1
|
Liu Y, Wang R, Su L, Zhao S, Dai X, Chen H, Wu G, Zhou H, Zheng L, Zhai Y. Integrative Proteomic and Phosphoproteomic Analyses Revealed Complex Mechanisms Underlying Reproductive Diapause in Bombus terrestris Queens. INSECTS 2022; 13:862. [PMID: 36292811 PMCID: PMC9604461 DOI: 10.3390/insects13100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Reproductive diapause is an overwintering strategy for Bombus terrestris, which is an important pollinator for agricultural production. However, the precise mechanisms underlying reproductive diapause in bumblebees remain largely unclear. Here, a combination analysis of proteomics and phosphoproteomics was used to reveal the mechanisms that occur during and after diapause in three different phases: diapause (D), postdiapause (PD), and founder postdiapause (FPD). In total, 4655 proteins and 10,600 phosphorylation sites of 3339 proteins were identified. Diapause termination and reactivation from D to the PD stage were characterized by the upregulation of proteins associated with ribosome assembly and biogenesis, transcription, and translation regulation in combination with the upregulation of phosphoproteins related to neural signal transmission, hormone biosynthesis and secretion, and energy-related metabolism. Moreover, the reproductive program was fully activated from PD to the FPD stage, as indicated by the upregulation of proteins related to fat digestion and absorption, the biosynthesis of unsaturated fatty acids, fatty acid elongation, protein processing in the endoplasmic reticulum, and the upregulation of energy-related metabolism at the phosphoproteome level. We also predicted a kinase-substrate interaction network and constructed protein-protein networks of proteomic and phosphoproteomic data. These results will help to elucidate the mechanisms underlying the regulation of diapause in B. terrestris for year-round mass breeding.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Guang’an Wu
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Zhou
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| |
Collapse
|
2
|
Shi J, Jin H, Wang F, Stanley DW, Wang H, Fang Q, Ye G. The larval saliva of an endoparasitic wasp, Pteromalus puparum, suppresses host immunity. JOURNAL OF INSECT PHYSIOLOGY 2022; 141:104425. [PMID: 35878702 DOI: 10.1016/j.jinsphys.2022.104425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In the lengthy co-evolution between insects and their animal or plant hosts, insects have evolved a wide range of salivary strategies to help evade host defenses. Although there is a very large literature on saliva of herbivorous and hematophagous insects, little attention has been focused on the saliva of parasitoid wasps. Some parasitoid species are natural enemies that effectively regulate insect population sizes in nature that they are applied for biological control of agricultural pests. Here, we demonstrate the influence of the endoparasitoid, Pteromalus puparum, larval saliva on the cellular and humoral immunity of its host. Larval saliva increases mortality of hemocytes, and inhibits hemocyte spreading, a specific cellular immune action. We report that high saliva concentrations inhibit host cellular encapsulation of foreign invaders. The larval saliva also inhibits melanization in host hemolymph. The saliva inhibits the growth of some bacterial species, Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa in vitro. This may promote larvae fitness by protecting them from infections. Insight into such functions of parasitic wasp saliva provides a new insight into host-parasitoid relationships and possibly leads to new agricultural pest management technologies.
Collapse
Affiliation(s)
- Jiamin Shi
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Hongxia Jin
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - David W Stanley
- Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA
| | - Huan Wang
- Department of Landscape Architecture Technology, Shanghai Vocational College of Agriculture and Forestry, 658 Zhongshan Second Road, Shanghai 201699, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
3
|
Activities of Antioxidant and Proteolytic Systems and Biomarkers in the Fat Body and Hemolymph of Young Apis mellifera Females. Animals (Basel) 2022; 12:ani12091121. [PMID: 35565549 PMCID: PMC9103435 DOI: 10.3390/ani12091121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The proteolytic system consists of compounds that, similar to “scissors”, cut proteins found in bee cells (e.g., to activate these proteins) or released by pathogens. During these reactions, reactive oxygen species are created and then removed by antioxidants. The actions of the proteolytic and antioxidant systems are enhanced by biomarkers. These compounds are produced mainly in the fat body and then released into the hemolymph. We determined the activities of these compounds in various localizations/segments of the fat body and in the hemolymph in females with increased reproductive potential, i.e., queens and rebels, and in normal (sterile non-rebel) workers. Rebels are workers who resemble the queen in terms of anatomical, behavioural, and physiological features. It was revealed that the activities of these compounds in the rebels were between those of queens and normal workers. Normal workers had higher activities of the proteolytic and antioxidant systems in the fat body and hemolymph than the other females. These results are important for understanding the functioning of the fat body, the stress ecology, and the formation of the different castes of Apis mellifera females. Abstract The proteolytic and antioxidant systems are important components of humoral immunity, and these biomarkers indicate the immune status. These compounds are synthesized in the bees’ fat body and released into the hemolymph. Their functions maintain the organism’s homeostasis and protect it against adverse environmental factors (including pathogens). We determined the activities of acidic, neutral, and alkaline proteases and their inhibitors, as well as superoxide dismutase (SOD), catalase (CAT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and the level of total antioxidant potential (TAC). These compounds were investigated in the fat body and hemolymph in the females with increased reproductive potential, i.e., queens and rebels, and in normal (non-reproductive sterile non-rebel) workers. The phenoloxidase (PO) activities were determined in the hemolymph. The normal workers had higher activities of proteases and their inhibitors, SOD and CAT, in the fat body and hemolymph, compared to the queens and rebels. The protease inhibitors were not usually active in the queens. As we predicted, the rebels revealed values between those of the queens and normal workers. The highest activities of proteases and antioxidants were identified in the fat body from the third tergite in comparison with the sternite and the fifth tergite. These results are important for oxidative stress ecology and give a better understanding of the functioning of the fat body and the division of labor in social insects.
Collapse
|
4
|
Zhang X, Fei D, Sun L, Li M, Ma Y, Wang C, Huang S, Ma M. Identification of the Novel Host Protein Interacting With the Structural Protein VP1 of Chinese Sacbrood Virus by Yeast Two-Hybrid Screening. Front Microbiol 2019; 10:2192. [PMID: 31611854 PMCID: PMC6775477 DOI: 10.3389/fmicb.2019.02192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is the major cause and lead to the collapse of Apis cerana colonies. VP1, the structural protein of CSBV, shows the highest variation in the amino acid sequences among proteins from different CSBV strains as well as exhibits excellent immunogenicity. However, its function with host protein still remains unclear. To clarify its function with host protein, we screened out host cellular proteins that interact with VP1 using the membrane protein yeast two-hybrid system. In addition, we verified interactions between heat shock protein 70 cognate 5 (Hsp70-c5) and VP1 using glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. VP1 and Hsp70-c5 were colocalized in the cytoplasm and nucleus. Using western blot and real-time polymerase chain reaction (PCR), Hsp70-c5 expression in CSBV-infected larvae was upregulated compared with that in healthy larvae. We observed that when we silenced Hsp70-c5, VP1 expression was significantly downregulated. These results demonstrate that Hsp70-c5 is involved in at least one stage(s) of the viral life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxiao Ma
- Institute of Animal Husbandry Veterinary, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Fujita T, Kozuka-Hata H, Hori Y, Takeuchi J, Kubo T, Oyama M. Shotgun proteomics deciphered age/division of labor-related functional specification of three honeybee (Apis mellifera L.) exocrine glands. PLoS One 2018; 13:e0191344. [PMID: 29447197 PMCID: PMC5813902 DOI: 10.1371/journal.pone.0191344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
The honeybee (Apis mellifera L.) uses various chemical signals produced by the worker exocrine glands to maintain the functioning of its colony. The roles of worker postcerebral glands (PcGs), thoracic glands (TGs), and mandibular glands (MGs) and the functional changes they undergo according to the division of labor from nursing to foraging are not as well studied. To comprehensively characterize the molecular roles of these glands in workers and their changes according to the division of labor of workers, we analyzed the proteomes of PcGs, TGs, and MGs from nurse bees and foragers using shotgun proteomics technology. We identified approximately 2000 proteins from each of the nurse bee or forager glands and highlighted the features of these glands at the molecular level by semiquantitative enrichment analyses of frequently detected, gland-selective, and labor-selective proteins. First, we found the high potential to produce lipids in PcGs and MGs, suggesting their relation to pheromone production. Second, we also found the proton pumps abundant in TGs and propose some transporters possibly related to the saliva production. Finally, our data unveiled candidate enzymes involved in labor-dependent acid production in MGs.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TF); (MO)
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yutaro Hori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jun Takeuchi
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail: (TF); (MO)
| |
Collapse
|
6
|
Bezabih G, Cheng H, Han B, Feng M, Xue Y, Hu H, Li J. Phosphoproteome Analysis Reveals Phosphorylation Underpinnings in the Brains of Nurse and Forager Honeybees (Apis mellifera). Sci Rep 2017; 7:1973. [PMID: 28512345 PMCID: PMC5434016 DOI: 10.1038/s41598-017-02192-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 11/09/2022] Open
Abstract
The honeybee brain is a central organ in regulating wide ranges of honeybee biology, including life transition from nurse to forager bees. Knowledge is still lacking on how protein phosphorylation governs the neural activity to drive the age-specific labor division. The cerebral phosphoproteome of nurse and forager honeybees was characterized using Ti4+-IMAC phosphopeptide enrichment mass-spectrometry-based proteomics and protein kinases (PKs) were predicted. There were 3,077 phosphosites residing on 3,234 phosphopeptides from 1004 phosphoproteins in the nurse bees. For foragers the numbers were 3,056, 3,110, and 958, respectively. Notably, among the total 231 PKs in honeybee proteome, 179 novel PKs were predicted in the honeybee brain, of which 88 were experimentally identified. Proteins involved in wide scenarios of pathways were phosphorylated depending on age: glycolysis/gluconeogenesis, AGE/RAGE and phosphorylation in nurse bees and metal ion transport, ATP metabolic process and phototransduction in forager bees. These observations suggest that phosphorylation is vital to the tuning of protein activity to regulate cerebral function according to the biological duties as nursing and foraging bees. The data provides valuable information on phosphorylation signaling in the honeybee brain and potentially useful resource to understand the signaling mechanism in honeybee neurobiology and in other social insects as well.
Collapse
Affiliation(s)
- Gebreamlak Bezabih
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Yu Xue
- Department of Bioinformatics & Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, 100093, China.
| |
Collapse
|
7
|
Zhang T, He K, Wang Z. Transcriptome Comparison Analysis of Ostrinia furnacalis in Four Developmental Stages. Sci Rep 2016; 6:35008. [PMID: 27713521 PMCID: PMC5054526 DOI: 10.1038/srep35008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
The Asian corn borer, Ostrinia furnacalis, is one of the most destructive pests of maize and causes huge losses in maize yield each year. In order to characterize the different developmental stages, a high-throughput sequencing platform was employed to perform de novo transcriptome assembly and gene expression analysis for the egg, larva, pupa and adult stages. Approximately 185 million reads were obtained, trimmed, and assembled into 42,638 unigenes with an average length of 801.94 bp and an N50 length of 1,152 bp. These unigene sequences were annotated and classified by performing Gene Ontology (GO), Cluster of Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classifications. Comparison of the gene expression profiles of the two transitional stages revealed dramatic differences. Some differentially expressed genes are associated with digestion, cuticularization olfactory recognition and wing formation as well as growth and development. In total, 12 putative insect development-related genes were identified. Real-time quantitative PCR (RT-qPCR) results and sequencing based on relative expression levels of randomly selected genes confirmed these expression patterns. These data represent the most comprehensive transcriptomic resource currently available for O. furnacalis and will facilitate the study of developmental pathways, cuticularization, wing formation and olfactory recognition.
Collapse
Affiliation(s)
- Tiantao Zhang
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
8
|
Huo X, Wu B, Feng M, Han B, Fang Y, Hao Y, Meng L, Wubie AJ, Fan P, Hu H, Qi Y, Li J. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica). J Proteome Res 2016; 15:3342-57. [DOI: 10.1021/acs.jproteome.6b00526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xinmei Huo
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Wu
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Mao Feng
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yu Fang
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yue Hao
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Lifeng Meng
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Abebe Jenberie Wubie
- Department
of Animal production and Technology, College of Agriculture and Environmental
Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Pei Fan
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Han Hu
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yuping Qi
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jianke Li
- Institute
of Apicultural Research/Key Laboratory of Pollinating Insect Biology,
Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| |
Collapse
|
9
|
Hu H, Bienefeld K, Wegener J, Zautke F, Hao Y, Feng M, Han B, Fang Y, Wubie AJ, Li J. Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Insight into Honeybee Resistance against Varroa Infestation. J Proteome Res 2016; 15:2841-54. [PMID: 27384112 DOI: 10.1021/acs.jproteome.6b00423] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Varroa destructor has been identified as a major culprit responsible for the losses of millions of honeybee colonies. Varroa sensitive hygiene (VSH) is a suite of behaviors from adult bees to suppress mite reproduction by uncapping and/or removing mite infested pupae from a sealed brood. Despite the efforts to elucidate the molecular underpinnings of VSH, they remain largely unknown. We investigated the proteome of mushroom bodies (MBs) and antennae of adult bees with and without VSH from a stock selected for VSH based on their response to artificially Varroa-infected brood cells by near-infrared camera observation. The pupal hemolymph proteome was also compared between the VSH-line and the line that was not selected for VSH. The identified 8609 proteins in the hemolymph, MBs, and antennae represent the most depth coverage of the honeybee proteome (>55%) to date. In the hemolymph, the VSH-line adapts a unique strategy to boost the social immunity and drive pupal organogenesis by enhancing energy metabolism and protein biosynthesis. In MBs, the up-regulated proteins implicated in neuronal sensitivity suggest their roles to promote the execution of VSH by activation of synaptic vesicles and calcium channel activities. In antennae, the highly expressed proteins associated with sensitivity of olfactory senses and signal transmissions signify their roles by inputting a strong signal to the MBs for initiating VSH. These observations illustrate that the enhanced social immunities and olfactory and neuronal sensitivity play key roles in the combat against Varroa infestation. The identified candidate markers may be useful for accelerating marker-associated selection for VSH to aid in resistance to a parasite responsible for decline in honeybee health.
Collapse
Affiliation(s)
- Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Kaspar Bienefeld
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Jakob Wegener
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Fred Zautke
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Yue Hao
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Abebe Jenberie Wubie
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| |
Collapse
|
10
|
Fang Y, Feng M, Han B, Qi Y, Hu H, Fan P, Huo X, Meng L, Li J. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica). J Proteome Res 2015; 14:4059-71. [PMID: 26260241 DOI: 10.1021/acs.jproteome.5b00625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.
Collapse
Affiliation(s)
- Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Yuping Qi
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Pei Fan
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Xinmei Huo
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing, 100093, China
| |
Collapse
|
11
|
Harpel D, Cullen DA, Ott SR, Jiggins CD, Walters JR. Pollen feeding proteomics: Salivary proteins of the passion flower butterfly, Heliconius melpomene. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:7-13. [PMID: 25958827 DOI: 10.1016/j.ibmb.2015.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/09/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
While most adult Lepidoptera use flower nectar as their primary food source, butterflies in the genus Heliconius have evolved the novel ability to acquire amino acids from consuming pollen. Heliconius butterflies collect pollen on their proboscis, moisten the pollen with saliva, and use a combination of mechanical disruption and chemical degradation to release free amino acids that are subsequently re-ingested in the saliva. Little is known about the molecular mechanisms of this complex pollen feeding adaptation. Here we report an initial shotgun proteomic analysis of saliva from Heliconius melpomene. Results from liquid-chromatography tandem mass-spectrometry confidently identified 31 salivary proteins, most of which contained predicted signal peptides, consistent with extracellular secretion. Further bioinformatic annotation of these salivary proteins indicated the presence of four distinct functional classes: proteolysis (10 proteins), carbohydrate hydrolysis (5), immunity (6), and "housekeeping" (4). Additionally, six proteins could not be functionally annotated beyond containing a predicted signal sequence. The presence of several salivary proteases is consistent with previous demonstrations that Heliconius saliva has proteolytic capacity. It is likely that these proteins play a key role in generating free amino acids during pollen digestion. The identification of proteins functioning in carbohydrate hydrolysis is consistent with Heliconius butterflies consuming nectar, like other lepidopterans, as well as pollen. Immune-related proteins in saliva are also expected, given that ingestion of pathogens is a likely route to infection. The few "housekeeping" proteins are likely not true salivary proteins and reflect a modest level of contamination that occurred during saliva collection. Among the unannotated proteins were two sets of paralogs, each seemingly the result of a relatively recent tandem duplication. These results offer a first glimpse into the molecular foundation of Heliconius pollen feeding and provide a substantial advance towards comprehensively understanding this striking evolutionary novelty.
Collapse
Affiliation(s)
- Desiree Harpel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66046, USA
| | - Darron A Cullen
- Zoological Institute, KU Leuven, Naamsestraat 59, Box 2465, BE-3000 Leuven, Belgium
| | - Swidbert R Ott
- Department of Biology, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - James R Walters
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66046, USA.
| |
Collapse
|
12
|
Li JY, Ye LP, Che JQ, Song J, You ZY, Yun KC, Wang SH, Zhong BX. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production. J Proteomics 2015; 126:109-20. [DOI: 10.1016/j.jprot.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 01/20/2023]
|
13
|
Fei D, Zhang H, Diao Q, Jiang L, Wang Q, Zhong Y, Fan Z, Ma M. Codon Optimization, Expression in Escherichia coli, and Immunogenicity of Recombinant Chinese Sacbrood Virus (CSBV) Structural Proteins VP1, VP2, and VP3. PLoS One 2015; 10:e0128486. [PMID: 26067659 PMCID: PMC4466328 DOI: 10.1371/journal.pone.0128486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a small RNA virus family belonging to the genus Iflavirus that causes larval death, and even the collapse of entire bee colonies. The virus particle is spherical, non-enveloped, and its viral capsid is composed of four proteins, although the functions of the structural proteins are unclear. In this study, we used codon recoding to express the recombinant proteins VP1, VP2, and VP3 in Escherichia coli. SDS-PAGE analysis and Western blotting revealed that the target genes were expressed at high levels. Mice were then immunized with the purified, recombinant proteins, and antibody levels and lymphocyte proliferation were analyzed by ELISA and the MTT assay, respectively. The results show that the recombinant proteins induced high antibody levels and promoted lymphocyte proliferation. Polyclonal antibodies directed against these proteins will aid future studies of the molecular pathogenesis of CSBV.
Collapse
Affiliation(s)
- Dongliang Fei
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Haochun Zhang
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Qingyun Diao
- Honeybee Research Institute, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Jiang
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Qiang Wang
- Liaoning Water Conservancy Vocational College, Shenyang, China
| | - Yi Zhong
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Zhaobin Fan
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Mingxiao Ma
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
- * E-mail:
| |
Collapse
|
14
|
Han B, Fang Y, Feng M, Lu X, Huo X, Meng L, Wu B, Li J. In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species. J Proteome Res 2014; 13:5928-43. [PMID: 25265229 DOI: 10.1021/pr500843j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteins in royal jelly (RJ) play a pivotal role in the nutrition, immune defense, and cast determination of honeybee larvae and have a wide range of pharmacological and health-promoting functions for humans as well. Although the importance of post-translational modifications (PTMs) in protein function is known, investigation of protein phosphorylation of RJ proteins is still very limited. To this end, two complementary phosphopeptide enrichment materials (Ti(4+)-IMAC and TiO2) and high-sensitivity mass spectrometry were applied to establish a detailed phosphoproteome map and to qualitatively and quantitatively compare the phosphoproteomes of RJ produced by Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc). In total, 16 phosphoproteins carrying 67 phosphorylation sites were identified in RJ derived from western bees, and nine proteins phosphorylated on 71 sites were found in RJ produced by eastern honeybees. Of which, eight phosphorylated proteins were common to both RJ samples, and the same motif ([S-x-E]) was extracted, suggesting that the function of major RJ proteins as nutrients and immune agents is evolutionary preserved in both of these honeybee species. All eight overlapping phosphoproteins showed significantly higher abundance in Acc-RJ than in Aml-RJ, and the phosphorylation of Jelleine-II (an antimicrobial peptide, TPFKLSLHL) at S(6) in Acc-RJ had stronger antimicrobial properties than that at T(1) in Aml-RJ even though the overall antimicrobial activity of Jelleine-II was found to decrease after phosphorylation. The differences in phosphosites, peptide abundance, and antimicrobial activity of the phosphorylated RJ proteins indicate that the two major honeybee species employ distinct phosphorylation strategies that align with their different biological characteristics shaped by evolution. The phosphorylation of RJ proteins are potentially driven by the activity of extracellular serine/threonine protein kinase FAM20C-like protein (FAM20C-like) through the [S-x-E] motif, which is supported by evidence that mRNA and protein expression of FAM20C-like protein kinase are both found in the highest level in the hypopharyngeal gland of nurse bees. Our data represent the first comprehensive RJ phosphorylation atlas, recording patterns of phosphorylated RJ protein abundance and antibacterial activity of some RJ proteins in two major managed honeybee species. These data constitute a firm basis for future research to better understand the biological roles of each RJ protein for honeybee biology and human health care.
Collapse
Affiliation(s)
- Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang S, Zhang CP, Li GQ, Sun YY, Wang K, Hu FL. Identification of catechol as a new marker for detecting propolis adulteration. Molecules 2014; 19:10208-17. [PMID: 25025150 PMCID: PMC6271646 DOI: 10.3390/molecules190710208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/02/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022] Open
Abstract
Adulteration of propolis with poplar extract is a serious issue in the bee products market. The aim of this study was to identify marker compounds in adulterated propolis, and examine the transformation of chemical components from poplar buds to propolis. The chemical profiles of poplar extracts and propolis were compared, and a new marker compound, catechol, was isolated and identified from the extracts of poplar buds. The polyphenol oxidase, catechol oxidase, responsible for catalyzing oxidation of catechol was detected in poplar buds and propolis. The results indicate catechol can be used as a marker to detect propolis adulterated with poplar extract.
Collapse
Affiliation(s)
- Shuai Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Cui-Ping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - George Q Li
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | - Yue-Yi Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Fang Y, Feng M, Han B, Lu X, Ramadan H, Li J. In-depth proteomics characterization of embryogenesis of the honey bee worker (Apis mellifera ligustica). Mol Cell Proteomics 2014; 13:2306-20. [PMID: 24895377 DOI: 10.1074/mcp.m114.037846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24-48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48-72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during embryogenesis. The identified biological pathways and key node proteins allow for further functional analysis and genetic manipulation for both the honey bee embryos and other eusocial insects.
Collapse
Affiliation(s)
- Yu Fang
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mao Feng
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Han
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoshan Lu
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haitham Ramadan
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianke Li
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|