1
|
Ming L, Wu H, Fan Q, Dong Z, Huang J, Xiao Z, Xiao N, Huang H, Liu H, Li Z. Bio-inspired drug delivery systems: A new attempt from bioinspiration to biomedical applications. Int J Pharm 2024; 658:124221. [PMID: 38750980 DOI: 10.1016/j.ijpharm.2024.124221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Natural organisms have evolved sophisticated and multiscale hierarchical structures over time to enable survival. Currently, bionic design is revolutionizing drug delivery systems (DDS), drawing inspiration from the structure and properties of natural organisms that offer new possibilities to overcome the challenges of traditional drug delivery systems. Bionic drug delivery has contributed to a significant improvement in therapeutic outcomes, providing personalized regimens for patients with various diseases and enhancing both their quality of life and drug efficacy. Therefore, it is important to summarize the progress made so far and to discuss the challenges and opportunities for future development. Herein, we review the recent advances in bio-inspired materials, bio-inspired drug vehicles, and drug-loading platforms of biomimetic structures and properties, emphasizing the importance of adapting the structure and function of organisms to meet the needs of drug delivery systems. Finally, we highlight the delivery strategies of bionics in DDS to provide new perspectives and insights into the research and exploration of bionics in DDS. Hopefully, this review will provide future insights into utilizing biologically active vehicles, bio-structures, and bio-functions, leading to better clinical outcomes.
Collapse
Affiliation(s)
- Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zijian Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical, University, Jiangxi, Ganzhou 341000, China.
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| |
Collapse
|
2
|
Liu S, Xiang Y, Liu Z, Li L, Dang R, Zhang H, Wei F, Chen Y, Yang X, Mao M, Zhang YS, Song J, Zhang X. A Nature-Derived, Hetero-Structured, Pro-Healing Bioadhesive Patch for High-Performance Sealing of Wet Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309774. [PMID: 38490747 DOI: 10.1002/adma.202309774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/24/2024] [Indexed: 03/17/2024]
Abstract
Tissue adhesives are promising alternatives to sutures and staples to achieve wound closure and hemostasis. However, they often do not work well on tissues that are soaked in blood or other biological fluids, and organs that are typically exposed to a variety of harsh environments such as different pH values, nonhomogeneous distortions, continuous expansions and contractions, or high pressures. In this study, a nature-derived multilayered hetero-bioadhesive patch (skin secretion of Andrias davidianus (SSAD)-Patch) based on hydrophilic/hydrophobic pro-healing bioadhesives derived from the SSAD is developed, which is designed to form pressure-triggered strong adhesion with wet tissues. The SSAD-Patch is successfully applied for the sealing and healing of tissue defects within 10 s in diverse extreme injury scenarios in vivo including rat stomach perforation, small intestine perforation, fetal membrane defect, porcine carotid artery incision, and lung lobe laceration. The findings reveal a promising new type of self-adhesive regenerative SSAD-Patch, which is potentially adaptable to broad applications (under different pH values and air or liquid pressures) in sutureless wound sealing and healing.
Collapse
Affiliation(s)
- Shilin Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yangfan Xiang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Zekun Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Lan Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Huicong Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Feng Wei
- The People's Hospital of Kaizhou District, Chongqing, 405499, P. R. China
| | - Yuqin Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xiang Yang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Mengjie Mao
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
3
|
Kröner L, Lötters S, Hopp MT. Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides. Biol Chem 2024; 0:hsz-2024-0035. [PMID: 38766708 DOI: 10.1515/hsz-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Amphibians are well-known for their ability to produce and secrete a mixture of bioactive substances in specialized skin glands for the purpose of antibiotic self-protection and defense against predators. Some of these secretions contain various small molecules, such as the highly toxic batrachotoxin, tetrodotoxin, and samandarine. For some time, the presence of peptides in amphibian skin secretions has attracted researchers, consisting of a diverse collection of - to the current state of knowledge - three to 104 amino acid long sequences. From these more than 2000 peptides many are known to exert antimicrobial effects. In addition, there are some reports on amphibian skin peptides that can promote wound healing, regulate immunoreactions, and may serve as antiparasitic and antioxidative substances. So far, the focus has mainly been on skin peptides from frogs and toads (Anura), eclipsing the research on skin peptides of the ca. 700 salamanders and newts (Caudata). Just recently, several novel observations dealing with caudate peptides and their structure-function relationships were reported. This review focuses on the chemistry and bioactivity of caudate amphibian skin peptides and their potential as novel agents for clinical applications.
Collapse
Affiliation(s)
- Lorena Kröner
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| | - Stefan Lötters
- Department of Biogeography, University of Trier, D-54286 Trier, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| |
Collapse
|
4
|
Li W, Du D, Huang Y, Xu C, Liu Y, Wu X, Yang J, Liu Z, Ma J, Huangfu C. Improvement of skin wound healing by giant salamander skin mucus gel wrapped with bone marrow mesenchymal stem cells via affecting integrin family molecules. Aging (Albany NY) 2024; 16:7902-7914. [PMID: 38709270 PMCID: PMC11132021 DOI: 10.18632/aging.205792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Traditional bandages, gauze, and cotton balls are increasingly insufficient for addressing complex war injuries characterized by severe bleeding and diverse wound conditions. The giant salamander, a species of high medical value, secretes a unique mucus when stimulated, which has potential applications in wound care. MATERIALS Giant salamander skin mucus gel dressing wrapped with bone marrow mesenchymal stem cells (BMSCs-GSSM-gel) was prepared and validated. Skin wound injury of rabbit and mouse models were established. Hematoxylin and Eosin, Masson's trichrome, and Sirius red staining were performed. The platelet aggregation rate and coagulation items were measured. Transcriptome sequencing was performed to find potential differential expression genes. RESULTS Preparation and characterization of BMSCs-GSSM-gel were performed, and BMSCs-GSSM-gel particles with a diameter of about 200 nm were obtained. BMSCs-GSSM-gel accelerated wound healing in both rabbit and mouse models. BMSCs-GSSM-gel significantly promoted hemostasis via increasing platelet aggregation rate and fibrinogen, but decreasing activated partial thromboplastin time, thrombin time, and prothrombin time. BMSCs-GSSM-gel treatment significantly impacted several genes associated with cell adhesion, inflammatory response, collagen-containing extracellular matrix, and the positive regulation of cell migration based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Integrin Subunit Beta 4 (ITGB4), Integrin Subunit Alpha 3 (ITGA3), and Laminin Subunit Beta 3 (LAMB3) might be involved in the wound healing process by BMSCs-GSSM-gel. CONCLUSIONS We proved the BMSCs-GSSM-gel greatly improved the skin wound healing, and it might play a crucial role in the application fields of skin damage repair.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, The 305 Hospital of People’s Liberation Army of China, Beijing 100017, China
| | - Dayong Du
- Department of Cardiology, The 305 Hospital of People’s Liberation Army of China, Beijing 100017, China
| | - Yan Huang
- Department of Neurology, Chengdu Third People’s Hospital, Chengdu 610014, China
| | - Cui Xu
- Department of Medical Administration, The 305 Hospital of People's Liberation Army of China, Beijing 100017, China
| | - Yang Liu
- Department of Cardiology, The 305 Hospital of People’s Liberation Army of China, Beijing 100017, China
| | - Xiaohong Wu
- Department of Cardiology, The 305 Hospital of People’s Liberation Army of China, Beijing 100017, China
| | - Jie Yang
- Department of Cardiology, The 305 Hospital of People’s Liberation Army of China, Beijing 100017, China
| | - Zhipeng Liu
- Department of Medical Administration, The 305 Hospital of People's Liberation Army of China, Beijing 100017, China
| | - Jianxin Ma
- Department of Cadre Ward, The 305 Hospital of People’s Liberation Army of China, Beijing 100017, China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
5
|
Ling L, Liang L, Wang H, Lin X, Li C. Real-Time Monitoring on the Chinese Giant Salamander Using RPA-LFD. Int J Mol Sci 2024; 25:4946. [PMID: 38732163 PMCID: PMC11084824 DOI: 10.3390/ijms25094946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The Chinese giant salamander (Andrias davidianus), listed as an endangered species under "secondary protection" in China, faces significant threats due to ecological deterioration and the expansion of human activity. Extensive field investigations are crucial to ascertain the current status in the wild and to implement effective habitat protection measures to safeguard this species and support its population development. Traditional survey methods often fall short due to the elusive nature of the A. davidianus, presenting challenges that are time-consuming and generally ineffective. To overcome these obstacles, this study developed a real-time monitoring method that uses environmental DNA (eDNA) coupled with recombinase polymerase amplification and lateral flow strip (RPA-LFD). We designed five sets of species-specific primers and probes based on mitochondrial genome sequence alignments of A. davidianus and its close relatives. Our results indicated that four of these primer/probe sets accurately identified A. davidianus, distinguishing it from other tested caudata species using both extracted DNA samples and water samples from a tank housing an individual. This method enables the specific detection of A. davidianus genomic DNA at concentrations as low as 0.1 ng/mL within 50 min, without requiring extensive laboratory equipment. Applied in a field survey across four sites in Huangshan City, Anhui Province, where A. davidianus is known to be distributed, the method successfully detected the species at three of the four sites. The development of these primer/probe sets offers a practical tool for field surveying and monitoring, facilitating efforts in population recovery and resource conservation for A. davidianus.
Collapse
Affiliation(s)
- Lanxin Ling
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Linyan Liang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Huifang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaolong Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Chenhong Li
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Chen LD, Caprio MA, Chen DM, Kouba AJ, Kouba CK. Enhancing predictive performance for spectroscopic studies in wildlife science through a multi-model approach: A case study for species classification of live amphibians. PLoS Comput Biol 2024; 20:e1011876. [PMID: 38354202 PMCID: PMC10898777 DOI: 10.1371/journal.pcbi.1011876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/27/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Near infrared spectroscopy coupled with predictive modeling is a growing field of study for addressing questions in wildlife science aimed at improving management strategies and conservation outcomes for managed and threatened fauna. To date, the majority of spectroscopic studies in wildlife and fisheries applied chemometrics and predictive modeling with a single-algorithm approach. By contrast, multi-model approaches are used routinely for analyzing spectroscopic datasets across many major industries (e.g., medicine, agriculture) to maximize predictive outcomes for real-world applications. In this study, we conducted a benchmark modeling exercise to compare the performance of several machine learning algorithms in a multi-class problem utilizing a multivariate spectroscopic dataset obtained from live animals. Spectra obtained from live individuals representing eleven amphibian species were classified according to taxonomic designation. Seven modeling techniques were applied to generate prediction models, which varied significantly (p < 0.05) with regard to mean classification accuracy (e.g., support vector machine: 95.8 ± 0.8% vs. K-nearest neighbors: 89.3 ± 1.0%). Through the use of a multi-algorithm approach, candidate algorithms can be identified and applied to more effectively model complex spectroscopic data collected for wildlife sciences. Other key considerations in the predictive modeling workflow that serve to optimize spectroscopic model performance (e.g., variable selection and cross-validation procedures) are also discussed.
Collapse
Affiliation(s)
- Li-Dunn Chen
- Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Mississippi, United States of America
| | - Michael A. Caprio
- Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Mississippi, United States of America
| | - Devin M. Chen
- Department of Wildlife, Fisheries, & Aquaculture, Mississippi State University, Mississippi, United States of America
| | - Andrew J. Kouba
- Department of Wildlife, Fisheries, & Aquaculture, Mississippi State University, Mississippi, United States of America
| | - Carrie K. Kouba
- Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Mississippi, United States of America
| |
Collapse
|
7
|
Tankrathok A, Mahong B, Roytrakul S, Daduang S, Temsiripong Y, Klaynongsruang S, Jangpromma N. Proteomic analysis of crocodile white blood cells reveals insights into the mechanism of the innate immune system. Heliyon 2024; 10:e24583. [PMID: 38312682 PMCID: PMC10835162 DOI: 10.1016/j.heliyon.2024.e24583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Crocodiles have a particularly powerful innate immune system because their blood contains high levels of antimicrobial peptides. They can survive injuries that would be fatal to other animals, and they are rarely afflicted with diseases. To better understand the crocodile's innate immune response, proteomic analysis was performed on the white blood cells (WBC) of an Aeromonas hydrophila-infected crocodile. Levels of WBC and red blood cells (RBC) rapidly increased within 1 h. In WBC, there were 109 up-regulated differentially expressed proteins (DEP) that were up-regulated. Fifty-nine DEPs dramatically increased expression from 1 h after inoculation, whereas 50 up-regulated DEPs rose after 24 h. The most abundant DEPs mainly had two biological functions, 1) gene expression regulators, for example, zinc finger proteins and histone H1 family, and 2) cell mechanical forces such as actin cytoskeleton proteins and microtubule-binding proteins. This finding illustrates the characteristic effective innate immune response mechanism of crocodiles that might occur via boosted transcription machinery proteins to accelerate cytoskeletal protein production for induction of phagocytosis, along with the increment of trafficking proteins to transport essential molecules for combating pathogens. The findings of this study provide new insights into the mechanisms of the crocodile's innate immune system.
Collapse
Affiliation(s)
- Anupong Tankrathok
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, 46000, Thailand
| | - Bancha Mahong
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sittiruk Roytrakul
- Proteomics Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
8
|
Li W, Wang M, Wang S, Wang X, Avila A, Kuang X, Mu X, Garciamendez CE, Jiang Z, Manríquez J, Tang G, Guo J, Mille LS, Robledo JA, Wang D, Cheng F, Li H, Flores RS, Zhao Z, Delavaux C, Wang Z, López A, Yi S, Zhou C, Gómez A, Schuurmans C, Yang GY, Wang Y, Zhang X, Zhang X, Zhang YS. An Adhesive Bioink toward Biofabrication under Wet Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205078. [PMID: 36587991 PMCID: PMC10960222 DOI: 10.1002/smll.202205078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) bioprinting is driving significant innovations in biomedicine over recent years. Under certain scenarios such as in intraoperative bioprinting, the bioinks used should exhibit not only cyto/biocompatibility but also adhesiveness in wet conditions. Herein, an adhesive bioink composed of gelatin methacryloyl, gelatin, methacrylated hyaluronic acid, and skin secretion of Andrias davidianus is designed. The bioink exhibits favorable cohesion to allow faithful extrusion bioprinting in wet conditions, while simultaneously showing good adhesion to a variety of surfaces of different chemical properties, possibly achieved through the diverse bonds presented in the bioink formulation. As such, this bioink is able to fabricate sophisticated planar and volumetric constructs using extrusion bioprinting, where the dexterity is further enhanced using ergonomic handheld bioprinters to realize in situ bioprinting. In vitro experiments reveal that cells maintain high viability; further in vivo studies demonstrate good integration and immediate injury sealing. The characteristics of the bioink indicate its potential widespread utility in extrusion bioprinting and will likely broaden the applications of bioprinting toward situations such as in situ dressing and minimally invasive tissue regeneration.
Collapse
Affiliation(s)
- Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 20030, P. R. China
| | - Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Shiwei Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Alan Avila
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Biotechnology Program, Tecnológico de Monterrey, Monterrey, NL, 64849, México
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zewei Jiang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jennifer Manríquez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Biotechnology Program, Tecnológico de Monterrey, Monterrey, NL, 64849, México
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Luis Santiago Mille
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Juan Antonio Robledo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Di Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Feng Cheng
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Hongbin Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Regina Sanchez Flores
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zhibo Zhao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Clément Delavaux
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixuan Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Arturo López
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Biotechnology Program, Tecnológico de Monterrey, Monterrey, NL, 64849, México
| | - Sili Yi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Cuiping Zhou
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ameyalli Gómez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Biotechnology Program, Tecnológico de Monterrey, Monterrey, NL, 64849, México
| | - Carl Schuurmans
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508, TB, Utrecht, The Netherlands
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 20030, P. R. China
| | - Yongting Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 20030, P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
9
|
Liang H, Wang XT, Ge WY, Zhang R, Liu J, Chen LL, Xi XL, Guo WH, Yin DC. Andrias Davidianus Mucus-Based Bioadhesive with Enhanced Adhesion and Wound Healing Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49931-49942. [PMID: 37856675 DOI: 10.1021/acsami.3c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The skin secretion of Andrias davidianus (SSAD) is a novel biological adhesive raw material under development. This material exhibits robust adhesion while maintaining the flexibility of the wound. It also has the potential for large-scale production, making it promising for practical application explore. Hence, in-depth research on methods to fine-tune SSAD properties is of great importance to promote its practical applications. Herein, we aim to enhance the adhesive and healing properties of SSAD by incorporating functional components. To achieve this goal, we selected 3,4-dihydroxy-l-phenylalanine and vaccarin as the functional components and mixed them with SSAD, resulting in a new bioadhesive, namely, a formulation termed "enhanced SSAD" (ESSAD). We found that the ESSAD exhibited superior adhesive properties, and its adhesive strength was improved compared with the SSAD. Moreover, ESSAD demonstrated a remarkable ability to promote wound healing. This study presents an SSAD-based bioadhesive formulation with enhanced properties, affirming the feasibility of developing SSAD-based adhesive materials with excellent performance and providing new evidence for the application of SSAD. This study also aims to show that SSAD can be mixed with other substances, and addition of effective components to SSAD can be studied to further adjust or improve its performance.
Collapse
Affiliation(s)
- Huan Liang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xue-Ting Wang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Wan-Yi Ge
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Rui Zhang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Jie Liu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xiao-Li Xi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|
10
|
Kowalski K, Marciniak P, Rychlik L. Proteins from toad's parotoid macroglands: do they play a role in gland functioning and chemical defence? Front Zool 2023; 20:21. [PMID: 37328749 DOI: 10.1186/s12983-023-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Parotoid gland secretion of bufonid toads is a rich source of toxic molecules that are used against predators, parasites and pathogens. Bufadienolides and biogenic amines are the principal compounds responsible for toxicity of parotoid secretion. Many toxicological and pharmacological analyses of parotoid secretions have been performed, but little is known about the processes related to poison production and secretion. Therefore, our aim was to investigate protein content in parotoids of the common toad, Bufo bufo, to understand the processes that regulate synthesis and excretion of toxins as well as functioning of parotoid macroglands. RESULTS Applying a proteomic approach we identified 162 proteins in the extract from toad's parotoids that were classified into 11 categories of biological functions. One-third (34.6%) of the identified molecules, including acyl-CoA-binding protein, actin, catalase, calmodulin, and enolases, were involved in cell metabolism. We found many proteins related to cell division and cell cycle regulation (12.0%; e.g. histone and tubulin), cell structure maintenance (8.4%; e.g. thymosin beta-4, tubulin), intra- and extracellular transport (8.4%), cell aging and apoptosis (7.3%; e.g. catalase and pyruvate kinase) as well as immune (7.0%; e.g. interleukin-24 and UV excision repair protein) and stress (6.3%; including heat shock proteins, peroxiredoxin-6 and superoxide dismutase) response. We also identified two proteins, phosphomevalonate kinase and isopentenyl-diphosphate delta-isomerase 1, that are involved in synthesis of cholesterol which is a precursor for bufadienolides biosynthesis. STRING protein-protein interaction network predicted for identified proteins showed that most proteins are related to metabolic processes, particularly glycolysis, stress response and DNA repair and replication. The results of GO enrichment and KEGG analyses are also consistent with these findings. CONCLUSION This finding indicates that cholesterol may be synthesized in parotoids, and not only in the liver from which is then transferred through the bloodstream to the parotoid macroglands. Presence of proteins that regulate cell cycle, cell division, aging and apoptosis may indicate a high epithelial cell turnover in parotoids. Proteins protecting skin cells from DNA damage may help to minimize the harmful effects of UV radiation. Thus, our work extends our knowledge with new and important functions of parotoids, major glands involved in the bufonid chemical defence.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Institute of Biology, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Leszek Rychlik
- Department of Systematic Zoology, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
11
|
Jiao S, Zhang X, Cai H, Wu S, Ou X, Han G, Zhao J, Li Y, Guo W, Liu T, Qu W. Recent advances in biomimetic hemostatic materials. Mater Today Bio 2023; 19:100592. [PMID: 36936399 PMCID: PMC10020683 DOI: 10.1016/j.mtbio.2023.100592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Although the past decade has witnessed unprecedented medical advances, achieving rapid and effective hemostasis remains challenging. Uncontrolled bleeding and wound infections continue to plague healthcare providers, increasing the risk of death. Various types of hemostatic materials are nowadays used during clinical practice but have many limitations, including poor biocompatibility, toxicity and biodegradability. Recently, there has been a burgeoning interest in organisms that stick to objects or produce sticky substances. Indeed, applying biological adhesion properties to hemostatic materials remains an interesting approach. This paper reviews the biological behavior, bionics, and mechanisms related to hemostasis. Furthermore, this paper covers the benefits, challenges and prospects of biomimetic hemostatic materials.
Collapse
Affiliation(s)
- Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, PR China
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, PR China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| |
Collapse
|
12
|
Underwater instant adhesion mechanism of self-assembled amphiphilic hemostatic granular hydrogel from Andrias davidianus skin secretion. iScience 2022; 25:105106. [PMID: 36185384 PMCID: PMC9519738 DOI: 10.1016/j.isci.2022.105106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
The widespread use of biological tissue adhesives for tissue repair is limited by their weak adhesion in a wet environment. Herein, we report the wet adhesion mechanism of a dry granular natural bioadhesive from Andrias davidianus skin secretion (ADS). Once contacting water, ADS granules self-assemble to form a hydrophobic hydrogel strongly bonding to wet substrates in seconds. ADS showed higher shear adhesion than current commercial tissue adhesives and an impressive 72-h underwater adhesion strength of ∼47kPa on porcine skin tissue. The assembled hydrogel in water maintained a dissipation energy of ∼8 kJ/m3, comparable to the work density of muscle, exhibiting its robustness. Unlike catechol adhesion mechanism, ADS wet adhesion mechanism is attributed to water absorption by granules, and the unique equilibrium of protein hydrophobicity, hydrogen bonding, and ionic complexation. The in vivo adhesion study demonstrated its excellent wet adhesion and hemostasis performance in a rat hepatic and cardiac hemorrhage model. Dry granule adhesive of Andrias davidianus skin secretion build strong wet adhesion The granules absorb water and self-assemble to form a hydrophobic adhesive in seconds The adhesive showed 72-h underwater adhesion strength of ∼47kPa on porcine skin tissue Remarkable hemostasis effect was found on rat hepatic and cardiac hemorrhage model
Collapse
|
13
|
Ma X, Bian Q, Hu J, Gao J. Stem from nature: Bioinspired adhesive formulations for wound healing. J Control Release 2022; 345:292-305. [DOI: 10.1016/j.jconrel.2022.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022]
|
14
|
Zhang X, Jiang L, Li X, Zheng L, Dang R, Liu X, Wang X, Chen L, Zhang YS, Zhang J, Yang D. A Bioinspired Hemostatic Powder Derived from the Skin Secretion of Andrias davidianus for Rapid Hemostasis and Intraoral Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101699. [PMID: 34817129 DOI: 10.1002/smll.202101699] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
High-performance hemostasis has become increasingly essential in treating various traumas. However, available topical hemostats still have various drawbacks and side-effects. Herein, hemostatic powders derived from the skin secretion of Andrias davidianus (SSAD) with controllable particle size are prepared using feasible frozen-ball milling following lyophilization for hemorrhage-control. Scanning electron microscopy, rheometry, and Brunauer-Emmett-Teller test are used to characterize the coagulation-promoting surface topography, rheological properties, and porous structure of the SSAD particles. The blood-coagulation assays showed that the SSAD powders can induce blood-absorption in a particle size-dependent manner. Particle sizes of the SSAD powders larger than 200 µm and smaller than 800 µm greatly affect the blood-clotting rate. Associated with the thromboelastography (TEG) and amino acid/protein composition analyses, the accessibility and diffusion of blood are mainly dependent on the wettability, adhesivity, and clotting factors of the SSAD particles. Rapid hemostasis in vivo further involves three hemorrhage models (liver, femoral artery, and tail) as well as an oral wound model, which suggest favorable hemostatic and simultaneous regenerative effects of the SSAD hemostatic powder. Considering its degradability and good biocompatibility, SSAD can be an optimal candidate for a new class of inexpensive, natural, and promising hemostatic and wound-dressing agent.
Collapse
Affiliation(s)
- Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Lin Jiang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xian Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Liwen Zheng
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xiang Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Liling Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| |
Collapse
|
15
|
Li J, Yu X, Martinez EE, Zhu J, Wang T, Shi S, Shin SR, Hassan S, Guo C. Emerging Biopolymer-Based Bioadhesives. Macromol Biosci 2021; 22:e2100340. [PMID: 34957668 DOI: 10.1002/mabi.202100340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Bioadhesives have been widely used in healthcare and biomedical applications due to their ease-of-operation for wound closure and repair compared to conventional suturing and stapling. However, several challenges remain for developing ideal bioadhesives, such as unsatisfied mechanical properties, non-tunable biodegradability, and limited biological functions. Considering these concerns, naturally derived biopolymers have been considered good candidates for making bioadhesives owing to their ready availability, facile modification, tunable mechanical properties, and desired biocompatibility and biodegradability. Over the past several years, remarkable progress has been made on biopolymer-based adhesives, covering topics from novel materials designs and advanced processing to clinical translation. The developed bioadhesives have been applied for diverse applications, including tissue adhesion, hemostasis, antimicrobial, wound repair/tissue regeneration, and skin-interfaced bioelectronics. Here in this comprehensive review, recent progress on biopolymer-based bioadhesives is summarized with focuses on clinical translations and multifunctional bioadhesives. Furthermore, challenges and opportunities such as weak adhesion strength at the hydrated state, mechanical mismatch with tissues, and unfavorable immune responses are discussed with an aim to facilitate the future development of high-performance biopolymer-based bioadhesives.
Collapse
Affiliation(s)
- Jinghang Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China.,School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Xin Yu
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| | | | - Jiaqing Zhu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Shengwei Shi
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
16
|
Vasconcelos IAD, Souza JOD, de Castro JS, Santana CJCD, Magalhães ACM, Castro MDS, Pires Júnior OR. Salamanders and caecilians, neglected from the chemical point of view. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1977326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Carlos José Correia de Santana
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Mariana de Souza Castro
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
17
|
Li M, Du C, Wang J, Gao Z, Yang X, Chen D, Tong J, Ren L. Morphology and mechanical performance between the skin surface of
Rana dybowskii
and
Bufo gargarizans. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mo Li
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Chunyu Du
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Jili Wang
- School of Mechanical and Aerospace Engineering Jilin University Changchun China
| | - Zibo Gao
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Xiao Yang
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Donghui Chen
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Jin Tong
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Lili Ren
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| |
Collapse
|
18
|
Bassitta M, Brown RP, Pérez-Cembranos A, Pérez-Mellado V, Castro JA, Picornell A, Ramon C. Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard. Sci Rep 2021; 11:6136. [PMID: 33731784 PMCID: PMC7971075 DOI: 10.1038/s41598-021-85591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/02/2021] [Indexed: 01/27/2023] Open
Abstract
Genomic divergence was studied in 10 small insular populations of the endangered Balearic Islands lizard (Podarcis lilfordi) using double digest restriction-site associated DNA sequencing. The objectives were to establish levels of divergence among populations, investigate the impact of population size on genetic variability and to evaluate the role of different environmental factors on local adaptation. Analyses of 72,846 SNPs supported a highly differentiated genetic structure, being the populations with the lowest population size (Porros, Foradada and Esclatasang islets) the most divergent, indicative of greater genetic drift. Outlier tests identified ~ 2% of loci as candidates for selection. Genomic divergence-Enviroment Association analyses were performed using redundancy analyses based on SNPs putatively under selection, detecting predation and human pressure as the environmental variables with the greatest explanatory power. Geographical distributions of populations and environmental factors appear to be fundamental drivers of divergence. These results support the combined role of genetic drift and divergent selection in shaping the genetic structure of these endemic island lizard populations.
Collapse
Affiliation(s)
- Marta Bassitta
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Spain.
| | - Richard P Brown
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ana Pérez-Cembranos
- Departamento de Biología Animal, Edificio de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Valentín Pérez-Mellado
- Departamento de Biología Animal, Edificio de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - José A Castro
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Spain
| | - Antònia Picornell
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Spain
| | - Cori Ramon
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
19
|
Arenas Gómez CM, Echeverri K. Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Curr Top Dev Biol 2021; 145:235-275. [PMID: 34074531 PMCID: PMC8186737 DOI: 10.1016/bs.ctdb.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salamanders are recognized for their ability to regenerate a broad range of tissues. They have also have been used for hundreds of years for classical developmental biology studies because of their large accessible embryos. The range of tissues these animals can regenerate is fascinating, from full limbs to parts of the brain or heart, a potential that is missing in humans. Many promising research efforts are working to decipher the molecular blueprints shared across the organisms that naturally have the capacity to regenerate different tissues and organs. Salamanders are an excellent example of a vertebrate that can functionally regenerate a wide range of tissue types. In this review, we outline some of the significant insights that have been made that are aiding in understanding the cellular and molecular mechanisms of tissue regeneration in salamanders and discuss why salamanders are a worthy model in which to study regenerative biology and how this may benefit research fields like regenerative medicine to develop therapies for humans in the future.
Collapse
Affiliation(s)
- Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States.
| |
Collapse
|
20
|
Gust KA, Indest KJ, Lotufo G, Everman SJ, Jung CM, Ballentine ML, Hoke AV, Sowe B, Gautam A, Hammamieh R, Ji Q, Barker ND. Genomic investigations of acute munitions exposures on the health and skin microbiome composition of leopard frog (Rana pipiens) tadpoles. ENVIRONMENTAL RESEARCH 2021; 192:110245. [PMID: 32987006 DOI: 10.1016/j.envres.2020.110245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Natural communities of microbes inhabiting amphibian skin, the skin microbiome, are critical to supporting amphibian health and disease resistance. To enable the pro-active health assessment and management of amphibians on Army installations and beyond, we investigated the effects of acute (96h) munitions exposures to Rana pipiens (leopard frog) tadpoles and the associated skin microbiome, integrated with RNAseq-based transcriptomic responses in the tadpole host. Tadpoles were exposed to the legacy munition 2,4,6-trinitrotoluene (TNT), the new insensitive munition (IM) formulation, IMX-101, and the IM constituents nitroguinidine (NQ) and 1-methyl-3-nitroguanidine (MeNQ). The 96h LC50 values and 95% confidence intervals were 2.6 (2.4, 2.8) for ΣTNT and 68.2 (62.9, 73.9) for IMX-101, respectively. The NQ and MeNQ exposures caused no significant impacts on survival in 96h exposures even at maximum exposure levels of 3560 and 5285 mg/L, respectively. However, NQ and MeNQ, as well as TNT and IMX-101 exposures, all elicited changes in the tadpole skin microbiome profile, as evidenced by significantly increased relative proportions of the Proteobacteria with increasing exposure concentrations, and significantly decreased alpha-diversity in the NQ exposure. The potential for direct effects of munitions exposure on the skin microbiome were observed including increased abundance of munitions-tolerant phylogenetic groups, in addition to possible indirect effects on microbial flora where transcriptional responses suggestive of changes in skin mucus-layer properties, antimicrobial peptide production, and innate immune factors were observed in the tadpole host. Additional insights into the tadpole host's transcriptional response to munitions exposures indicated that TNT and IMX-101 exposures significantly enriched transcriptional expression within type-I and type-II xenobiotic metabolism pathways, where dose-responsive increases in expression were observed. Significant enrichment and increased transcriptional expression of heme and iron binding functions in the TNT exposures served as likely indicators of known mechanisms of TNT toxicity including hemolytic anemia and methemoglobinemia. The significant enrichment and dose-responsive decrease in transcriptional expression of cell cycle pathways in the IMX-101 exposures was consistent with previous observations in fish, while significant enrichment of immune-related function in response to NQ exposure were consistent with potential immune suppression at the highest NQ exposure concentration. Finally, the MeNQ exposures elicited significantly decreased transcriptional expression of keratin 16, type I, a gene likely involved in keratinization processes in amphibian skin. Overall, munitions showed the potential to alter tadpole skin microbiome composition and affect transcriptional profiles in the amphibian host, some suggestive of potential impacts on host health and immune status relevant to disease susceptibility.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Karl J Indest
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Guilherme Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | | | - Carina M Jung
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Mark L Ballentine
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Allison V Hoke
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA; ORISE fellow, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Bintu Sowe
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA; ORISE fellow, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Qing Ji
- Bennett Aerospace, Cary, NC, USA.
| | - Natalie D Barker
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| |
Collapse
|
21
|
Wilson AE, Michaud SA, Jackson AM, Stenhouse G, Coops NC, Janz DM. Development and validation of protein biomarkers of health in grizzly bears. CONSERVATION PHYSIOLOGY 2020; 8:coaa056. [PMID: 32607241 PMCID: PMC7311831 DOI: 10.1093/conphys/coaa056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/09/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Large carnivores play critical roles in the maintenance and function of natural ecosystems; however, the populations of many of these species are in decline across the globe. Therefore, there is an urgent need to develop novel techniques that can be used as sensitive conservation tools to detect new threats to the health of individual animals well in advance of population-level effects. Our study aimed to determine the expression of proteins related to energetics, reproduction and stress in the skin of grizzly bears (Ursus arctos) using a liquid chromatography and multiple reaction monitoring mass spectrometry assay. We hypothesized that a suite of target proteins could be measured using this technique and that the expression of these proteins would be associated with biological (sex, age, sample location on body) and environmental (geographic area, season, sample year) variables. Small skin biopsies were collected from free-ranging grizzly bears in Alberta, Canada, from 2013 to 2019 (n = 136 samples from 111 individuals). Over 700 proteins were detected in the skin of grizzly bears, 19 of which were chosen as targets because of their established roles in physiological function. Generalized linear mixed model analysis was used for each target protein. Results indicate that sample year influenced the majority of proteins, suggesting that physiological changes may be driven in part by responses to changes in the environment. Season influenced the expression of proteins related to energetics, reproduction and stress, all of which were lower during fall compared to early spring. The expression of proteins related to energetics and stress varied by geographic area, while the majority of proteins that were affected by biological attributes (age class, sex and age class by sex interaction) were related to reproduction and stress. This study provides a novel method by which scientists and managers can further assess and monitor physiological function in wildlife.
Collapse
Affiliation(s)
- Abbey E Wilson
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Sarah A Michaud
- The University of Victoria Genome BC Proteomics Centre, 4464 Markham St #3101, Victoria, British Columbia V8Z 7X8, Canada
| | - Angela M Jackson
- The University of Victoria Genome BC Proteomics Centre, 4464 Markham St #3101, Victoria, British Columbia V8Z 7X8, Canada
| | - Gordon Stenhouse
- Foothills Research Institute, Grizzly Bear Program, 1176 Switzer Drive, Hinton, Alberta T7V 1V3, Canada
| | - Nicholas C Coops
- Department of Forest Resource Management, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - David M Janz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| |
Collapse
|
22
|
A de novo reference transcriptome for Bolitoglossa vallecula, an Andean mountain salamander in Colombia. Data Brief 2020; 29:105256. [PMID: 32123704 PMCID: PMC7038590 DOI: 10.1016/j.dib.2020.105256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
The amphibian order Caudata, contains several important model species for biological research. However, there is need to generate transcriptome data from representative species of the primary salamander families. Here we describe a de novo reference transcriptome for a terrestrial salamander, Bolitoglossa vallecula (Caudata: Plethodontidae). We employed paired-end (PE) illumina RNA sequencing to assemble a de novo reference transcriptome for B. vallecula. Assembled transcripts were compared against sequences from other vertebrate taxa to identify orthologous genes, and compared to the transcriptome of a close plethodontid relative (Bolitoglossa ramosi) to identify commonly expressed genes in the skin. This dataset should be useful to future comparative studies aimed at understanding important biological process, such as immunity, wound healing, and the production of antimicrobial compounds.
Collapse
|
23
|
Geng X, Guo J, Zang X, Chang C, Shang H, Wei H, Xu C. Proteomic analysis of eleven tissues in the Chinese giant salamander (Andrias davidianus). Sci Rep 2019; 9:16415. [PMID: 31712686 PMCID: PMC6848178 DOI: 10.1038/s41598-019-50909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
The Chinese giant salamander (Andrias davidianus, CGS) is the largest extant amphibian species in the world. Global quantitative proteome analysis of multiple tissues would indicate tissue-specific physiological processes and clarify the function of each protein from a whole-organism perspective. This study performed proteome analysis of eleven tissues collected from adult CGSs using iTRAQ coupled with LC-MS/MS technology. Based on the predicted protein database from previously obtained CGS transcriptome data, 2153 proteins were identified for subsequent analysis. A weighted gene co-expression network analysis (WGCNA) clustered 2153 proteins into 17 co-expressed modules, which will be useful for predicting the functions of unannotated proteins. The protein levels of molecular complexes with housekeeping functions, such as ribosomes, spliceosomes and mitochondrial respiratory chain complexes, were tightly regulated in different tissues of the CGS, as they are in mammalian tissues. Transcription regulator, pathway and bio-functional analysis of tissue-specific proteins showed that highly expressed proteins largely reflected the physiological functions of specific tissues. Our data, as an initial atlas of protein expression of an amphibian species, will be useful for further molecular biology research on CGS.
Collapse
Affiliation(s)
- Xiaofang Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China.,Henan Key Laboratory of immunology and targeted therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jianlin Guo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Haitao Shang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hong Wei
- The Engineering Technology Research Center for Germ-free and Genome-editing animal, Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China.
| |
Collapse
|
24
|
Iridoviral infection can be reduced by UCHL1-loaded exosomes from the testis of Chinese giant salamanders (Andrias davidianus). Vet Microbiol 2018; 224:50-57. [PMID: 30269790 DOI: 10.1016/j.vetmic.2018.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 11/22/2022]
Abstract
Chinese giant salamander iridovirus (CGSIV) is a large double-stranded DNA virus that infects Chinese giant salamanders (CGSs) and is responsible for a high mortality rate of CGSs under certain conditions. It is generally believed that CGSIV is a horizontally transmitting virus that affects lower vertebrates. Exosomes from tissues and cells affect the mechanism of viral infections. UCHL1, a deubiquitinating enzyme, is indirectly involved in virus propagation via cytokine and chemokine suppression. In our study, a few CGSIVs were detected in the testis of the special symptom CGSs using PCR and immunofluorescence analysis. The exosomes originating in the testicular fluid was isolated and identified using the Nanosight NS300 system and scanning electron microscopy. The UCHL1-loaded exosomes may resist CGSIV entry by fusing with and remodeling CGSIV. UCHL1 in the primary testicular fibroblasts was maintained at a stable level to inhibit the infection and replication of CGSIV by secreting and sorting exosomes. These data provided a new insight into CGSIV being a type of horizontally transmitting virus.
Collapse
|
25
|
Su S, Wang Y, Wang H, Huang W, Chen J, Xing J, Xu P, Yuan X, Huang C, Zhou Y. Comparative expression analysis identifies the respiratory transition-related miRNAs and their target genes in tissues of metamorphosing Chinese giant salamander (Andrias davidianus). BMC Genomics 2018; 19:406. [PMID: 29843595 PMCID: PMC5975713 DOI: 10.1186/s12864-018-4662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023] Open
Abstract
Background Chinese giant salamander (Andrias davidianus) undergoes a metamorphosis from aquatic larvae to terrestrial adults, with concomitant transfer of respiration from gills to lungs prior to metamorphosis. These two tissues, as well as skin, were sampled to identify the differentially expressed miRNAs. Results High-coverage reference transcriptome was generated from combined gill, lung and skin tissues of metamorphosing juveniles, and lung tissue of adults: 86,282 unigenes with total length of approximately 77,275,634 bp and N50 of 1732 bp were obtained. Among these, 13,246 unigenes were assigned to 288 pathways. To determine the possible involvement of miRNAs in the respiratory transition, small RNA libraries were sequenced; 282 miRNAs were identified, 65 among which were known and 217 novel. Based on the hierarchical clustering analysis, the twelve studied samples were classified into three major clusters using differentially expressed miRNAs. We have validated ten differentially expressed miRNAs and some of their related target genes using qPCR. These results largely corroborated the results of transcriptomic and miRNA analyses. Finally, an miRNA-gene-network was constructed. Among them, two miRNAs with target genes related to oxygen sensing were differentially expressed between gill and lung tissues. Three miRNAs were differentially expressed between the lungs of larvae and lungs of adults. Conclusions This study provides the first large-scale miRNA expression profile overview during the respiration transition from gills to lungs in Chinese giant salamander. Five differentially expressed miRNAs and their target genes were identified among skin, gill and lung tissues. These results suggest that miRNA profiles in respiratory tissues play an important role in the regulation of respiratory transition. Electronic supplementary material The online version of this article (10.1186/s12864-018-4662-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Yuheng Wang
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China
| | - Huiwei Wang
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China
| | - Wei Huang
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China
| | - Jun Chen
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China.
| | - Jun Xing
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China
| | - Pao Xu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Xinhua Yuan
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China.
| | - Caiji Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Yulin Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| |
Collapse
|
26
|
Yan M, Tian HF, Hu QM, Xiao HB. Molecular Cloning of Cathelicidin-like cDNA from Andrias davidianus. RUSS J GENET+ 2018. [DOI: 10.1134/s102279541801012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Li X, Li YC, Chen M, Shi Q, Sun R, Wang X. Chitosan/rectorite nanocomposite with injectable functionality for skin hemostasis. J Mater Chem B 2018; 6:6544-6549. [DOI: 10.1039/c8tb01085d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maltose-like chitosan/rectorite nanocomposites could promote blood coagulation and reduce the release of clay particles to avoid in vitro secondary thrombosis.
Collapse
Affiliation(s)
- Xiaoyun Li
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Yi-Chen Li
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Mingjie Chen
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- China
| | - Qingshan Shi
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- China
| | - Runcang Sun
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
28
|
Zhang C, Chang C, Li D, Zhang F, Xu C. The novel protein C3orf43 accelerates hepatocyte proliferation. Cell Mol Biol Lett 2017; 22:21. [PMID: 28932249 PMCID: PMC5603091 DOI: 10.1186/s11658-017-0051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background Our previous study found that single-pass membrane protein with coiled-coil domains 1 (C3orf43; XM_006248472.3) was significantly upregulated in the proliferative phase during liver regeneration. This indicates that C3orf43 plays a vital role in liver cell proliferation. However, its physiological functions remains unclear. Methods The expressions of C3orf43 in BRL-3A cells transfected with C3orf43-siRNA (C3-siRNA) or overexpressing the vector plasmid pCDH-C3orf43 (pCDH-C3) were measured via RT-qPCR and western blot. Cell growth and proliferation were determined using MTT and flow cytometry. Cell proliferation-related gene expression was measured using RT-qPCR and western blot. Results It was found that upregulation of C3orf43 by pCDH-C3 promoted hepatocyte proliferation, and inhibition of C3orf43 by C3-siRNA led to the reduction of cell proliferation. The results of qRT-PCR and western blot assay showed that the C3-siRNA group downregulated the expression of cell proliferation-related genes like JUN, MYC, CCND1 and CCNA2, and the pCDH-C3 group upregulated the expression of those genes. Conclusion These findings reveal that C3orf43 may contribute to hepatocyte proliferation and may have the potential to promote liver repair and regeneration.
Collapse
Affiliation(s)
- Chunyan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046 China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan 453007 China
| | - Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan 453007 China
| | - Deming Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan 453007 China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046 China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan 453007 China
| |
Collapse
|
29
|
Sanchez E, Bletz MC, Duntsch L, Bhuju S, Geffers R, Jarek M, Dohrmann AB, Tebbe CC, Steinfartz S, Vences M. Cutaneous Bacterial Communities of a Poisonous Salamander: a Perspective from Life Stages, Body Parts and Environmental Conditions. MICROBIAL ECOLOGY 2017; 73:455-465. [PMID: 27677894 DOI: 10.1007/s00248-016-0863-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/14/2016] [Indexed: 05/20/2023]
Abstract
Amphibian skin provides a habitat for bacterial communities in its mucus. Understanding the structure and function of this "mucosome" in the European fire salamander (Salamandra salamandra) is critical in the context of novel emerging pathogenic diseases. We compare the cutaneous bacterial communities of this species using amplicon-based sequencing of the 16S rRNA V4 region. Across 290 samples, over 4000 OTUs were identified, four of them consistently present in all samples. Larvae and post-metamorphs exhibited distinct cutaneous microbial communities. In adults, the parotoid gland surface had a community structure different from the head, dorsum, flanks and ventral side. Larvae from streams had higher phylogenetic diversity than those found in ponds. Their bacterial community structure also differed; species of Burkholderiaceae, Comamonadaceae, Methylophilaceae and Sphingomonadaceae were more abundant in pond larvae, possibly related to differences in factors like desiccation and decomposition rate in this environment. The observed differences in the cutaneous bacterial community among stages, body parts and habitats of fire salamanders suggest that both host and external factors shape these microbiota. We hypothesize that the variation in cutaneous bacterial communities might contribute to variation in pathogen susceptibility among individual salamanders.
Collapse
Affiliation(s)
- Eugenia Sanchez
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany.
| | - Molly C Bletz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Laura Duntsch
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Sabin Bhuju
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anja B Dohrmann
- Thünen Institute of Biodiversity, Bundesallee 50, 38116, Braunschweig, Germany
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 50, 38116, Braunschweig, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| |
Collapse
|
30
|
Sun J, Geng X, Guo J, Zang X, Li P, Li D, Xu C. Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:71-77. [PMID: 27343457 DOI: 10.1016/j.cbd.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Abstract
Animal skin that directly interfaces with the external environment has developed diverse adaptive functions to a variety of ecological conditions laden with pathogenic infection and physical harm. Amphibians exhibit various adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. Therefore, it is very necessary to explore the molecular basis of skin function and adaptation in amphibians. Currently, the studies on the molecular mechanisms of skin functions in anuran amphibians have been reported, but in urodele amphibians are rare. This study identified the skin proteomes of Chinese fire-bellied newt Cynops orientalis by a proteomic method, and compared the results to the skin proteomes of Chinese giant salamander Andrias davidianus obtained previously. A total of 452 proteins were identified in the newt skin by MALDI-TOF/MS, and functional annotation results by DAVID analysis showed that special functions such as wound healing, immune response, defense and respiration, were significantly enriched. Comparison results showed that the two species had a great difference in the aspects of protein kinds and abundance, and the highly expressed proteins may tightly correlate with living conditions. Moreover, the newt skin might have stronger immunity, but weaker respiration than the giant salamander skin to adapt to various living environments. This research provides a molecular basis for further studies on amphibian skin function and adaptation.
Collapse
Affiliation(s)
- Jingyan Sun
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xiaofang Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianlin Guo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Pengfei Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Deming Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
31
|
Huang L, Li J, Anboukaria H, Luo Z, Zhao M, Wu H. Comparative transcriptome analyses of seven anurans reveal functions and adaptations of amphibian skin. Sci Rep 2016; 6:24069. [PMID: 27040083 PMCID: PMC4819189 DOI: 10.1038/srep24069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/18/2016] [Indexed: 01/06/2023] Open
Abstract
Animal skin, which is the tissue that directly contacts the external surroundings, has evolved diverse functions to adapt to various environments. Amphibians represent the transitional taxon from aquatic to terrestrial life. Exploring the molecular basis of their skin function and adaptation is important to understand the survival and evolutionary mechanisms of vertebrates. However, comprehensive studies on the molecular mechanisms of skin functions in amphibians are scarce. In this study, we sequenced the skin transcriptomes of seven anurans belonging to three families and compared the similarities and differences in expressed genes and proteins. Unigenes and pathways related to basic biological processes and special functions, such as defense, immunity, and respiration, were enriched in functional annotations. A total of 108 antimicrobial peptides were identified. The highly expressed genes were similar in species of the same family but were different among families. Additionally, the positively selected orthologous groups were involved in biosynthesis, metabolism, immunity, and defense processes. This study is the first to generate extensive transcriptome data for the skin of seven anurans and provides unigenes and pathway candidates for further studies on amphibian skin function and adaptation.
Collapse
Affiliation(s)
- Li Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan 430079, China
| | - Jun Li
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan 430079, China
| | - Housseni Anboukaria
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan 430079, China
| | - Zhenhua Luo
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan 430079, China
| | - Mian Zhao
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan 430079, China
| | - Hua Wu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan 430079, China
| |
Collapse
|
32
|
Geng X, Wei H, Shang H, Zhou M, Chen B, Zhang F, Zang X, Li P, Sun J, Che J, Zhang Y, Xu C. Data from proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). Data Brief 2015. [PMID: 26217726 PMCID: PMC4510102 DOI: 10.1016/j.dib.2015.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Chinese giant salamander (Andrias davidianus), renowned as a living fossil, is the largest and longest-lived amphibian species in the world. Its skin is rich in collagens, and has developed mucous gland which could secrete a large amount of mucus under the scraping and electric stimulation. The molting is the degraded skin stratum corneum. To establish the functional skin proteome of Chinese giant salamander, two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) were applied to detect the composition and relative abundance of the proteins in the skin, mucus and molting. The determination of the general proteome in the skin can potentially serve as a foundation for future studies characterizing the skin proteomes from diseased salamander to provide molecular and mechanistic insights into various disease states and potential therapeutic interventions. Data presented here are also related to the research article “Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus)” in the Journal of Proteomics [1].
Collapse
Affiliation(s)
- Xiaofang Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang 453007, China ; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Hong Wei
- Department of Laboratory Animal Science, Third Military Medical University, Chongqing 400038, China
| | - Haitao Shang
- Chongqing Kui Xu Biotechnology Incorporated Company, Kaixian Country, Chongqing 405423, China
| | - Minghui Zhou
- Chongqing Kui Xu Biotechnology Incorporated Company, Kaixian Country, Chongqing 405423, China
| | - Bing Chen
- Chongqing Kui Xu Biotechnology Incorporated Company, Kaixian Country, Chongqing 405423, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang 453007, China
| | - Pengfei Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang 453007, China
| | - Jingyan Sun
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang 453007, China
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|