanism of RKBC extract has not been fully clarified. Here, RKBC extract was portioned with different solvent sequentially, and based on the cell viability assay, cell migration assay, AO/EB and Hoechst 33342 staining assay, and Annexin V-FITC/PI double staining, n-BuOH (BU) fraction was identified as the most potent antitumor fraction. It exhibited potential anti-melanoma activity via the induction of apoptosis and vacuolization in B16-F10 cells. Transcriptomic and bioprocess-target network analysis revealed that BU fraction triggered apoptosis and vacuolization through regulating PI3K-AKT-FOXO, MDM2-p53 pathway and increasing the expression of Bcl-xl. In addition, quercetin might be served as one of the key anti-melanoma compounds in BU fraction through the similar mechanism. Although the anti-melanoma activity and mechanism of BU fraction have not been elucidated completely, this study effectively expands our understanding for the anti-melanoma activity of RKBC extract and provided the basis for the further functional food research and development using red kidney bean, as well as a new possibility for treating melanoma.
Collapse
Affiliation(s)
- Jiahui Nie
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China; College of Chemistry and Chemical Engineering, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| |
Collapse
|
10
|
Pita-López W, Gomez-Garay M, Blanco-Labra A, Aguilera-Barreyro A, Reis-de Souza TC, Olvera-Ramírez A, Ferriz-Martinez R, García-Gasca T. Tepary bean ( Phaseolus acutifolius) lectin fraction provokes reversible adverse effects on rats' digestive tract. Toxicol Res (Camb) 2020; 9:714-725. [PMID: 33178432 DOI: 10.1093/toxres/tfaa062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 01/24/2023] Open
Abstract
The Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) exhibits differential cytotoxicity on colon cancer cells and inhibition of early tumorigenesis in the colon (50 mg/kg, three times per week, for 6 weeks). TBLF showed low toxicity with the ability to activate the immune system; however, some adverse effects are the loss in body weight gain, intestinal atrophy, and pancreatic hyperplasia. After a recovery period of 2 weeks after treatment, reversion of pancreatic hyperplasia but no recovery of intestinal atrophy was observed. As TBLF has shown anticancer effects on the colon, it is important to characterize the adverse effects and how they can be reversed. Sprague Dawley rats were administered with TBLF (50 mg/kg) for 6 weeks, three times per week, and then allowed to recover for 6 weeks post-treatment. After TBLF administration, small intestine atrophy, villus atrophy, and cryptic hyperplasia were confirmed, as well as increased intestinal mucus production, increased permeability and a decrease in the apparent ileal digestibility of crude proteins. The colon showed damage in the simple prismatic tissue and decreased crypt depth, and changes in microbiota and a decrease in the apparent fecal digestibility of crude protein were determined. Our results show that the adverse effects provoked by TBLF were partially reversed after 6 weeks of recovery post-treatment, suggesting that increasing the recovery period it could be possible to reverse all adverse effects observed.
Collapse
Affiliation(s)
- Wendoline Pita-López
- Faculty of Natural Sciences, Autonomous University of Querétaro, 76010, Querétaro, Mexico
| | - Mery Gomez-Garay
- Faculty of Natural Sciences, Autonomous University of Querétaro, 76010, Querétaro, Mexico
| | | | | | - Tércia C Reis-de Souza
- Faculty of Natural Sciences, Autonomous University of Querétaro, 76010, Querétaro, Mexico
| | - Andrea Olvera-Ramírez
- Faculty of Natural Sciences, Autonomous University of Querétaro, 76010, Querétaro, Mexico
| | | | - Teresa García-Gasca
- Faculty of Natural Sciences, Autonomous University of Querétaro, 76010, Querétaro, Mexico
| |
Collapse
|
11
|
Combined effects of pH and thermal treatments on IgE-binding capacity and conformational structures of lectin from black kidney bean (Phaseolus vulgaris L.). Food Chem 2020; 329:127183. [PMID: 32521427 DOI: 10.1016/j.foodchem.2020.127183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Combined effects of pH and thermal treatments on black kidney bean lectin (BKBL) were investigated by response surface methodology (RSM). Low-pH (1.0, 2.0, 3.0) incubation decreased hemagglutination activity (HA) and IgE-binding capacity, but the activities would be restored when the lectin was treated by pH shifting to 7.2. Conformational structure analyses indicated that low-pH induced protein unfolding and pH-shifting treatment resulted in a limited structural rearrangement. Mild heating, such as 60 °C for 3 min, slightly increased the HA and IgE-binding activities of pH shifted BKBL, but no obvious effects in the pH 1.0 incubated BKBL. High-temperature and long-time treatment might induce the protein aggregation, further decreased HA and IgE-binding capacities. RSM results showed both IgE-binding capacity and HA were the lowest under the combination of pH 1.0 incubation with 80 °C heating for 15 min or pH shifting from 1.0 to 7.2 with 100 °C heating for 10 min.
Collapse
|
12
|
Bhattacharya K, Sircar G, Dasgupta A, Gupta Bhattacharya S. Spectrum of Allergens and Allergen Biology in India. Int Arch Allergy Immunol 2018; 177:219-237. [PMID: 30056449 DOI: 10.1159/000490805] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 11/19/2022] Open
Abstract
The growing prevalence of allergy and asthma in India has become a major health concern with symptoms ranging from mild rhinitis to severe asthma and even life-threatening anaphylaxis. The "allergen repertoire" of this subcontinent is highly diverse due to the varied climate, flora, and food habits. The proper identification, purification, and molecular characterization of allergy-eliciting molecules are essential in order to facilitate an accurate diagnosis and to design immunotherapeutic vaccines. Although several reports on prevalent allergens are available, most of these studies were based on preliminary detection and identification of the allergens. Only a few of these allergen molecules have been characterized by recombinant technology and structural biology. The present review first describes the composition, distribution pattern, and natural sources of the predominant allergens in India along with the prevalence of sensitization to these allergens across the country. We go on to present a comprehensive report on the biochemical, immunological, and molecular information on the allergens reported so far from India. The review also covers the studies on allergy- related biosafety assessment of transgenic plants. Finally, we discuss the allergen-specific immunotherapy trials performed in India.
Collapse
Affiliation(s)
| | - Gaurab Sircar
- Division of Plant Biology, Bose Institute, Kolkata, India
| | - Angira Dasgupta
- Department of Chest Medicine, B.R. Singh Hospital and Centre for Medical Education and Research, Kolkata, India
| | | |
Collapse
|
13
|
Jiao Z, Song Y, Jin Y, Zhang C, Peng D, Chen Z, Chang P, Kundu SC, Wang G, Wang Z, Wang L. In Vivo Characterizations of the Immune Properties of Sericin: An Ancient Material with Emerging Value in Biomedical Applications. Macromol Biosci 2017; 17. [PMID: 29045024 DOI: 10.1002/mabi.201700229] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/12/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Zhanying Jiao
- Research Center for Tissue Engineering and Regenerative Medicine; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yang Jin
- Department of Respiration; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Cheng Zhang
- Research Center for Tissue Engineering and Regenerative Medicine; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Dong Peng
- Research Center for Tissue Engineering and Regenerative Medicine; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Zhenzhen Chen
- Research Center for Tissue Engineering and Regenerative Medicine; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Panpan Chang
- Medical Research Center; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Subhas C. Kundu
- 3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; University of Minho; AvePark 4805-017 Barco Guimaraes Portugal
| | - Guobin Wang
- Department of Gastrointestinal Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
- Department of Gastrointestinal Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
- Department of Clinical Laboratory; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| |
Collapse
|
14
|
He S, Simpson BK, Sun H, Ngadi MO, Ma Y, Huang T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit Rev Food Sci Nutr 2017; 58:70-83. [PMID: 26479307 DOI: 10.1080/10408398.2015.1096234] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Legume lectins are carbohydrate-binding proteins of non-immune origin. Significant amounts of lectins have been found in Phaseolus vulgaris beans as far back as in the last century; however, many questions about their potential biological roles still remain obscure. Studies have shown that lectins are anti-nutritional factors that can cause intestinal disorders. Owing to their ability to act as toxic allergens and hemagglutinins, the Phaseolus vulgaris lectins are of grave concern for human health and safety. Nonetheless, their potential beneficial health effects, such as anti-cancer, anti-human immunodeficiency virus (anti-HIV), anti-microbial infection, preventing mucosal atrophy, reducing type 2 diabetes and obesity, promoting nutrients absorption and targeting drugs, are of immense interest. The significance of Phaseolus vulgaris lectins in biological researches and the potential biomedical applications have placed tremendous emphasis on the development of purification strategies to obtain the protein in pure and stable forms. These purification strategies entail considerations such as effects of proteolysis, heating, gamma radiation, and high-hydrostatic-pressure that can have crucial outcomes in either eliminating or improving bioactivities of the lectins. Thus, up-to-date research findings of Phaseolus vulgaris lectins on different aspects such as anti-nutritional and health impacts, purification strategies and novel processing trends, are systematically reviewed.
Collapse
Affiliation(s)
- Shudong He
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China.,b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China.,c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Benjamin K Simpson
- c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Hanju Sun
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China
| | - Michael O Ngadi
- d Department of Bioresource Engineering , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Ying Ma
- b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Tiemin Huang
- e Advanced Electrophoresis Solutions Ltd. , Cambridge , Ontario , Canada
| |
Collapse
|
15
|
Homann A, Schramm G, Jappe U. Glycans and glycan-specific IgE in clinical and molecular allergology: Sensitization, diagnostics, and clinical symptoms. J Allergy Clin Immunol 2017; 140:356-368. [PMID: 28479330 DOI: 10.1016/j.jaci.2017.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Glycan-specific IgE antibodies cross-react with highly similar or even identical carbohydrate structures on a variety of different natural allergens, the so-called cross-reactive carbohydrate determinants (CCDs). In clinical practice CCDs often interfere with the specificity of in vitro allergy diagnostics, thus impairing allergy therapy decisions for individual patients. Strikingly, these IgE antibodies directed against CCDs often do not cause clinically relevant allergy symptoms. On the other hand, the IgE-binding glycan allergen galactose-α-(1,3)-galactose (α-Gal) is associated with IgE-mediated delayed anaphylaxis in meat allergy. The reason for this discrepancy is not known. The discovery of α-Gal stimulated new discussions and investigations regarding the relevance of anti-glycan IgE for allergic diseases. In this review the effect of glycans and glycan-specific IgE on sensitization to allergens and allergy diagnosis is described. Because parasite infections elicit a similar immunologic environment as allergic diseases, the association of glycan-specific antibodies against parasite glycoproteins with glycan structures on allergens is discussed.
Collapse
Affiliation(s)
- Arne Homann
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
| | - Gabriele Schramm
- Division of Experimental Pneumology, Priority Research Area Asthma & Allergy, Research Center Borstel, Borstel, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
16
|
Mukherjee S, Bandyopadhyay A. Proteomics in India: the clinical aspect. Clin Proteomics 2016; 13:21. [PMID: 27822170 PMCID: PMC5097398 DOI: 10.1186/s12014-016-9122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Proteomics has emerged as a highly promising bioanalytical technique in various aspects of applied biological research. In Indian academia, proteomics research has grown remarkably over the last decade. It is being extensively used for both basic as well as translation research in the areas of infectious and immune disorders, reproductive disorders, cardiovascular diseases, diabetes, eye disorders, human cancers and hematological disorders. Recently, some seminal works on clinical proteomics have been reported from several laboratories across India. This review aims to shed light on the increasing use of proteomics in India in a variety of biological conditions. It also highlights that India has the expertise and infrastructure needed for pursuing proteomics research in the country and to participate in global initiatives. Research in clinical proteomics is gradually picking up pace in India and its future seems very bright.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
17
|
Verma AK, Kumar S, Sharma A, Kumar D, Roy R, Gupta RK, Chaudhari BP, Giridhar B, Das M, Dwivedi PD. Allergic manifestation by black gram (Vigna mungo) proteins in allergic patients, BALB/c mice and RBL-2H3 cells. Int Immunopharmacol 2014; 23:92-103. [DOI: 10.1016/j.intimp.2014.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 12/30/2022]
|
18
|
Kumar S, Sharma A, Neelabh, Singh G, Verma AK, Roy R, Gupta R, Misra A, Tripathi A, Ansari KM, Das M, Shanker R, Dwivedi PD. Allergenic responses of green gram (Vigna radiata L. Millsp) proteins can be vitiated by induction of oral tolerance due to single acute dose in BALB/c mice. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Phaseolin: A 47.5kDa protein of red kidney bean (Phaseolus vulgaris L.) plays a pivotal role in hypersensitivity induction. Int Immunopharmacol 2014; 19:178-90. [DOI: 10.1016/j.intimp.2014.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/30/2022]
|
20
|
Kumar S, Sharma A, Das M, Jain SK, Dwivedi PD. Leucoagglutinating phytohemagglutinin: purification, characterization, proteolytic digestion and assessment for allergenicity potential in BALB/c mice. Immunopharmacol Immunotoxicol 2014; 36:138-44. [PMID: 24548135 DOI: 10.3109/08923973.2014.884136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Red kidney bean (Phaseolus vulgaris) is consumed worldwide as a vegetarian protein source. But, at the same time the allergenicity potential of red kidney bean is a matter of concern. This study is aimed towards purification, characterization, thermal stability, proteolytic digestion and allergenicity assessment of one of the clinically relevant allergens of red kidney bean. The purification of red kidney bean allergic protein was carried out with the help of column chromatography, IgE immunoblotting and reverse phase high-pressure liquid chromatography (RP-HPLC). The purified protein was characterized by peptide mass finger printing (PMF) and studied for its thermal stability, and proteolytic resistance using simulated gastric fluid (SGF) assay. The allergenicity potential of the purified protein was studied in BALB/c mice. The purified protein was identified as leucoagglutinating phytohemagglutinin (PHA-L) with molecular weight 29.5 kDa. The PHA-L showed resistance to heat as well as proteolytic enzyme. Higher levels of total IgE, specific IgE, and histamine were observed in PHA-L treated BALB/c mice when compared to control. Overall, PHA-L possesses characteristics of allergens and may play a potential role in the red kidney bean induced allergy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Food Toxicology Division, CSIR - Indian Institute of Toxicology Research , Lucknow, Uttar Pradesh , India
| | | | | | | | | |
Collapse
|
21
|
Kumar D, Kumar S, Verma AK, Sharma A, Tripathi A, Chaudhari BP, Kant S, Das M, Jain SK, Dwivedi PD. Hypersensitivity linked to exposure of broad bean protein(s) in allergic patients and BALB/c mice. Nutrition 2013; 30:903-14. [PMID: 24985010 DOI: 10.1016/j.nut.2013.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Broad bean (Vicia faba L.), a common vegetable, belongs to the family Fabaceae and is consumed worldwide. Limited studies have been done on allergenicity of broad beans. The aim of this study was to determine if broad bean proteins have the ability to elicit allergic responses due to the presence of clinically relevant allergenic proteins. METHODS Simulated gastric fluid (SGF) assay and immunoglobulin E (IgE) immunoblotting were carried out to identify pepsin-resistant and IgE-binding proteins. The allergenicity of broad beans was assessed in allergic patients, BALB/c mice, splenocytes, and RBL-2H3 cells. RESULTS Eight broad bean proteins of approximate molecular weight 70, 60, 48, 32, 23, 19, 15, and 10 kDa that remained undigested in SGF, showed IgE-binding capacity as well. Of 127 allergic patients studied, broad bean allergy was evident in 16 (12%). Mice sensitized with broad bean showed increased levels of histamine, total and specific IgE, and severe signs of systemic anaphylaxis compared with controls. Enhanced levels of histamine, prostaglandin D2, cysteinyl leukotriene, and β-hexosaminidase release were observed in the primed RBL-2H3 cells following broad bean exposure. The levels of interleukin IL-4, IL-5, IL-13 and regulated on activation, normal T-cell expressed and secreted were found enhanced in broad bean-treated splenocytes culture supernatant compared with controls. CONCLUSION This study inferred that broad bean proteins have the ability to elicit allergic responses due to the presence of clinically relevant allergenic proteins.
Collapse
Affiliation(s)
- Dinesh Kumar
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Sandeep Kumar
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Alok K Verma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Akanksha Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Anurag Tripathi
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Bhushan P Chaudhari
- Central Pathology Lab, Gehru Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Surya Kant
- Department of Pulmonary Medicine, King George Medical University, Lucknow, India
| | - Mukul Das
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Swatantra K Jain
- Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Premendra D Dwivedi
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
| |
Collapse
|
22
|
Ghosh P, Roy A, Chakraborty J, Das S. Biological safety assessment of mutant variant of Allium sativum leaf agglutinin (mASAL), a novel antifungal protein for future transgenic application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11858-11864. [PMID: 24219138 DOI: 10.1021/jf403660e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetic engineering has established itself to be an important tool for crop improvement. Despite the success, there is always a risk of food allergy induced by alien gene products. The present study assessed the biosafety of mutant Allium sativum leaf agglutinin (mASAL), a potent antifungal protein generated by site directed mutagenesis of Allium sativum leaf agglutinin (ASAL). mASAL was cloned in pET28a+ and expressed in E. coli, and the safety assessment was carried out according to the FAO/WHO guideline (2001). Bioinformatics analysis, pepsin digestion, and thermal stability assay showed the protein to be nonallergenic. Targeted sera screening revealed no significant IgE affinity of mASAL. Furthermore, mASAL sensitized Balb/c mice showed normal histopathology of lung and gut tissue. All results indicated the least possibility of mASAL being an allergen. Thus, mASAL appears to be a promising antifungal candidate protein suitable for agronomical biotechnology.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus , P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | | | | | | |
Collapse
|
23
|
Roy R, Kumar S, Verma AK, Sharma A, Chaudhari BP, Tripathi A, Das M, Dwivedi PD. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. Int Immunol 2013; 26:159-72. [PMID: 24225181 DOI: 10.1093/intimm/dxt053] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc oxide nanoparticles (ZNPs) have been used in dietary supplements and may cause an immunomodulatory effect. The present study investigated the effect of ZNPs on antigen-specific immune responses in mice sensitized with the T-cell-dependent antigen ovalbumin (OVA). BALB/c mice were intraperitoneally administered ZNPs (0.25, 0.5, 1 and 3mg) once, in combination with OVA, and the serum antibodies, splenocyte reactivity and activation of antigen-presenting cells were examined. The serum levels of OVA-specific IgG1 and IgE were found significantly enhanced by treatment with ZNPs over control. An increased level of IL-2, IL-4, IL-6, IL-17 and decreased level of IL-10 and TNF-α in splenocytes administered with ZNPs were observed in comparison with control. The ZNPs and OVA-stimulated T lymphocytes showed enhanced proliferation compared with control. Macrophages and B cells showed high expression of MHC class II, whereas higher expression of CD11b in macrophages of the ZNPs and ZNPs/OVA treated groups was observed. The lungs and spleen had increased eosinophils and mast cell numbers. Also, myeloperoxidase activity in lungs was found to be increased by 2.5-fold in the case of ZNPs and 3.75-fold increase in ZNPs/OVA, whereas in intestine, there was significant increase in both the groups. Increased expression of the genes for GATA-3, SOCS-3, TLR-4, IL-13 and IL-5 in the intestine was observed. Collectively, these data indicate that systemic exposure to a single administration of ZNPs could enhance subsequent antigen-specific immune reactions, including the serum production of antigen-specific antibodies, and the functionality of T cells.
Collapse
Affiliation(s)
- Ruchi Roy
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, M.G. Marg, PO Box 80, Lucknow 226001, India
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Jesús Jorrín-Novo
- Agricultural and Plant Proteomics, Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain.
| | | |
Collapse
|