1
|
Zhang Q, Zhan M, Peng X, Jin X, Yan J, Zhang P, Zhuang J, Han L, Huang X. Absolute quantitation of human serum cystatin C: candidate reference method by 15N-labeled recombinant protein isotope dilution UPLC-MS/MS. Clin Chem Lab Med 2024:cclm-2024-0300. [PMID: 39323320 DOI: 10.1515/cclm-2024-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES Serum cystatin C (CysC) is a reliable and ideal endogenous marker for accurately assessing early changes in glomerular filtration rate (GFR), surpassing the limitations of creatinine-based estimated GFR. To improve the precision of GFR calculation, the development of strategies for accurately measuring serum CysC is crucial. METHODS In this study, the full-length CysC pure product and fully recombinant 15N-labeled CysC internal standard were subjected to protein cleavage. Subsequently, an LC-MS/MS method was developed for the absolute quantification of serum CysC. The traceability of the method was assigned calibrator using the amino acid reference measurement procedure (RMP). It involved calibrating the instrument using an amino acid reference material with known amino acid concentrations for calibration and comparison purposes. RESULTS The total imprecision of the method was determined to be ≤8.2 %, and a lower functional limit of quantification (LLoQ) was achieved. The recoveries ranged from 97.36 to 103.26 %. The relative bias between this candidate RMP for measurement of ERM-DA471-IFCC and the target value was 1.74 %. The linearity response was observed within the concentration range of 0.21-10.13 mg/L, with a high R2 value of 0.999. The results obtained using our method was consistent with those obtained using other certified RMPs. CONCLUSIONS With the establishment of this highly selective and accurate serum CysC measurement method, it is now possible to assess the correlation between immunoassay results of serum CysC and the intended target when discrepancies are suspected in the clinical setting.
Collapse
Affiliation(s)
- Qiaoxuan Zhang
- Department of Laboratory Medicine, 74715 The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, P.R. China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Min Zhan
- Department of Laboratory Medicine, 74715 The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, P.R. China
| | - Xiongqiang Peng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Xing Jin
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, P.R. China
| | - Jun Yan
- Department of Laboratory Medicine, 74715 The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, P.R. China
| | - Pengwei Zhang
- Department of Laboratory Medicine, 74715 The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, P.R. China
| | - Junhua Zhuang
- Department of Laboratory Medicine, 74715 The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, P.R. China
| | - Liqiao Han
- Department of Laboratory Medicine, 74715 The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, P.R. China
| | - Xianzhang Huang
- Department of Laboratory Medicine, 74715 The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, P.R. China
| |
Collapse
|
2
|
Son A, Kim W, Park J, Park Y, Lee W, Lee S, Kim H. Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine. Int J Mol Sci 2024; 25:9880. [PMID: 39337367 PMCID: PMC11432749 DOI: 10.3390/ijms25189880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Mass spectrometry (MS) has revolutionized clinical chemistry, offering unparalleled capabilities for biomolecule analysis. This review explores the growing significance of mass spectrometry (MS), particularly when coupled with liquid chromatography (LC), in identifying disease biomarkers and quantifying biomolecules for diagnostic and prognostic purposes. The unique advantages of MS in accurately identifying and quantifying diverse molecules have positioned it as a cornerstone in personalized-medicine advancement. MS-based technologies have transformed precision medicine, enabling a comprehensive understanding of disease mechanisms and patient-specific treatment responses. LC-MS has shown exceptional utility in analyzing complex biological matrices, while high-resolution MS has expanded analytical capabilities, allowing the detection of low-abundance molecules and the elucidation of complex biological pathways. The integration of MS with other techniques, such as ion mobility spectrometry, has opened new avenues for biomarker discovery and validation. As we progress toward precision medicine, MS-based technologies will be crucial in addressing the challenges of individualized patient care, driving innovations in disease diagnosis, prognosis, and treatment strategies.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yongho Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Liu Z, Zhao X, Liu Y, Shi L, Wu L, Yuan H, Jin Y. Development of an insulin-like growth factor-1 certified reference material by SI-traceable isotope-dilution mass spectrometry. Talanta 2024; 273:125812. [PMID: 38452589 DOI: 10.1016/j.talanta.2024.125812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/09/2024]
Abstract
In this study, an insulin-like growth factor-1 (IGF-1) certified reference material (CRM) was developed by the National Institute of Metrology (NIM), and two different principles for evaluating the IGF-1 CRM were established. After optimisation of the acid hydrolysis conditions (110 °C, 36 h), quantitative determination of peptide purity, and chromatographic separation and mass spectrometric detection, amino acid analysis-based high-performance liquid chromatography combined with isotope-dilution tandem mass spectrometry (AAA-HPLC-IDMS/MS) and peptide analysis-based HPLC-IDMS/MS (Peptide-HPLC-IDMS/MS) were used for certified value assignment; the results obtained were 136.28 and 135.01 μg/g, respectively, which were in good agreement. These results were subjected to the normal distribution test, outlier test, and method consistency test. The homogeneity and stability of the reference materials were also examined, and the uncertainty introduced in the experimental process was calculated. The final certified value was (136 ± 15) μg g-1 (k = 2). The CRM was found to be stable for at least six months when stored at -70 °C and for 7 d when stored at higher temperatures (-20 °C, 4 °C, 25 °C, or 40 °C). The CRM is expected to be used as a primary calibrator for quality control in biopharmaceutical production and clinical diagnostics.
Collapse
Affiliation(s)
- Zihan Liu
- National Institute of Metrology, Beijing, China; Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xu Zhao
- National Institute of Metrology, Beijing, China
| | - Yahui Liu
- National Institute of Metrology, Beijing, China
| | - Lianhua Shi
- National Institute of Metrology, Beijing, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, China
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Youxun Jin
- National Institute of Metrology, Beijing, China.
| |
Collapse
|
4
|
Virág D, Schlosser G, Borbély A, Gellén G, Papp D, Kaleta Z, Dalmadi-Kiss B, Antal I, Ludányi K. A Mass Spectrometry Strategy for Protein Quantification Based on the Differential Alkylation of Cysteines Using Iodoacetamide and Acrylamide. Int J Mol Sci 2024; 25:4656. [PMID: 38731875 PMCID: PMC11083099 DOI: 10.3390/ijms25094656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.
Collapse
Affiliation(s)
- Dávid Virág
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7., H-1092 Budapest, Hungary; (D.V.); (B.D.-K.); (I.A.)
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (G.S.); (A.B.); (G.G.); (D.P.)
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (G.S.); (A.B.); (G.G.); (D.P.)
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (G.S.); (A.B.); (G.G.); (D.P.)
| | - Dávid Papp
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (G.S.); (A.B.); (G.G.); (D.P.)
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Zoltán Kaleta
- Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7., H-1092 Budapest, Hungary;
| | - Borbála Dalmadi-Kiss
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7., H-1092 Budapest, Hungary; (D.V.); (B.D.-K.); (I.A.)
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7., H-1092 Budapest, Hungary; (D.V.); (B.D.-K.); (I.A.)
| | - Krisztina Ludányi
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7., H-1092 Budapest, Hungary; (D.V.); (B.D.-K.); (I.A.)
| |
Collapse
|
5
|
Guo X, Zhou J, Yu H, Cao H, Li X, Hu Q, Yu Y. Serum lipidomic study of long-chain fatty acids in psoriasis patients prior to and after anti-IL-17A monoclonal antibody treatment by quantitative GC‒MS analysis with in situ extraction. Lipids Health Dis 2024; 23:6. [PMID: 38185620 PMCID: PMC10773056 DOI: 10.1186/s12944-023-01999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Long-chain fatty acids (LCFAs) are involved in regulating multiple physiological processes as signalling molecules. Gas chromatography-mass spectrometry (GC-MS) is widely used to quantify LCFAs. However, current quantitative methods for LCFAs using GC-MS have demonstrated complicated issues. Psoriasis is a chronic inflammatory skin disease, and its pathogenesis may be related to the overproduction of interleukin-17A (IL-17A). Clinical efficacy of anti-IL-17A monoclonal antibody (mAb) treatment in psoriasis patients has been demonstrated. Recent studies suggest that LCFAs play varying roles in the pathogenesis of psoriasis. However, more comprehensive research is needed to illuminate the mechanism of LCFAs in psoriasis. METHODS The established in situ derivatization method for analysing LCFAs with a GC-MS platform was utilized to conduct serum lipidomics analysis of healthy volunteers and psoriasis patients receiving pretherapy and posttreatment with of anti-IL-17A mAb. Imiquimod (IMQ)-treated wild type (WT) and T-cell receptor delta chain knock-out (Tcrd-/-) mice were used to investigate the correlation between IL-17A and abnormal changes in LCFAs in psoriasis patients. RESULTS A rapid and sensitive in situ extraction derivatization method for quantifying LCFAs using GC-MS was established. Serum lipidomic results showed that psoriasis patients had higher levels of saturated fatty acids (SFAs) and ω-6 polyunsaturated fatty acids (PUFAs) but lower levels of monounsaturated fatty acids (MUFAs) and ω-3 PUFAs than healthy individuals, indicating impaired serum LCFA metabolism. Anti-IL-17A mAb treatment affected most of these LCFA changes. Analysis of LCFAs in IMQ-treated mice showed that LCFAs increased in the serum of WT mice, while there were no significant changes in the Tcrd-/- mice. SFAs increased in IMQ-treated WT mice, while MUFAs showed the opposite trend, and PUFAs did not change significantly. CONCLUSIONS This study presented a dependable method for quantifying LCFAs that enhanced sensitivity and reduced analysis time. The lipidomic analysis results showed that anti-IL-17A mAb not only ameliorated skin lesions in psoriasis patients but also affected abnormal LCFAs metabolism. Furthermore, the study indicated a potential correlation between IL-17A and abnormal LCFA metabolism in psoriasis patients, which was supported by the alterations in serum LCFAs observed in IMQ-treated WT and Tcrd-/- mice.
Collapse
Affiliation(s)
- XiaoYu Guo
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jianglu Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Hong Yu
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Han Cao
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, PR China
| | - Xia Li
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, PR China
| | - Qing Hu
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China.
| | - YunQiu Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
6
|
Wang X, Shi J, Zhu HJ. Targeted Absolute Protein Quantification Using SILAC Internal Standard and Full-Length Protein Calibrators (TAQSI). Methods Mol Biol 2023; 2603:269-283. [PMID: 36370287 DOI: 10.1007/978-1-0716-2863-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mass spectrometry (MS)-based proteomics has been increasingly used for targeted absolute protein quantifications in both basic and clinical research. There is a great need to overcome some pitfalls of current MS-based targeted absolute protein quantification methods, such as high inter-assay variability and high cost associated with the use of synthesized isotopic peptides/proteins. Here we describe a targeted absolute protein quantification method utilizing SILAC internal standards and unlabeled full-length protein calibrators (TAQSI). The method has proven accurate, precise, reproducible, and cost-effective. Notably, the method is resistant to the variabilities caused by protein extraction and digestion. Moreover, it avoids measurement errors due to nonsynonymous mutations. This versatile method can be used for determining the absolute expressions of numerous proteins in various biological samples. As a proof-of-concept, this method was successfully applied to absolutely quantitate the protein expressions of carboxylesterase 1 (CES1) in human liver tissues.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jian Shi
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Zang Y, Zhou X, Pan M, Lu Y, Liu H, Xiong J, Feng L. Certification of visinin-like protein-1 (VILIP-1) certified reference material by amino acid-based and sulfur-based liquid chromatography isotope dilution mass spectrometry. Anal Bioanal Chem 2023; 415:211-220. [PMID: 36342508 DOI: 10.1007/s00216-022-04401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
As an emerging neurodegenerative disease, Alzheimer's disease (AD) has become a leading cause of dementia in older adults. Visinin-like protein-1 (VILIP-1) is an increasingly used biomarker for AD besides the widely accepted Aβ1-40, Aβ1-42, and tau. However, significant variations exist in the commercial immuno-based assays for VILIP-1 quantification, underlining the necessity to establish a traceability chain. Certified reference materials (CRMs) located at the top of the traceability chain are traceability sources for relevant matrix standard materials. In this work, VILIP-1 solution CRM with a certified value and uncertainty of 39.82±1.52 μg·g-1 was developed and certified using amino acid-based isotope dilution mass spectrometry (AA-ID-MS) and sulfur-based isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). Certified values from both strategies showed great consistency, with traceability to SI units. Moreover, the candidate VILIP-1 CRM shows excellent homogeneity and can be stable for at least 7 days at -20°C and 12 months at -70°C. The VILIP-1 CRM developed can be used in value assignment to secondary calibrators and clinical matrix CRMs, showing prospects in early diagnosis and disease monitoring for AD.
Collapse
Affiliation(s)
- Yang Zang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.,College of Material Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xirui Zhou
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
| | - Mengyun Pan
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Yanli Lu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.,College of Material Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hangrui Liu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jinping Xiong
- College of Material Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liuxing Feng
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
8
|
Leprêtre M, Geffard O, Espeyte A, Faugere J, Ayciriex S, Salvador A, Delorme N, Chaumot A, Degli-Esposti D. Multiple reaction monitoring mass spectrometry for the discovery of environmentally modulated proteins in an aquatic invertebrate sentinel species, Gammarus fossarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120393. [PMID: 36223854 DOI: 10.1016/j.envpol.2022.120393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Multiple reaction monitoring (MRM) mass spectrometry is emerging as a relevant tool for measuring customized molecular markers in freshwater sentinel species. While this technique is typically used for the validation of protein molecular markers preselected from shotgun experiments, recent gains of MRM multiplexing capacity offer new possibilities to conduct large-scale screening of animal proteomes. By combining the strength of active biomonitoring strategies and MRM technologies, this study aims to propose a new strategy for the discovery of candidate proteins that respond to environmental variability. For this purpose, 249 peptides derived from 147 proteins were monitored by MRM in 273 male gammarids caged in 56 environmental sites, representative of the diversity of French water bodies. A methodology is here proposed to identify a set of customized housekeeping peptides (HKPs) used to correct analytical batch effects and allow proper comparison of peptide levels in gammarids. A comparative analysis performed on HKPs-normalized data resulted in the identification of peptides highly modulated in the environment and derived from proteins likely involved in the environmental stress response. Overall, this study proposes a breakthrough approach to screen and identify potential proteins responding to relevant environmental conditions in sentinel species.
Collapse
Affiliation(s)
- Maxime Leprêtre
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Anabelle Espeyte
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Julien Faugere
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Sophie Ayciriex
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | | |
Collapse
|
9
|
Rzagalinski I, Bogdanova A, Raghuraman BK, Geertsma ER, Hersemann L, Ziemssen T, Shevchenko A. FastCAT Accelerates Absolute Quantification of Proteins Using Multiple Short Nonpurified Chimeric Standards. J Proteome Res 2022; 21:1408-1417. [PMID: 35561006 PMCID: PMC9171895 DOI: 10.1021/acs.jproteome.2c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Absolute (molar)
quantification of clinically relevant proteins
determines their reference values in liquid and solid biopsies. The
FastCAT (for Fast-track QconCAT) method employs multiple short (<50
kDa), stable-isotope labeled chimeric proteins (CPs) composed of concatenated
quantotypic (Q)-peptides representing the quantified proteins. Each
CP also comprises scrambled sequences of reference (R)-peptides that
relate its abundance to a single protein standard (bovine serum albumin,
BSA). FastCAT not only alleviates the need to purify CP or use sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) but
also improves the accuracy, precision, and dynamic range of the absolute
quantification by grouping Q-peptides according to the expected abundance
of the target proteins. We benchmarked FastCAT against the reference
method of MS Western and tested it in the direct molar quantification
of neurological markers in human cerebrospinal fluid at the low ng/mL
level.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
10
|
Li H, Li T, Wang Y, Zhang S, Sheng H, Fu L. Liquid chromatography coupled to tandem mass spectrometry for comprehensive quantification of crustacean tropomyosin and arginine kinase in food matrix. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Salek M, Förster JD, Lehmann WD, Riemer AB. Light contamination in stable isotope-labelled internal peptide standards is frequent and a potential source of false discovery and quantitation error in proteomics. Anal Bioanal Chem 2022; 414:2545-2552. [PMID: 35119480 PMCID: PMC8888373 DOI: 10.1007/s00216-022-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022]
Abstract
In mass spectrometry-based proteomics, heavy internal standards are used to validate target peptide detections and to calibrate peptide quantitation. Here, we report light contamination present in heavy labelled synthetic peptides of high isotopic enrichment. Application of such peptides as assay-internal standards potentially compromises the detection and quantitation especially of low abundant cellular peptides. Therefore, it is important to adopt guidelines to prevent false-positive identifications of endogenous light peptides as well as errors in their quantitation from biological samples.
Collapse
Affiliation(s)
- Mogjiborahman Salek
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| | - Jonas D Förster
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Wolf-Dieter Lehmann
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
Development of a human insulin certified reference material with SI-traceable purity. Anal Bioanal Chem 2022; 414:3443-3457. [PMID: 35201368 DOI: 10.1007/s00216-022-03965-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
A human insulin (hINS) certified reference material (CRM) was developed by the National Institute of Metrology (NIM). Three milligrams of purified solid hINS was packed into a brown sealed tube. The candidate material was identified by de novo sequence using mass spectrometry and Edman degradation methods. The content of insulin-related impurities, aggregation, moisture, volatile organic compounds (VOCs), anions, and ignition residues was also determined. Both mass balance (MB) and amino acid analysis-based isotope dilution mass spectrometry (AAA-IDMS) were used for the certified value assessment, which was determined to be (0.857 ± 0.024) g/g. The certified value was validated by liquid chromatography-circular dichroism spectroscopy (LC-CD) and quantitative nuclear magnetic resonance (qNMR) methods, which were in good agreement. No inhomogeneity was observed during a homogeneity examination. A stability examination showed that the CRM was stable for at least 12 months when stored at - 70 °C, and for 7 days when stored at 4, 25, or 40 °C. The CRM is expected to be used as a primary calibrator for matrix insulin CRM development and for quality control in biopharmaceutical production and clinical diagnostics.
Collapse
|
13
|
Francotte A, Esson R, Abachin E, Vanhamme M, Dobly A, Carpick B, Uhlrich S, Dierick JF, Vanhee C. Development and validation of a targeted LC-MS/MS quantitation method to monitor cell culture expression of tetanus neurotoxin during vaccine production. Talanta 2022; 236:122883. [PMID: 34635263 DOI: 10.1016/j.talanta.2021.122883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
The tetanus neurotoxin (TeNT) is one of the most toxic proteins known to man, which prior to the use of the vaccine against the TeNT producing bacteria Clostridium tetani, resulted in a 20% mortality rate upon infection. The clinical detrimental effects of tetanus have decreased immensely since the introduction of global vaccination programs, which depend on sustainable vaccine production. One of the major critical points in the manufacturing of these vaccines is the stable and reproducible production of high levels of toxin by the bacterial seed strains. In order to minimize time loss, the amount of TeNT is often monitored during and at the end of the bacterial culturing. The different methods that are currently available to assess the amount of TeNT in the bacterial medium suffer from variability, lack of sensitivity, and/or require specific antibodies. In accordance with the consistency approach and the three Rs (3Rs), both aiming to reduce the use of animals for testing, in-process monitoring of TeNT production could benefit from animal and antibody-free analytical tools. In this paper, we describe the development and validation of a new and reliable antibody free targeted LC-MS/MS method that is able to identify and quantify the amount of TeNT present in the bacterial medium during the different production time points up to the harvesting of the TeNT just prior to further upstream purification and detoxification. The quantitation method, validated according to ICH guidelines and by the application of the total error approach, was utilized to assess the amount of TeNT present in the cell culture medium of two TeNT production batches during different steps in the vaccine production process prior to the generation of the toxoid. The amount of TeNT generated under different physical stress conditions applied during bacterial culture was also monitored.
Collapse
Affiliation(s)
- Antoine Francotte
- Department of Expertise and Service Provision, Quality of Vaccines and Blood Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium; Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Raphael Esson
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | - Eric Abachin
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | - Melissa Vanhamme
- Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Alexandre Dobly
- Department of Expertise and Service Provision, Quality of Vaccines and Blood Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Bruce Carpick
- Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario, Canada
| | - Sylvie Uhlrich
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | | | - Celine Vanhee
- Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium.
| |
Collapse
|
14
|
Hilgers R, Bijlsma J, Malacaria L, Vincken JP, Furia E, de Bruijn WJC. Transition metal cations catalyze 16O/ 18O exchange of catechol motifs with H 218O. Org Biomol Chem 2022; 20:9093-9097. [DOI: 10.1039/d2ob01884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the presence of Fe(iii) and several other cations, catechol motifs undergo rapid 16O/18O exchange with H218O under mild conditions. This opens up synthetic possibilities and may have implications for studies using H218O as a mechanistic probe.
Collapse
Affiliation(s)
- Roelant Hilgers
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Judith Bijlsma
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Luana Malacaria
- Dipartimento di Chimica e Tecnologie Chimiche, Via P. Bucci, Cubo 12/D, Università della Calabria, I-87030 Arcavacata di Rende (CS), Italy
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Emilia Furia
- Dipartimento di Chimica e Tecnologie Chimiche, Via P. Bucci, Cubo 12/D, Università della Calabria, I-87030 Arcavacata di Rende (CS), Italy
| | - Wouter J. C. de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
15
|
Calvete JJ, Pla D, Els J, Carranza S, Damm M, Hempel BF, John EBO, Petras D, Heiss P, Nalbantsoy A, Göçmen B, Süssmuth RD, Calderón-Celis F, Nosti AJ, Encinar JR. Combined Molecular and Elemental Mass Spectrometry Approaches for Absolute Quantification of Proteomes: Application to the Venomics Characterization of the Two Species of Desert Black Cobras, Walterinnesia aegyptia and Walterinnesia morgani. J Proteome Res 2021; 20:5064-5078. [PMID: 34606723 PMCID: PMC8576837 DOI: 10.1021/acs.jproteome.1c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
We report a novel hybrid, molecular
and elemental mass spectrometry
(MS) setup for the absolute quantification of snake venom proteomes
shown here for two desert black cobra species within the genus Walterinnesia, Walterinnesia aegyptia and Walterinnesia morgani. The experimental
design includes the decomplexation of the venom samples by reverse-phase
chromatography independently coupled to four mass spectrometry systems:
the combined bottom-up and top-down molecular MS for protein identification
and a parallel reverse-phase microbore high-performance liquid chromatograph
(RP-μHPLC) on-line to inductively coupled plasma (ICP-MS/MS)
elemental mass spectrometry and electrospray ionization quadrupole
time-of-flight mass spectrometry (ESI-QToF MS). This allows to continuously
record the absolute sulfur concentration throughout the chromatogram
and assign it to the parent venom proteins separated in the RP-μHPLC-ESI-QToF
parallel run via mass profiling. The results provide a locus-resolved
and quantitative insight into the three desert black cobra venom proteome
samples. They also validate the units of measure of our snake venomics
strategy for the relative quantification of snake venom proteomes
as % of total venom peptide bonds as a proxy for the % by weight of
the venom toxins/toxin families. In a more general context, our work
may pave the way for broader applications of hybrid elemental/molecular
MS setups in diverse areas of proteomics.
Collapse
Affiliation(s)
- Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslational, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Davinia Pla
- Laboratorio de Venómica Evolutiva y Traslational, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Johannes Els
- Environment and Protected Areas Authority, 82828 Sharjah, United Arab Emirates
| | - Salvador Carranza
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.,BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Elisa B O John
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Túbingen, 72076 Tübingen, Germany
| | - Paul Heiss
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Bayram Göçmen
- Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Alicia Jiménez Nosti
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
16
|
Escobar EE, Venkat Ramani MK, Zhang Y, Brodbelt JS. Evaluating Spatiotemporal Dynamics of Phosphorylation of RNA Polymerase II Carboxy-Terminal Domain by Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2021; 143:8488-8498. [PMID: 34053220 DOI: 10.1021/jacs.1c03321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The critical role of site-specific phosphorylation in eukaryotic transcription has motivated efforts to decipher the complex phosphorylation patterns exhibited by the carboxyl-terminal domain (CTD) of RNA polymerase II. Phosphorylation remains a challenging post-translational modification to characterize by mass spectrometry owing to the labile phosphate ester linkage and low stoichiometric prevalence, two features that complicate analysis by high-throughput MS/MS methods. Identifying phosphorylation sites represents one significant hurdle in decrypting the CTD phosphorylation, a problem exaggerated by a large number of potential phosphorylation sites. An even greater obstacle is decoding the dynamic phosphorylation pattern along the length of the periodic CTD sequence. Ultraviolet photodissociation (UVPD) is a high-energy ion activation method that provides ample backbone cleavages of peptides while preserving labile post-translational modifications that facilitate their confident localization. Herein, we report a quantitative parallel reaction monitoring (PRM) method developed to monitor spatiotemporal changes in site-specific Ser5 phosphorylation of the CTD by cyclin-dependent kinase 7 (CDK7) using UVPD for sequence identification, phosphosite localization, and differentiation of phosphopeptide isomers. We capitalize on the series of phospho-retaining fragment ions produced by UVPD to create unique transition lists that are pivotal for distinguishing the array of phosphopeptides generated from the CTD.
Collapse
|
17
|
Marcovina SM, Clouet-Foraison N, Koschinsky ML, Lowenthal MS, Orquillas A, Boffa MB, Hoofnagle AN, Vaisar T. Development of an LC-MS/MS Proposed Candidate Reference Method for the Standardization of Analytical Methods to Measure Lipoprotein(a). Clin Chem 2021; 67:490-499. [PMID: 33517366 PMCID: PMC7935757 DOI: 10.1093/clinchem/hvaa324] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Use of lipoprotein(a) concentrations for identification of individuals at high risk of cardiovascular diseases is hampered by the size polymorphism of apolipoprotein(a), which strongly impacts immunochemical methods, resulting in discordant values. The availability of a reference method with accurate values expressed in SI units is essential for implementing a strategy for assay standardization. METHOD A targeted LC-MS/MS method for the quantification of apolipoprotein(a) was developed based on selected proteotypic peptides quantified by isotope dilution. To achieve accurate measurements, a reference material constituted of a human recombinant apolipoprotein(a) was used for calibration. Its concentration was assigned using an amino acid analysis reference method directly traceable to SI units through an unbroken traceability chain. Digestion time-course, repeatability, intermediate precision, parallelism, and comparability to the designated gold standard method for lipoprotein(a) quantification, a monoclonal antibody-based ELISA, were assessed. RESULTS A digestion protocol providing comparable kinetics of digestion was established, robust quantification peptides were selected, and their stability was ascertained. Method intermediate imprecision was below 10% and linearity was validated in the 20-400 nmol/L range. Parallelism of responses and equivalency between the recombinant and endogenous apo(a) were established. Deming regression analysis comparing the results obtained by the LC-MS/MS method and those obtained by the gold standard ELISA yielded y = 0.98*ELISA +3.18 (n = 64). CONCLUSIONS Our method for the absolute quantification of lipoprotein(a) in plasma has the required attributes to be proposed as a candidate reference method with the potential to be used for the standardization of lipoprotein(a) assays.
Collapse
Affiliation(s)
- Santica M Marcovina
- Division of Metabolism, Endocrinology, and Nutrition, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA, USA
| | - Noémie Clouet-Foraison
- Division of Metabolism, Endocrinology, and Nutrition, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA, USA.,Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Marlys L Koschinsky
- Department of Physiology & Pharmacology, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Mark S Lowenthal
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Allen Orquillas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Andrew N Hoofnagle
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Tomáš Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Zhang Q, Cai Z, Lin H, Han L, Yan J, Wang J, Ke P, Zhuang J, Huang X. Expression, purification and identification of isotope-labeled recombinant cystatin C protein in Escheichia coli intended for absolute quantification using isotope dilution mass spectrometry. Protein Expr Purif 2020; 178:105785. [PMID: 33152458 DOI: 10.1016/j.pep.2020.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Isotope-labeled proteins are expected to be used as internal standard proteins in the field of protein quantification by isotope dilution mass spectrometry (ID/MS). To achieve the absolute quantification of Cystatin C (Cys C) based on ID/MS, we aims to obtain 15N isotope-labeled recombinant Cys C (15N-Cys C) protein. Firstly, the Cys C gene was optimized based on the preferred codons of Escherichia coli, and inserted into the pET-28a(+) expression plasmid. Then, the plasmid was transformed into TOP10 and BL21 strains, and 15N-Cys C was expressed in M9 medium using 15N as the only nitrogen source. 15N-Cys C was detected by SDS-PAGE, protein immunoblotting and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The characteristic peptides obtained from 15N-Cys C were analyzed by a Q Exactive Plus MS system. Results showed that 53.06% of the codons were optimized. The codon adaptation index of the Cys C genes increased from 0.31 to 0.95, and the GC content was adjusted from 64.85% to 54.88%. The purity of 15N-Cys C was higher than 95%. MALDI-TOF MS analysis showed that the m/z of 15N-Cys C had changed from 13 449 to 14 850. The characteristic peptides showed that 619.79 m/z (M+2H)2+ was the parent ion of 15N-Cys C and that the secondary ions of 15N-labeled peptides from y+5 to y+9 were 616.27 m/z, 716.33 m/z, 788.39 m/z, 936.43 m/z, and 1052.46 m/z, respectively. In conclusion, we successfully expressed, purified and identified of 15N-Cys C protein in Escheichia coli intended for absolute quantification using ID/MS.
Collapse
Affiliation(s)
- Qiaoxuan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhiliang Cai
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Haibiao Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liqiao Han
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianbing Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peifeng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhua Zhuang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Quantitative mass spectrometry-based analysis of proteins related to cattle and their products - Focus on cows' milk beta-casein proteoforms. Methods 2020; 186:112-118. [PMID: 32956783 DOI: 10.1016/j.ymeth.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
Modern mass spectrometers can accurately measure thousands of compounds in complex mixtures over a given liquid chromatograph method, depending on desired outcome and method duration. This stream of analytical chemistry has wide ranging application across food, pharma, environmental, forensics, clinical and research. With consistent pressure on both the ruminant production and product industries to face new and substantial challenges, liquid chromatography-mass spectrometry (LC-MS) is an ideal tool to identify, detect and quantify markers of breeding, production and adaption to support both research and industry to overcome these challenges. Herein, we provide a description of the theoretical basis and framework for LC-MS as a rapidly developing technique and highlight its application in measuring cattle and cattle product traits through protein quantitation with specific focus on beta-casein proteoforms.
Collapse
|
20
|
Ibrahim S, Froehlich BC, Aguilar-Mahecha A, Aloyz R, Poetz O, Basik M, Batist G, Zahedi RP, Borchers CH. Using Two Peptide Isotopologues as Internal Standards for the Streamlined Quantification of Low-Abundance Proteins by Immuno-MRM and Immuno-MALDI. Anal Chem 2020; 92:12407-12414. [DOI: 10.1021/acs.analchem.0c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sahar Ibrahim
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Bjoern C. Froehlich
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria V8Z 7X8, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Raquel Aloyz
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen 72770, Germany
- SIGNATOPE GmbH, Reutlingen 72770, Germany
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Gerald Batist
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria V8Z 7X8, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
21
|
Hu T, Wu L, Sun X, Su P, Yang Y. Comparative study on quantitation of human myoglobin by both isotope dilution mass spectrometry and surface plasmon resonance based on calibration-free analysis. Anal Bioanal Chem 2020; 412:2777-2784. [PMID: 32076791 DOI: 10.1007/s00216-020-02504-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
The activity of proteins rather than the concentration of proteins in biopharmaceutical and in vitro diagnostics are often the primary focus. Nonetheless, development of a calibration-free concentration analysis (CFCA) approach that accurately quantifies the concentration of proteins based on molecular interactions with specific monoclonal antibodies and without the requirement of external calibrators would be beneficial to diagnostics. Generally, only analytes that interact with the antibody (Ab) are quantified by CFCA. Moreover, protein concentrations measured by CFCA usually vary when different Abs are used, and are lower than those obtained by amino acid analysis because any non-native state population of the target protein is not captured by the Ab. To achieve comparable results between CFCA and traditional amino acid analysis (AAA), an Ab that recognizes the target protein irrespective of its conformation should be used. In this report, three different monoclonal antibodies were used to quantify purified human myoglobin in solution by CFCA. The concentrations obtain by the Abs (i.e., 2.985, 2.912, 3.032 mg mL-1) were comparable with that obtained by AAA. Moreover, isotope dilution mass spectrometry (IDMS) gave a human myoglobin concentration of 2.851 mg mL-1, which is also in agreement with the results from CFCA. The performance of CFCA was evaluated by measuring various parameters, including within-day and between-day precision. The results demonstrated that the active concentration measured by CFCA is comparable with that of IDMS when the appropriate Ab is used. Recommended procedures for performing the new CFCA approach are provided. This study shows that CFCA represents a primary method for accurate protein concentration determination, which should aid the development of certified reference materials. Graphical abstract.
Collapse
Affiliation(s)
- Tingting Hu
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Liqing Wu
- National Institute of Metrology, No. 18 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Xiaonan Sun
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Ping Su
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China.
| | - Yi Yang
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
22
|
Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry. Trends Biochem Sci 2019; 44:943-960. [DOI: 10.1016/j.tibs.2019.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
|
23
|
Review of Issues and Solutions to Data Analysis Reproducibility and Data Quality in Clinical Proteomics. Methods Mol Biol 2019. [PMID: 31552637 DOI: 10.1007/978-1-4939-9744-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
In any analytical discipline, data analysis reproducibility is closely interlinked with data quality. In this book chapter focused on mass spectrometry-based proteomics approaches, we introduce how both data analysis reproducibility and data quality can influence each other and how data quality and data analysis designs can be used to increase robustness and improve reproducibility. We first introduce methods and concepts to design and maintain robust data analysis pipelines such that reproducibility can be increased in parallel. The technical aspects related to data analysis reproducibility are challenging, and current ways to increase the overall robustness are multifaceted. Software containerization and cloud infrastructures play an important part.We will also show how quality control (QC) and quality assessment (QA) approaches can be used to spot analytical issues, reduce the experimental variability, and increase confidence in the analytical results of (clinical) proteomics studies, since experimental variability plays a substantial role in analysis reproducibility. Therefore, we give an overview on existing solutions for QC/QA, including different quality metrics, and methods for longitudinal monitoring. The efficient use of both types of approaches undoubtedly provides a way to improve the experimental reliability, reproducibility, and level of consistency in proteomics analytical measurements.
Collapse
|
24
|
Juelg P, Specht M, Kipf E, Lehnert M, Eckert C, Keller M, Hutzenlaub T, von Stetten F, Zengerle R, Paust N. Automated serial dilutions for high-dynamic-range assays enabled by fill-level-coupled valving in centrifugal microfluidics. LAB ON A CHIP 2019; 19:2205-2219. [PMID: 31139783 DOI: 10.1039/c9lc00092e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We introduce a new concept for centrifugal microfluidics that enables fully automated serial dilution generation without any additional means besides temperature control. The key feature is time-independent, serial valving of mixing chambers by fill-level-coupled temperature change rate (FLC-TCR) actuated valving. The automated dilution is realized under continuous rotation which enables reliable control of wetting liquids without the need for any additional fabrication steps such as hydrophobic coating. All fluidic features are implemented in a monolithic fashion and disks are manufactured by foil thermoforming for scalable manufacturing. The new valving concept is demonstrated to reliably prevent valving if the diluted sample is not added to the mixing chamber (n = 30) and ensure valving if the dilution stage is completed (n = 15). The accuracy and precision of automated serial dilutions are verified by on-disk generation of qPCR standard curve dilutions and compared with manually generated reference dilutions. In a first step, the 5-log-stage standard curves are evaluated in a commercial qPCR thermocycler revealing a linearity of R2 ≥ 99.92% for the proposed LabDisk method vs. R2 ≥ 99.67% in manual reference dilutions. In a second step, the disk automated serial dilutions are combined with on-disk qPCR thermocycling and readout, both inside a LabDisk player. A 4-log-stage linearity of R2 ≥ 99.81% and a sensitivity of one leukemia associated ETV6-RUNX1 mutant DNA copy in a background of 100 000 wild-type DNA copies are achieved.
Collapse
Affiliation(s)
- Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dubrovskii Y, Murashko E, Chuprina O, Beltyukov P, Radilov A, Solovyev N, Babakov V. Mass spectrometry based proteomic approach for the screening of butyrylcholinesterase adduct formation with organophosphates. Talanta 2019; 197:374-382. [DOI: 10.1016/j.talanta.2019.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 11/29/2022]
|
26
|
Calderón-Celis F, Encinar JR. A reflection on the role of ICP-MS in proteomics: Update and future perspective. J Proteomics 2018; 198:11-17. [PMID: 30445180 DOI: 10.1016/j.jprot.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/02/2023]
Abstract
Mass spectrometry is the technique of reference for the identification and quantification of proteins. Whereas ESI and MALDI ionization sources are inherently not quantitative being highly influenced by the chemical nature of the analyte and the matrix, ICP-MS uses a hard ionization source that destroys proteins into its atoms and measures the elemental signal, which is independent of its chemical environment. As a consequence, ICP-MS turns up as an excellent technique for the screening, mapping and quantification of peptides and proteins in a sample through elemental detection (any element but C, H, N, or O) once they have been previously separated by chromatography. In this time, great efforts have been put in developing instrumentation and new methodologies that enable a better, more efficient, and more useful analysis of proteins with ICP-MS. Moreover, quantitative capabilities but lack of molecular information of ICP has led to a synergic relationship both with identifying capabilities of ESI-MS, or the use of protein-specific antibodies carrying an elemental label. JOURNAL SIGNIFICANCE: We are delighted to participate in this special issue and have the chance to congratulate Journal of Proteomics for its 10th Anniversary, and wish for many further successful anniversaries. During this last decade, Journal of Proteomics has been a clear promotor of works integrating ICP-MS for proteomics analysis. In fact, already in 2009, a review was published by invitation of the editor in chief focused on the established and potential role of ICP-MS in different areas of the proteomics analysis at the time: "The emerging role of ICP-MS in proteomics" [1]. Even though ICP-MS is not fully known or acknowledged in the proteomics world yet, its impact was significant as demonstrated by the really high interest in such publication (over 150 citations). Since then, several excellent papers relating to ICP-MS applications in proteomics have been published in this journal. Following the trend, we expect through this personal view of the current standing of ICP-MS in proteomics to enlighten the readers of Journal of Proteomics with a vision of the full present and future potential of ICP-MS in proteomics.
Collapse
Affiliation(s)
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Spain.
| |
Collapse
|
27
|
Huang SY, Lin MH, Chen YH, Lai CC, Lee MS, Hu AYC, Sung WC. Application of stable isotope dimethyl labeling for MRM based absolute antigen quantification of influenza vaccine. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:40-48. [PMID: 30428430 DOI: 10.1016/j.jchromb.2018.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Determining the precursor/product ion pair and optimal collision energy are the critical steps for developing a multiple reaction monitoring (MRM) assay using triple quadruple mass spectrometer for protein quantitation. In this study, a platform consisting of stable isotope dimethyl labeling coupled with triple-quadruple mass spectrometer was used to quantify the protein components of the influenza vaccines. Dimethyl labeling of both the peptide N-termini and the ϵ-amino group of lysine residues was achieved by reductive amination using formaldehyde and sodium cyanoborohydrate. Dimethylated peptides are known to exhibit dominant a1 ions under gas phase fragmentation in a mass spectrometer. These a1 ions can be predicted from the peptide N-terminal amino acids, and their signals do not vary significantly across a wide range of collision energies, which facilitates the determination of MRM transition settings for multiple protein targets. The intrinsic a1 ions provide sensitivity for acquiring MRM peaks that is superior to that of the typical b/y ions used for native peptides, and they also provided good linearity (R2 ≥ 0.99) at the detected concentration range for each peptide. These features allow for the simultaneous quantification of hemagglutinin and neuraminidase in vaccines derived from either embryo eggs or cell cultivation. Moreover, the low abundant ovalbumin residue originated from the manufacturing process can also be determined. The results demonstrate that the stable isotope dimethyl labeling coupled with MRM Mass spectrometry screening of a1 ions (i.e., SIDa-MS) can be used as a high-throughput platform for multiple protein quantification of vaccine products.
Collapse
Affiliation(s)
| | - Min-Han Lin
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Yo-Hsuan Chen
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Chia-Chun Lai
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Min-Shi Lee
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Alan Yung-Chih Hu
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Wang-Chou Sung
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan.
| |
Collapse
|
28
|
Delatour V, Clouet-Foraison N, Gaie-Levrel F, Marcovina SM, Hoofnagle AN, Kuklenyik Z, Caulfield MP, Otvos JD, Krauss RM, Kulkarni KR, Contois JH, Remaley AT, Vesper HW, Cobbaert CM, Gillery P. Comparability of Lipoprotein Particle Number Concentrations Across ES-DMA, NMR, LC-MS/MS, Immunonephelometry, and VAP: In Search of a Candidate Reference Measurement Procedure for apoB and non-HDL-P Standardization. Clin Chem 2018; 64:1485-1495. [PMID: 30087138 DOI: 10.1373/clinchem.2018.288746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite the usefulness of standard lipid parameters for cardiovascular disease risk assessment, undiagnosed residual risk remains high. Advanced lipoprotein testing (ALT) was developed to provide physicians with more predictive diagnostic tools. ALT methods separate and/or measure lipoproteins according to different parameters such as size, density, charge, or content, and equivalence of results across methods has not been demonstrated. METHODS Through a split-sample study, 25 clinical specimens (CSs) were assayed in 10 laboratories before and after freezing using the major ALT methods for non-HDL particles (non-HDL-P) or apolipoprotein B-100 (apoB-100) measurements with the intent to assess their comparability in the current state of the art. RESULTS The overall relative standard deviation (CV) of non-HDL-P and apoB-100 concentrations measured by electrospray differential mobility analysis, nuclear magnetic resonance, immunonephelometry, LC-MS/MS, and vertical autoprofile in the 25 frozen CSs was 14.1%. Within-method comparability was heterogeneous, and CV among 4 different LC-MS/MS methods was 11.4% for apoB-100. No significant effect of freezing and thawing was observed. CONCLUSIONS This study demonstrates that ALT methods do not yet provide equivalent results for the measurement of non-HDL-P and apoB-100. The better agreement between methods harmonized to the WHO/IFCC reference material suggests that standardizing ALT methods by use of a common commutable calibrator will improve cross-platform comparability. This study provides further evidence that LC-MS/MS is the most suitable candidate reference measurement procedure to standardize apoB-100 measurement, as it would provide results with SI traceability. The absence of freezing and thawing effect suggests that frozen serum pools could be used as secondary reference materials.
Collapse
Affiliation(s)
- Vincent Delatour
- Laboratoire National de Métrologie et d'Essais (LNE), Paris, France;
| | | | | | - Santica M Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Zsuzsanna Kuklenyik
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA
| | | | - James D Otvos
- Laboratory Corporation of America® Holdings, Morrisville, NC
| | | | | | | | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Hubert W Vesper
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Atlanta, GA
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Philippe Gillery
- University Hospital of Reims, Laboratory of Pediatric Biology and Research, Reims, France
| |
Collapse
|
29
|
Calvete JJ. Snake venomics – from low-resolution toxin-pattern recognition to toxin-resolved venom proteomes with absolute quantification. Expert Rev Proteomics 2018; 15:555-568. [DOI: 10.1080/14789450.2018.1500904] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| |
Collapse
|
30
|
Andjelković U, Josić D. Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Saint-Auret S, Abdelkafi H, Le Nouen D, Guenin-Macé L, Demangel C, Bisseret P, Blanchard N. Modular total syntheses of mycolactone A/B and its [ 2H]-isotopologue. Org Biomol Chem 2018; 15:7518-7522. [PMID: 28871293 DOI: 10.1039/c7ob01943b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular total synthesis of mycolactone A/B, the exotoxin produced by Mycobacterium ulcerans, has been achieved through the orchestration of several Pd-catalyzed key steps. While this route leads to a mixture of the natural product and its C12 epimer (4 : 1 ratio), this was inconsequential from the biological activity standpoint. Compared to the previously reported routes, this synthetic blueprint allows the late-stage modification of the toxin, as exemplified by the preparation of [22,22,22-2H3]-mycolactone A/B.
Collapse
Affiliation(s)
- Sarah Saint-Auret
- Université de Strasbourg, CNRS, Laboratoire de Chimie Moléculaire UMR 7509, 67000 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Schneck NA, Phinney KW, Lee SB, Lowenthal MS. Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry. Anal Bioanal Chem 2018; 410:2805-2813. [PMID: 29492621 DOI: 10.1007/s00216-018-0960-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/17/2023]
Abstract
Quantification of cardiac troponin I (cTnI), a protein biomarker used for diagnosing myocardial infarction, has been achieved in native patient plasma based on an immunoaffinity enrichment strategy and isotope dilution (ID) liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The key steps in the workflow involved isolating cTnI from plasma using anti-cTnI antibody coupled to magnetic nanoparticles, followed by an enzymatic digestion with trypsin. Three tryptic peptides from cTnI were monitored and used for quantification by ID-LC-MS/MS via multiple reaction monitoring (MRM). Measurements were performed using a matrix-matched calibration system. NIST SRM 2921 Human Cardiac Troponin Complex acted as the calibrant and a full-length isotopically labeled protein analog of cTnI was used as an internal standard. The method was successfully demonstrated on five patient plasma samples, with cTnI concentrations measuring between 4.86 μg/L and 11.3 μg/L (signifying moderate myocardial infarctions). LC-MS/MS measurement precision was validated by three unique peptides from cTnI and two MRM transitions per peptide. Relative standard deviation (CV) from the five plasma samples was determined to be ≤14.3%. This study has demonstrated that quantification of cTnI in native plasma from myocardial infarction patients can be achieved based on an ID-LC-MS/MS method. The development of an ID-LC-MS/MS method for cTnI in plasma is a first step for future certification of matrix-based reference materials, which may be used to help harmonize discordant cTnI clinical assays. Graphical abstract A schematic of the workflow for measuring cardiac troponin I (cTnI), a low-abundant protein biomarker used for diagnosing myocardial infarction, in human plasma by isotope-dilution LC-MS/MS analysis.
Collapse
Affiliation(s)
- Nicole A Schneck
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8314, Gaithersburg, MD, 20899, USA
| | - Karen W Phinney
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8314, Gaithersburg, MD, 20899, USA
| | - Sang Bok Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| | - Mark S Lowenthal
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8314, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
33
|
Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 2018; 189:75-90. [PMID: 29452276 DOI: 10.1016/j.jprot.2018.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Setner B, Wierzbicka M, Jerzykiewicz L, Lisowski M, Szewczuk Z. The unexpected racemization and hydrogen–deuterium exchange of the hydrogen at the α-carbon of proline analogs containing the 5-azoniaspiro[4.4]nonyl-group. Org Biomol Chem 2018; 16:825-831. [PMID: 29327743 DOI: 10.1039/c7ob02926h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present an unexpected racemization and the hydrogen–deuterium exchange (HDX) at the α-C atom of the proline derivative under basic aqueous conditions (1% water solution of triethylamine).
Collapse
Affiliation(s)
- B. Setner
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - M. Wierzbicka
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - L. Jerzykiewicz
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - M. Lisowski
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Z. Szewczuk
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
35
|
|
36
|
Calderón-Celis F, Sanz-Medel A, Encinar JR. Universal absolute quantification of biomolecules using element mass spectrometry and generic standards. Chem Commun (Camb) 2018; 54:904-907. [DOI: 10.1039/c7cc09059e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Standardless highly sensitive ICP-MS approach for the absolute and simultaneous quantification of important target biomolecules in life sciences.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Julián Clavería 8
- 33006 Oviedo
- Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Julián Clavería 8
- 33006 Oviedo
- Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Julián Clavería 8
- 33006 Oviedo
- Spain
| |
Collapse
|
37
|
Oeckl P, Steinacker P, Otto M. Comparison of Internal Standard Approaches for SRM Analysis of Alpha-Synuclein in Cerebrospinal Fluid. J Proteome Res 2017; 17:516-523. [PMID: 29183121 DOI: 10.1021/acs.jproteome.7b00660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Absolute protein quantification by selected reaction monitoring (SRM, also MRM) is an alternative to immunoassays, and the gold standard here is the addition of stable-isotope labeled (SIL) proteins (PSAQ). Cerebrospinal fluid (CSF) is the preferred source of biomarkers for neurological diseases, and recent improvements in mass spectrometry enable the quantification of disease-relevant proteins in CSF. We used alpha-synuclein SRM to investigate alternatives to the PSAQ approach in human CSF regarding precision and accuracy, including SIL peptides, winged SIL (WiSIL) peptides, and quantitative protein epitope signature tags (QPrESTs). All approaches yielded precise results in CSF with CV values <15% in several runs for all four measured peptides. PSAQ and QPrEST also showed good accuracy (deviation ≤15%), whereas SIL and WiSIL peptides yielded deviations up to 54% that greatly depended on the measured peptide. Total protein concentration in CSF did not affect precision and accuracy. Thus, our study indicates that all four approaches are suitable for relative quantification of alpha-synuclein in CSF. QPrESTs are a valuable alternative to PSAQ in terms of precision and accuracy, although SIL and WiSIL peptides can yield accurate results as well when peptides are selected consciously.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| |
Collapse
|
38
|
|
39
|
Peptidomics as a tool for characterizing bioactive milk peptides. Food Chem 2017; 230:91-98. [DOI: 10.1016/j.foodchem.2017.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 02/02/2016] [Accepted: 03/03/2017] [Indexed: 11/18/2022]
|
40
|
Clouet-Foraison N, Gillery P, Delatour V. Letter to the Editor regarding "Achieving comparability with IFCC reference method for the measurement of hemoglobin A 1c by use of an improved isotope-dilution mass spectrometry method". Anal Bioanal Chem 2017; 409:5789-5790. [PMID: 28776074 DOI: 10.1007/s00216-017-0513-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Noémie Clouet-Foraison
- Chemistry and Biology Division, Laboratoire National de Métrologie et d'Essais, LNE, 1 rue Gaston Boissier, 75724, Paris Cedex 15, France
| | - Philippe Gillery
- Faculty of Medicine, UMR CNRS/URCA n°7369 and University Hospital of Reims, Laboratory of Pediatric Biology and Research, University of Reims Champagne-Ardenne, 45 rue Cognacq-Jay, 51092, Reims Cedex, France
| | - Vincent Delatour
- Chemistry and Biology Division, Laboratoire National de Métrologie et d'Essais, LNE, 1 rue Gaston Boissier, 75724, Paris Cedex 15, France.
| |
Collapse
|
41
|
Strbenac D, Zhong L, Raftery MJ, Wang P, Wilson SR, Armstrong NJ, Yang JYH. Quantitative Performance Evaluator for Proteomics (QPEP): Web-based Application for Reproducible Evaluation of Proteomics Preprocessing Methods. J Proteome Res 2017; 16:2359-2369. [DOI: 10.1021/acs.jproteome.6b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dario Strbenac
- School
of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ling Zhong
- Bioanalytical
Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mark J. Raftery
- Bioanalytical
Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Penghao Wang
- School
of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Susan R. Wilson
- School of Mathematics & Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre
for Mathematics and its Applications, Mathematical Sciences Institute, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Nicola J. Armstrong
- School
of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jean Y. H. Yang
- School
of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
42
|
Calderón-Celis F, Cid-Barrio L, Encinar JR, Sanz-Medel A, Calvete JJ. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry. J Proteomics 2017; 164:33-42. [PMID: 28579478 DOI: 10.1016/j.jprot.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
We report the application of a hybrid element and molecular MS configuration for the parallel absolute quantification of μHPLC-separated intact sulfur-containing venom proteins, via ICP triple quadrupole MS and 32S/34S isotope dilution analysis, and identification by ESI-QToF-MS of the toxins of the medically important African black-necked spitting cobra, Naja nigricollis (Tanzania); New Guinea small-eyed snake, Micropechis ikaheka; and Papuan black snake, Pseudechis papuanus. The main advantage of this approach is that only one generic sulfur-containing standard is required to quantify each and all intact Cys- and/or Met-containing toxins of the venom proteome. The results of absolute quantification are in reasonably good agreement with previously reported relative quantification of the most abundant protein families. However, both datasets depart in the quantification of the minor ones, showing a tendency for this set of proteins to be underestimated in standard peptide-centric venomics approaches. The molecular identity, specific toxic activity, and concentration in the venom, are the pillars on which the toxicovenomics-aimed discovery of the most medically-relevant venom toxins, e.g. those that need to be neutralized by an effective therapeutic antivenom, should be based. The pioneering venom proteome-wide absolute quantification shown in this paper represents thus a significant advance towards this goal. The potential of ICP triple quadrupole MS in proteomics in general, and venomics in particular, is critically discussed. BIOLOGICAL SIGNIFICANCE Animal venoms provide excellent model systems for investigating interactions between predators and prey, and the molecular mechanisms that contribute to adaptive protein evolution. On the other hand, numerous cases of snake bites occur yearly by encounters of humans and snakes in their shared natural environment. Snakebite envenoming is a serious global public health issue that affects the most impoverished and geopolitically disadvantaged rural communities in many tropical and subtropical countries. Unveiling the temporal and spatial patterns of venom variability is of fundamental importance to understand the molecular basis of envenoming, a prerequisite for developing therapeutic strategies against snakebite envenoming. Research on venoms has been continuously enhanced by advances in technology. The combined application of next-generation transcriptomic and venomic workflows has demonstrated unparalleled capabilities for venom characterization in unprecedented detail. However, mass spectrometry is not inherently quantitative, and this analytical limitation has sparked the development of methods to determine absolute abundance of proteins in biological samples. Here we show the potential of a hybrid element and molecular MS configuration for the parallel ESI-QToF-MS and ICP-QQQ detection and absolute quantification of intact sulfur-containing venom proteins via 32S/34S isotope dilution analysis. This configuration has been applied to quantify the toxins of the medically important African snake Naja nigricollis (Tanzania), and the Papuan species Micropechis ikaheka and Pseudechis papuanus.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain.
| |
Collapse
|
43
|
Calvete JJ, Petras D, Calderón-Celis F, Lomonte B, Encinar JR, Sanz-Medel A. Protein-species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis 2017; 23:27. [PMID: 28465678 PMCID: PMC5408492 DOI: 10.1186/s40409-017-0116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
In this paper we discuss recent significant developments in the field of venom research, specifically the emergence of top-down proteomic applications that allow achieving compositional resolution at the level of the protein species present in the venom, and the absolute quantification of the venom proteins (the term “protein species” is used here to refer to all the different molecular forms in which a protein can be found. Please consult the special issue of Jornal of Proteomics “Towards deciphering proteomes via the proteoform, protein speciation, moonlighting and protein code concepts” published in 2016, vol. 134, pages 1-202). Challenges remain to be solved in order to achieve a compact and automated platform with which to routinely carry out comprehensive quantitative analysis of all toxins present in a venom. This short essay reflects the authors’ view of the immediate future in this direction for the proteomic analysis of venoms, particularly of snakes.
Collapse
Affiliation(s)
- Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, C.S.I.C, Jaime Roig 11, 46010 Valencia, Spain
| | - Daniel Petras
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA USA
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
44
|
Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:29-38. [PMID: 28441545 DOI: 10.1016/j.jchromb.2017.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/23/2017] [Accepted: 04/14/2017] [Indexed: 01/21/2023]
Abstract
Following the rapid expansion of the proteomics field, the investigation of post translational modifications (PTM) has become extremely popular changing our perspective of how proteins constantly fine tune cellular functions. Reversible protein phosphorylation plays a pivotal role in virtually all biological processes in the cell and it is one the most characterized PTM up to date. During the last decade, the development of phosphoprotein/phosphopeptide enrichment strategies and mass spectrometry (MS) technology has revolutionized the field of phosphoproteomics discovering thousands of new site-specific phosphorylations and unveiling unprecedented evidence about their modulation under distinct cellular conditions. The field has expanded so rapidly that the use of traditional methods to validate and characterize the biological role of the phosphosites is not feasible any longer. Targeted MS holds great promise for becoming the method of choice to study with high precision and sensitivity already known site-specific phosphorylation events. This review summarizes the contribution of large-scale unbiased MS analyses and highlights the need of targeted MS-based approaches for follow-up investigation. Additionally, the article illustrates the biological relevance of protein phosphorylation by providing examples of disease-related phosphorylation events and emphasizes the benefits of applying targeted MS in clinics for disease diagnosis, prognosis and drug-response evaluation.
Collapse
|
45
|
Henderson CM, Bollinger JG, Becker JO, Wallace JM, Laha TJ, MacCoss MJ, Hoofnagle AN. Quantification by nano liquid chromatography parallel reaction monitoring mass spectrometry of human apolipoprotein A-I, apolipoprotein B, and hemoglobin A1c in dried blood spots. Proteomics Clin Appl 2017; 11. [PMID: 28112871 DOI: 10.1002/prca.201600103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Proteomic analysis of blood proteins in dried blood spots (DBS) is gaining attention as a possible replacement for measurements in plasma/serum collected by venipuncture. We aimed to develop and provisionally validate a nanoflow LC-PRM-MS method for clinical use. EXPERIMENTAL DESIGN We used Skyline to develop a nanoflow LC-PRM-MS method to quantify glycated hemoglobin-β, apolipoprotein A-I, and apolipoprotein B in DBS. Precision, linearity, interferences, and stability were determined and the method was used to analyze samples from 36 human volunteers. The method was compared with clinically validated measurements in paired blood collected via venipuncture. RESULTS The method was relatively precise for these proteins (10-11% CV) and linear across the normal concentration ranges of these proteins. Interference from high total serum protein concentration (>8 g/dL) was noted for apolipoprotein A-I and apolipoprotein B. Proteins in DBS were stable for 14 days at temperatures below 25°C and trypsinized samples were stable for 48 h at 7°C. There was moderate correlation with clinical methods (r = 0.783-0.858) and significant bias in individual samples. CONCLUSIONS AND CLINICAL RELEVANCE Although the method had adequate precision and linearity for a biomarker, the accuracy compared with clinically validated assays raises concerns regarding the use of DBS compared with venipuncture for clinical use.
Collapse
Affiliation(s)
- Clark M Henderson
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - James G Bollinger
- Departments of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jessica O Becker
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer M Wallace
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Thomas J Laha
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Departments of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
|
47
|
Eichberg S, Sanz L, Calvete JJ, Pla D. Constructing comprehensive venom proteome reference maps for integrative venomics. Expert Rev Proteomics 2016; 12:557-73. [PMID: 26400467 DOI: 10.1586/14789450.2015.1073590] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Understanding the molecular basis of complex adaptive traits, such as snake venom, demands qualitative and quantitative comparisons of the temporal and spatial patterns of venom variation. Here, we assessed the proof-of-concept that locus-resolved reference venom proteome maps can be achieved through efficient pre-MS venom proteome decomplexation, peptide-centric MS/MS analysis and species-specific database searching. METHODS Venom proteome components were fractionated and quantified by RP-HPLC, SDS-PAGE and 2DE prior to LC-MS/MS matching against a species-specific transcriptomic dataset. RESULTS Combination of RP-HPLC/SDS-PAGE and 2DE followed by LC-MS/MS showed the existence of ∼178-180 venom protein species generated from ∼48 unique transcripts. CONCLUSIONS Our results underscore that if sufficient pre-MS and MS efforts are applied, comprehensive venom maps can be achieved. And - equally important - dissociating the venom decomplexing steps from the protein identification process represents the key to achieving a quantitative and locus-resolved insight of the venom proteome.
Collapse
Affiliation(s)
- Susann Eichberg
- a 1 Beuth Hochschule für Technik Berlin, Luxemburger Straße 10, 13353 Berlin, Germany
| | - Libia Sanz
- b 2 Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Juan J Calvete
- b 2 Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Davinia Pla
- b 2 Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| |
Collapse
|
48
|
Kito K, Okada M, Ishibashi Y, Okada S, Ito T. A strategy for absolute proteome quantification with mass spectrometry by hierarchical use of peptide-concatenated standards. Proteomics 2016; 16:1457-73. [DOI: 10.1002/pmic.201500414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/18/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Keiji Kito
- Department of Life Sciences, School of Agriculture; Meiji University; Kawasaki Japan
| | - Mitsuhiro Okada
- Department of Life Sciences, School of Agriculture; Meiji University; Kawasaki Japan
| | - Yuko Ishibashi
- Department of Life Sciences, School of Agriculture; Meiji University; Kawasaki Japan
| | - Satoshi Okada
- Department of Biochemistry; Kyushu University Graduate School of Medical Science; Fukuoka Japan
| | - Takashi Ito
- Department of Biochemistry; Kyushu University Graduate School of Medical Science; Fukuoka Japan
| |
Collapse
|
49
|
Wang X, Liang Y, Liu L, Shi J, Zhu HJ. Targeted absolute quantitative proteomics with SILAC internal standards and unlabeled full-length protein calibrators (TAQSI). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:553-61. [PMID: 26842578 PMCID: PMC6301059 DOI: 10.1002/rcm.7482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/13/2015] [Accepted: 12/13/2015] [Indexed: 05/25/2023]
Abstract
RATIONALE Liquid Chromatography/Mass Spectrometry (LC/MS)-based proteomics for absolute protein quantification has been increasingly utilized in both basic and clinical research. There is a great need to overcome some major hurdles of current absolute protein quantification methods, such as significant inter-assay variability and the high cost associated with the preparation of purified stable-isotope-labeled peptide/protein standards. METHODS We developed a novel targeted absolute protein quantification method, named TAQSI, utilizing full-length isotope-labeled protein internal standards generated from SILAC (stable isotope labeling by amino acid in cell culture) and unlabeled full-length protein calibrators. This approach was applied to absolute quantification of carboxylesterase 1 (CES1), the primary human hepatic hydrolase, in a large set of human liver samples. Absolute CES1 quantities were derived from the standard calibration curves established from unlabeled CES1 protein calibrators and the isotope-labeled CES1 internal standards obtained from SILAC HepG2 cells. RESULTS The TAQSI assay was found to be accurate, precise, reproducible, and cost-effective. Importantly, protein quantification was not affected by various protein extraction and digestion protocols, and measurement errors associated with nonsynonymous variants can be readily identified and avoided. Furthermore, the TAQSI approach significantly simplifies the procedure of identifying the best performance surrogate peptides. CONCLUSIONS The TAQSI assay can be widely used for targeted absolute protein quantification in various biomedical research and clinical practice settings.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Yan Liang
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
- The Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
- The Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Sabbagh B, Mindt S, Neumaier M, Findeisen P. Clinical applications of MS-based protein quantification. Proteomics Clin Appl 2016; 10:323-45. [DOI: 10.1002/prca.201500116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Bassel Sabbagh
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Sonani Mindt
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
- MVZ Labor Dr. Limbach und Kollegen; Heidelberg Germany
- Working Group Proteomics of the German United Society for Clinical Chemistry and Laboratory Medicine e.V. (DGKL); Bonn Germany
| |
Collapse
|