1
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
2
|
Tang R, Pan L, Bai Q, Li C, Ma S, Ou J, Shen Y. Biobased Tannic Acid-Chitosan Composite Membranes as Reusable Adsorbents for Effective Enrichment of Phosphopeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:927-937. [PMID: 38134293 DOI: 10.1021/acs.langmuir.3c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
High-performance reusable materials from renewable resources are rare and urgently required in bioseparation. Herein, a series of tannic acid-chitosan composite membranes for the enrichment of phosphopeptides were fabricated by the freeze casting method. First, a tannic acid-chitosan composite membrane was acquired via the multiple hydrogen bonds between tannic acid and chitosan, which had a long-range aligned three-dimensional microstructure. Second, a covalent-hydrogen bond hybrid composite was also fabricated, with stable and aligned honeycomb-like microstructures that formed by the synergy of covalence and hydrogen bonding. Besides, a ternary composite membrane was "one-pot" synthesized by the copolymerization of tannic acid, chitosan, and Ti4+ ions, indicating the feasibility of involving metal ions in the composition of the polymer skeleton in place of additional modification steps. The as-prepared chitosan composite membranes exhibited excellent performance in the enrichment of phosphopeptides from β-casein tryptic digest and human serum. Benefitting from the long-range aligned honeycomb-like structure coordinated by hydrogen bonds and covalent bonds, and a large number of pyrogallol functional groups provided by tannic acid, the covalent-hydrogen bond hybrid membrane showed excellent reusability and could be reused up to 16 times in phosphopeptide enrichment, as far as we know, which is the best reported result to date.
Collapse
Affiliation(s)
- Ruizhi Tang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Lei Pan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Quan Bai
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Cong Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Shujuan Ma
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Junjie Ou
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yehua Shen
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
3
|
van der Wijngaart H, Beekhof R, Knol JC, Henneman AA, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Verheul HMW, Labots M. Candidate biomarkers for treatment benefit from sunitinib in patients with advanced renal cell carcinoma using mass spectrometry-based (phospho)proteomics. Clin Proteomics 2023; 20:49. [PMID: 37940875 PMCID: PMC10631096 DOI: 10.1186/s12014-023-09437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
The tyrosine kinase inhibitor sunitinib is an effective first-line treatment for patients with advanced renal cell carcinoma (RCC). Hypothesizing that a functional read-out by mass spectrometry-based (phospho, p-)proteomics will identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC. A 78 phosphosite signature (p < 0.05, fold-change > 2) was identified; 22 p-sites were upregulated in RES (unique in RES: BCAR3, NOP58, EIF4A2, GDI1) and 56 in SENS (35 unique). EIF4A1/EIF4A2 were differentially expressed in RES at the (p-)proteome and, in an independent cohort, transcriptome level. Inferred kinase activity of MAPK3 (p = 0.026) and EGFR (p = 0.045) as determined by INKA was higher in SENS. Posttranslational modifications signature enrichment analysis showed that different p-site-centric signatures were enriched (p < 0.05), of which FGF1 and prolactin pathways in RES and, in SENS, vanadate and thrombin treatment pathways, were most significant. In conclusion, the RCC (phospho)proteome revealed differential p-sites and kinase activities associated with sunitinib resistance and sensitivity. Independent validation is warranted to develop an assay for upfront identification of patients who are intrinsically resistant to sunitinib.
Collapse
Affiliation(s)
- Hanneke van der Wijngaart
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Beekhof R, Bertotti A, Böttger F, Vurchio V, Cottino F, Zanella ER, Migliardi G, Viviani M, Grassi E, Lupo B, Henneman AA, Knol JC, Pham TV, de Goeij-de Haas R, Piersma SR, Labots M, Verheul HMW, Trusolino L, Jimenez CR. Phosphoproteomics of patient-derived xenografts identifies targets and markers associated with sensitivity and resistance to EGFR blockade in colorectal cancer. Sci Transl Med 2023; 15:eabm3687. [PMID: 37585503 DOI: 10.1126/scitranslmed.abm3687] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a well-exploited therapeutic target in metastatic colorectal cancer (mCRC). Unfortunately, not all patients benefit from current EGFR inhibitors. Mass spectrometry-based proteomics and phosphoproteomics were performed on 30 genomically and pharmacologically characterized mCRC patient-derived xenografts (PDXs) to investigate the molecular basis of response to EGFR blockade and identify alternative drug targets to overcome resistance. Both the tyrosine and global phosphoproteome as well as the proteome harbored distinctive response signatures. We found that increased pathway activity related to mitogen-activated protein kinase (MAPK) inhibition and abundant tyrosine phosphorylation of cell junction proteins, such as CXADR and CLDN1/3, in sensitive tumors, whereas epithelial-mesenchymal transition and increased MAPK and AKT signaling were more prevalent in resistant tumors. Furthermore, the ranking of kinase activities in single samples confirmed the driver activity of ERBB2, EGFR, and MET in cetuximab-resistant tumors. This analysis also revealed high kinase activity of several members of the Src and ephrin kinase family in 2 CRC PDX models with genomically unexplained resistance. Inhibition of these hyperactive kinases, alone or in combination with cetuximab, resulted in growth inhibition of ex vivo PDX-derived organoids and in vivo PDXs. Together, these findings highlight the potential value of phosphoproteomics to improve our understanding of anti-EGFR treatment and response prediction in mCRC and bring to the forefront alternative drug targets in cetuximab-resistant tumors.
Collapse
Affiliation(s)
- Robin Beekhof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Franziska Böttger
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Oncode Institute, 1066 CX Amsterdam, Netherlands
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Francesca Cottino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Eugenia R Zanella
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Giorgia Migliardi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Alex A Henneman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Richard de Goeij-de Haas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Mariette Labots
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Henk M W Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
5
|
Chang A, Leutert M, Rodriguez-Mias RA, Villén J. Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics. J Proteome Res 2023; 22:1868-1880. [PMID: 37097255 PMCID: PMC10510590 DOI: 10.1021/acs.jproteome.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Phosphotyrosine (pY) enrichment is critical for expanding the fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY can handle up to 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic, and tyrosine-specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.
Collapse
Affiliation(s)
- Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
6
|
Zong Y, Wang Y, Yang Y, Zhao D, Wang X, Shen C, Qiao L. DeepFLR facilitates false localization rate control in phosphoproteomics. Nat Commun 2023; 14:2269. [PMID: 37080984 PMCID: PMC10119288 DOI: 10.1038/s41467-023-38035-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Protein phosphorylation is a post-translational modification crucial for many cellular processes and protein functions. Accurate identification and quantification of protein phosphosites at the proteome-wide level are challenging, not least because efficient tools for protein phosphosite false localization rate (FLR) control are lacking. Here, we propose DeepFLR, a deep learning-based framework for controlling the FLR in phosphoproteomics. DeepFLR includes a phosphopeptide tandem mass spectrum (MS/MS) prediction module based on deep learning and an FLR assessment module based on a target-decoy approach. DeepFLR improves the accuracy of phosphopeptide MS/MS prediction compared to existing tools. Furthermore, DeepFLR estimates FLR accurately for both synthetic and biological datasets, and localizes more phosphosites than probability-based methods. DeepFLR is compatible with data from different organisms, instruments types, and both data-dependent and data-independent acquisition approaches, thus enabling FLR estimation for a broad range of phosphoproteomics experiments.
Collapse
Affiliation(s)
- Yu Zong
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yuxin Wang
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Department of Computer Science, and Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Dan Zhao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | | | | | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
van der Wijngaart H, Jagga S, Dekker H, de Goeij R, Piersma SR, Pham TV, Knol JC, Zonderhuis BM, Holland HJ, Jiménez CR, Verheul HMW, Vanapalli S, Labots M. Advancing wide implementation of precision oncology: A liquid nitrogen-free snap freezer preserves molecular profiles of biological samples. Cancer Med 2023; 12:10979-10989. [PMID: 36916528 DOI: 10.1002/cam4.5781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE In precision oncology, tumor molecular profiles guide selection of therapy. Standardized snap freezing of tissue biospecimens is necessary to ensure reproducible, high-quality samples that preserve tumor biology for adequate molecular profiling. Quenching in liquid nitrogen (LN2 ) is the golden standard method, but LN2 has several limitations. We developed a LN2 -independent snap freezer with adjustable cold sink temperature. To benchmark this device against the golden standard, we compared molecular profiles of biospecimens. METHODS Cancer cell lines and core needle normal tissue biopsies from five patients' liver resection specimens were used to compare mass spectrometry (MS)-based global phosphoproteomic and RNA sequencing profiles and RNA integrity obtained by both freezing methods. RESULTS Unsupervised cluster analysis of phosphoproteomic and transcriptomic profiles of snap freezer versus LN2 -frozen K562 samples and liver biopsies showed no separation based on freezing method (with Pearson's r 0.96 (range 0.92-0.98) and >0.99 for K562 profiles, respectively), while samples with +2 h bench-time formed a separate cluster. RNA integrity was also similar for both snap freezing methods. Molecular profiles of liver biopsies were clearly identified per individual patient regardless of the applied freezing method. Two to 25 s freezing time variations did not induce profiling differences in HCT116 samples. CONCLUSION The novel snap freezer preserves high-quality biospecimen and allows identification of individual patients' molecular profiles, while overcoming important limitations of the use of LN2 . This snap freezer may provide a useful tool in clinical cancer research and practice, enabling a wider implementation of (multi-)omics analyses for precision oncology.
Collapse
Affiliation(s)
- Hanneke van der Wijngaart
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sahil Jagga
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Henk Dekker
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Richard de Goeij
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Babs M Zonderhuis
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry J Holland
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Connie R Jiménez
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Srinivas Vanapalli
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Chebolu A, Ramos RB, Arunachalam T, Adam AP, Wladis EJ. SH2 domain-containing protein tyrosine phosphatase-2 is enriched in eyelid specimens of rosacea. SKIN HEALTH AND DISEASE 2023; 3:e190. [PMID: 36751313 PMCID: PMC9892417 DOI: 10.1002/ski2.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Background Rosacea is a cutaneous disease that may secondarily affect the ocular surface. Due to the vision threatening, cosmetic, psychological, and work productivity impact, the identification of cellular targets that govern rosacea would enhance our understanding of the biology of the disease and delineate targets for therapeutic manipulation. Objective To characterize the involvement of SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) in the pathogenesis of rosacea. Methods Specimens from elective ectropion surgery (n = 20) were processed from patients with rosacea (n = 10) and control patients (n = 10). Immunohistochemistry (IHC) and quantitative western blotting (WB) were performed to identify and quantify the presence of SHP2 and 4G10 (a phosphotyrosine antibody) in rosacea compared to normal tissue. IHC samples were graded according to an intensity scale (0-4). Mann-Whitney statistical analyses were performed via a dedicated computerized software package. Results On WB, SHP2 was expressed in higher concentrations in rosacea specimens (p < 0.05). On IHC, SHP2 was enriched in the epidermis in rosacea (p < 0.05), although 4G10 levels were not statistically significantly different between the two groups (p > 0.05). Conclusions SHP2 is enriched in cutaneous specimens of rosacea, suggesting a critical role for this protein in the disease and indicating a modifiable therapeutic moiety.
Collapse
Affiliation(s)
- Apoorv Chebolu
- Department of OphthalmologyLions Eye InstituteAlbanyNew YorkUSA
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular PhysiologyAlbany Medical CenterAlbanyNew YorkUSA
| | | | - Alejandro Pablo Adam
- Department of Molecular and Cellular PhysiologyAlbany Medical CenterAlbanyNew YorkUSA
| | | |
Collapse
|
9
|
Chang A, Leutert M, Rodriguez-Mias RA, Villén J. Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522335. [PMID: 36711935 PMCID: PMC9881991 DOI: 10.1101/2023.01.05.522335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphotyrosine (pY) enrichment is critical for expanding fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY handles 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic and tyrosine specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.
Collapse
Affiliation(s)
- Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
10
|
Datta KK, Chatterjee A, Gowda H. Phosphotyrosine Profiling Using SILAC. Methods Mol Biol 2023; 2603:117-125. [PMID: 36370274 DOI: 10.1007/978-1-0716-2863-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tyrosine phosphorylation on proteins is an important posttranslational modification that regulates various processes in cells. Mass spectrometry-based phosphotyrosine profiling can reveal tyrosine kinase signaling activity in cells. Using quantitative proteomics strategies such as stable isotope labeling with amino acids in cell culture (SILAC) allows comparison of tyrosine kinase signaling activity across two to -three different conditions. In this book chapter, we discuss the reagents required and a step-by-step protocol to carry out phosphotyrosine profiling using SILAC.
Collapse
Affiliation(s)
- Keshava K Datta
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Harsha Gowda
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Materials, workflows and applications of IMAC for phosphoproteome profiling in the recent decade: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Glykofridis IE, Henneman AA, Balk JA, Goeij-de Haas R, Westland D, Piersma SR, Knol JC, Pham TV, Boekhout M, Zwartkruis FJT, Wolthuis RMF, Jimenez CR. Phosphoproteomic analysis of FLCN inactivation highlights differential kinase pathways and regulatory TFEB phosphoserines. Mol Cell Proteomics 2022; 21:100263. [PMID: 35863698 PMCID: PMC9421328 DOI: 10.1016/j.mcpro.2022.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/26/2022] Open
Abstract
In Birt-Hogg-Dubé (BHD) syndrome, germline mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114 and Ser122, which may be caused by fact that FLCNNEG cells experience oxidative stress. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.
Collapse
Affiliation(s)
- Iris E Glykofridis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Alex A Henneman
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jesper A Balk
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Richard Goeij-de Haas
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Denise Westland
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Sander R Piersma
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Thang V Pham
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Michiel Boekhout
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Fried J T Zwartkruis
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| | - Connie R Jimenez
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
13
|
van Linde ME, Labots M, Brahm CG, Hovinga KE, De Witt Hamer PC, Honeywell RJ, de Goeij-de Haas R, Henneman AA, Knol JC, Peters GJ, Dekker H, Piersma SR, Pham TV, Vandertop WP, Jiménez CR, Verheul HM. Tumor Drug Concentration and Phosphoproteomic Profiles After Two Weeks of Treatment With Sunitinib in Patients with Newly Diagnosed Glioblastoma. Clin Cancer Res 2022; 28:1595-1602. [PMID: 35165100 PMCID: PMC9365363 DOI: 10.1158/1078-0432.ccr-21-1933] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/14/2021] [Accepted: 02/09/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Tyrosine kinase inhibitors (TKI) have poor efficacy in patients with glioblastoma (GBM). Here, we studied whether this is predominantly due to restricted blood-brain barrier penetration or more to biological characteristics of GBM. PATIENTS AND METHODS Tumor drug concentrations of the TKI sunitinib after 2 weeks of preoperative treatment was determined in 5 patients with GBM and compared with its in vitro inhibitory concentration (IC50) in GBM cell lines. In addition, phosphotyrosine (pTyr)-directed mass spectrometry (MS)-based proteomics was performed to evaluate sunitinib-treated versus control GBM tumors. RESULTS The median tumor sunitinib concentration of 1.9 μmol/L (range 1.0-3.4) was 10-fold higher than in concurrent plasma, but three times lower than sunitinib IC50s in GBM cell lines (median 5.4 μmol/L, 3.0-8.5; P = 0.01). pTyr-phosphoproteomic profiles of tumor samples from 4 sunitinib-treated versus 7 control patients revealed 108 significantly up- and 23 downregulated (P < 0.05) phosphopeptides for sunitinib treatment, resulting in an EGFR-centered signaling network. Outlier analysis of kinase activities as a potential strategy to identify drug targets in individual tumors identified nine kinases, including MAPK10 and INSR/IGF1R. CONCLUSIONS Achieved tumor sunitinib concentrations in patients with GBM are higher than in plasma, but lower than reported for other tumor types and insufficient to significantly inhibit tumor cell growth in vitro. Therefore, alternative TKI dosing to increase intratumoral sunitinib concentrations might improve clinical benefit for patients with GBM. In parallel, a complex profile of kinase activity in GBM was found, supporting the potential of (phospho)proteomic analysis for the identification of targets for (combination) treatment.
Collapse
Affiliation(s)
- Myra E. van Linde
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Cyrillo G. Brahm
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koos E. Hovinga
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Philip C. De Witt Hamer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Richard J. Honeywell
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Pharmacy, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alex A. Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jaco C. Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Henk Dekker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - William P. Vandertop
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk M.W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Medical Oncology, Radboud UMC, Nijmegen, the Netherlands
| |
Collapse
|
14
|
Liu X, Dong M, Yao Y, Wang Y, Mao J, Hu L, Yao L, Ye M. A Tyrosine Phosphoproteome Analysis Approach Enabled by Selective Dephosphorylation with Protein Tyrosine Phosphatase. Anal Chem 2022; 94:4155-4164. [PMID: 35239328 DOI: 10.1021/acs.analchem.1c03704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine phosphorylation (pTyr) plays a prominent role in signal transduction and regulation in all eukaryotic cells. In conventional immunoaffinity purification (IP) methods, phosphotyrosine peptides are isolated from the digest of cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. However, low sensitivity, poor reproducibility, and high cost are universal concerns for IP approaches. In this study, we presented an antibody-free approach to identify phosphotyrosine peptides by using protein tyrosine phosphatase (PTP). It was found that most of the PTPs including PTP1B, TCPTP, and SHP1 can efficiently and selectively dephosphorylate phosphotyrosine peptides. We then designed a workflow by combining two Ti4+-IMAC-based phosphopeptide enrichment steps with PTP-catalyzed dephosphorylation for tyrosine phosphoproteomics analysis. This workflow was first validated by selective detection of phosphotyrosine peptides from semicomplex samples and then applied to analyze the tyrosine phosphoproteome of Jurkat T cells. Around 1000 putative former phosphotyrosine peptides were identified from less than 500 μg of cell lysate. The tyrosine phosphosites on the majority of these peptides could be unambiguously determined for over 70% of them possessing only one tyrosine residue. It was also found that the tyrosine sites identified by this method were highly complementary to those identified by the SH2 superbinder-based method. Therefore, the combination of Ti4+-IMAC enrichment with PTP dephosphorylation provides an alternative and cost-effective approach for tyrosine phosphoproteomics analysis.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,Liaoning Key Laboratory of Molecular Recognition and Imaging School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lishan Yao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
15
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
16
|
Li RJE, de Haas A, Rodríguez E, Kalay H, Zaal A, Jimenez CR, Piersma SR, Pham TV, Henneman AA, de Goeij-de Haas RR, van Vliet SJ, van Kooyk Y. Quantitative Phosphoproteomic Analysis Reveals Dendritic Cell- Specific STAT Signaling After α2-3-Linked Sialic Acid Ligand Binding. Front Immunol 2021; 12:673454. [PMID: 33968084 PMCID: PMC8100677 DOI: 10.3389/fimmu.2021.673454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are key initiators of the adaptive immunity, and upon recognition of pathogens are able to skew T cell differentiation to elicit appropriate responses. DCs possess this extraordinary capacity to discern external signals using receptors that recognize pathogen-associated molecular patterns. These can be glycan-binding receptors that recognize carbohydrate structures on pathogens or pathogen-associated patterns that additionally bind receptors, such as Toll-like receptors (TLRs). This study explores the early signaling events in DCs upon binding of α2-3 sialic acid (α2-3sia) that are recognized by Immune inhibitory Sialic acid binding immunoglobulin type lectins. α2-3sias are commonly found on bacteria, e.g. Group B Streptococcus, but can also be expressed by tumor cells. We investigated whether α2-3sia conjugated to a dendrimeric core alters DC signaling properties. Through phosphoproteomic analysis, we found differential signaling profiles in DCs after α2-3sia binding alone or in combination with LPS/TLR4 co-stimulation. α2-3sia was able to modulate the TLR4 signaling cascade, resulting in 109 altered phosphoproteins. These phosphoproteins were annotated to seven biological processes, including the regulation of the IL-12 cytokine pathway. Secretion of IL-10, the inhibitory regulator of IL-12 production, by DCs was found upregulated after overnight stimulation with the α2-3sia dendrimer. Analysis of kinase activity revealed altered signatures in the JAK-STAT signaling pathway. PhosphoSTAT3 (Ser727) and phosphoSTAT5A (Ser780), involved in the regulation of the IL-12 pathway, were both downregulated. Flow cytometric quantification indeed revealed de- phosphorylation over time upon stimulation with α2-3sia, but no α2-6sia. Inhibition of both STAT3 and -5A in moDCs resulted in a similar cytokine secretion profile as α-3sia triggered DCs. Conclusively, this study revealed a specific alteration of the JAK-STAT pathway in DCs upon simultaneous α2-3sia and LPS stimulation, altering the IL10:IL-12 cytokine secretion profile associated with reduction of inflammation. Targeted control of the STAT phosphorylation status is therefore an interesting lead for the abrogation of immune escape that bacteria or tumors impose on the host.
Collapse
Affiliation(s)
- Rui-Jún Eveline Li
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aram de Haas
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anouk Zaal
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard R de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Le Large TYS, Bijlsma MF, El Hassouni B, Mantini G, Lagerweij T, Henneman AA, Funel N, Kok B, Pham TV, de Haas R, Morelli L, Knol JC, Piersma SR, Kazemier G, van Laarhoven HWM, Giovannetti E, Jimenez CR. Focal adhesion kinase inhibition synergizes with nab-paclitaxel to target pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2021; 40:91. [PMID: 33750427 PMCID: PMC7941981 DOI: 10.1186/s13046-021-01892-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a very lethal disease, with minimal therapeutic options. Aberrant tyrosine kinase activity influences tumor growth and is regulated by phosphorylation. We investigated phosphorylated kinases as target in PDAC. Methods Mass spectrometry-based phosphotyrosine proteomic analysis on PDAC cell lines was used to evaluate active kinases. Pathway analysis and inferred kinase activity analysis was performed to identify novel targets. Subsequently, we investigated targeting of focal adhesion kinase (FAK) in vitro with drug perturbations in combination with chemotherapeutics used against PDAC. Tyrosine phosphoproteomics upon treatment was performed to evaluate signaling. An orthotopic model of PDAC was used to evaluate the combination of defactinib with nab-paclitaxel. Results PDAC cell lines portrayed high activity of multiple receptor tyrosine kinases to various degree. The non-receptor kinase, FAK, was identified in all cell lines by our phosphotyrosine proteomic screen and pathway analysis. Targeting of this kinase with defactinib validated reduced phosphorylation profiles. Additionally, FAK inhibition had anti-proliferative and anti-migratory effects. Combination with (nab-)paclitaxel had a synergistic effect on cell proliferation in vitro and reduced tumor growth in vivo. Conclusions Our study shows high phosphorylation of several oncogenic receptor tyrosine kinases in PDAC cells and validated FAK inhibition as potential synergistic target with Nab-paclitaxel against this devastating disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01892-z.
Collapse
Affiliation(s)
- T Y S Le Large
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - M F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - B El Hassouni
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - G Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC-Start-Up, Fondazione Pisana per la Scienza, Pisa, Italy
| | - T Lagerweij
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands
| | - A A Henneman
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - N Funel
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - B Kok
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - T V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - R de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - L Morelli
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - J C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - S R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - G Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands
| | - H W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - E Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands. .,Cancer Pharmacology Lab, AIRC-Start-Up, Fondazione Pisana per la Scienza, Pisa, Italy.
| | - C R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
van Alphen C, Cucchi DGJ, Cloos J, Schelfhorst T, Henneman AA, Piersma SR, Pham TV, Knol JC, Jimenez CR, Janssen JJWM. The influence of delay in mononuclear cell isolation on acute myeloid leukemia phosphorylation profiles. J Proteomics 2021; 238:104134. [PMID: 33561558 DOI: 10.1016/j.jprot.2021.104134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
Mass-spectrometry (MS) based phosphoproteomics is increasingly used to explore aberrant cellular signaling and kinase driver activity, aiming to improve kinase inhibitor (KI) treatment selection in malignancies. Phosphorylation is a dynamic, highly regulated post-translational modification that may be affected by variation in pre-analytical sample handling, hampering the translational value of phosphoproteomics-based analyses. Here, we investigate the effect of delay in mononuclear cell isolation on acute myeloid leukemia (AML) phosphorylation profiles. We performed MS on immuno-precipitated phosphotyrosine (pY)-containing peptides isolated from AML samples after seven pre-defined delays before sample processing (direct processing, thirty minutes, one hour, two hours, three hours, four hours and 24 h delay). Up to four hours, pY phosphoproteomics profiles show limited variation. However, in samples processed with a delay of 24 h, we observed significant change in these phosphorylation profiles, with differential phosphorylation of 22 pY phosphopeptides (p < 0.01). This includes increased phosphorylation of pY phosphopeptides of JNK and p38 kinases indicative of stress response activation. Based on these results, we conclude that processing of AML samples should be standardized at all times and should occur within four hours after sample collection. SIGNIFICANCE: Our study provides a practical time-frame in which fresh peripheral blood samples from acute myeloid patients should be processed for phosphoproteomics, in order to warrant correct interpretation of in vivo biology. We show that up to four hours of delayed processing after sample collection, pY phosphoproteomic profiles remain stable. Extended delays are associated with perturbation of phosphorylation profiles. After a delay of 24 h, JNK activation loop phosphorylation is markedly increased and may serve as a biomarker for delayed processing. These findings are relevant for biomedical acute myeloid leukemia research, as phosphoproteomic techniques are of particular interest to investigate aberrant kinase signaling in relation to disease emergence and kinase inhibitor response. With these data, we aim to contribute to reproducible research with meaningful outcomes.
Collapse
Affiliation(s)
- Carolien van Alphen
- Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - David G J Cucchi
- Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Tim Schelfhorst
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alexander A Henneman
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jaco C Knol
- Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Jeroen J W M Janssen
- Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
19
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
20
|
van Alphen C, Cloos J, Beekhof R, Cucchi DGJ, Piersma SR, Knol JC, Henneman AA, Pham TV, van Meerloo J, Ossenkoppele GJ, Verheul HMW, Janssen JJWM, Jimenez CR. Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines. Mol Cell Proteomics 2020; 19:884-899. [PMID: 32102969 PMCID: PMC7196578 DOI: 10.1074/mcp.ra119.001504] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder arising from hematopoietic myeloid progenitors. Aberrantly activated tyrosine kinases (TK) are involved in leukemogenesis and are associated with poor treatment outcome. Kinase inhibitor (KI) treatment has shown promise in improving patient outcome in AML. However, inhibitor selection for patients is suboptimal.In a preclinical effort to address KI selection, we analyzed a panel of 16 AML cell lines using phosphotyrosine (pY) enrichment-based, label-free phosphoproteomics. The Integrative Inferred Kinase Activity (INKA) algorithm was used to identify hyperphosphorylated, active kinases as candidates for KI treatment, and efficacy of selected KIs was tested.Heterogeneous signaling was observed with between 241 and 2764 phosphopeptides detected per cell line. Of 4853 identified phosphopeptides with 4229 phosphosites, 4459 phosphopeptides (4430 pY) were linked to 3605 class I sites (3525 pY). INKA analysis in single cell lines successfully pinpointed driver kinases (PDGFRA, JAK2, KIT and FLT3) corresponding with activating mutations present in these cell lines. Furthermore, potential receptor tyrosine kinase (RTK) drivers, undetected by standard molecular analyses, were identified in four cell lines (FGFR1 in KG-1 and KG-1a, PDGFRA in Kasumi-3, and FLT3 in MM6). These cell lines proved highly sensitive to specific KIs. Six AML cell lines without a clear RTK driver showed evidence of MAPK1/3 activation, indicative of the presence of activating upstream RAS mutations. Importantly, FLT3 phosphorylation was demonstrated in two clinical AML samples with a FLT3 internal tandem duplication (ITD) mutation.Our data show the potential of pY-phosphoproteomics and INKA analysis to provide insight in AML TK signaling and identify hyperactive kinases as potential targets for treatment in AML cell lines. These results warrant future investigation of clinical samples to further our understanding of TK phosphorylation in relation to clinical response in the individual patient.
Collapse
Affiliation(s)
- Carolien van Alphen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center; Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam Department of Hematology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Jacqueline Cloos
- Amsterdam UMC, Vrije Universiteit Amsterdam Department of Hematology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pediatric Oncology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Robin Beekhof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center; Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - David G J Cucchi
- Amsterdam UMC, Vrije Universiteit Amsterdam Department of Hematology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pediatric Oncology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center; Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center; Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Alex A Henneman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center; Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center; Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Johan van Meerloo
- Amsterdam UMC, Vrije Universiteit Amsterdam Department of Hematology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Gert J Ossenkoppele
- Amsterdam UMC, Vrije Universiteit Amsterdam Department of Hematology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Henk M W Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center; Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Jeroen J W M Janssen
- Amsterdam UMC, Vrije Universiteit Amsterdam Department of Hematology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center; Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands.
| |
Collapse
|
21
|
Chua XY, Mensah T, Aballo T, Mackintosh SG, Edmondson RD, Salomon AR. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome. Mol Cell Proteomics 2020; 19:730-743. [PMID: 32071147 PMCID: PMC7124467 DOI: 10.1074/mcp.tir119.001865] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Theresa Mensah
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| |
Collapse
|
22
|
Wang B, Li Y, Sui M, Qi Q, Wang T, Liu D, Zhou M, Zheng Y, Zhu LQ, Zhang B. Identification of the downstream molecules of agrin/Dok-7 signaling in muscle. FASEB J 2020; 34:5144-5161. [PMID: 32043676 DOI: 10.1096/fj.201901693rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/11/2022]
Abstract
The development of the neuromuscular junction depends on signaling processes that involve protein phosphorylation. Motor neuron releases agrin to activate muscle protein Dok-7, a key tyrosine kinase essential for the formation of a mature and functional neuromuscular junction. However, the signaling cascade downstream of Dok-7 remains poorly understood. In this study, we combined the clustered regularly interspaced short palindromic repeats/Cas9 technique and quantitative phosphoproteomics analysis to study the tyrosine phosphorylation events triggered by agrin/Dok-7. We found tyrosine phosphorylation level of 36 proteins increased specifically by agrin stimulation. In Dok-7 mutant myotubes, however, 13 of the 36 proteins failed to be enhanced by agrin stimulation, suggesting that these 13 proteins are Dok-7-dependent tyrosine-phosphorylated proteins, could work as downstream molecules of agrin/Dok-7 signaling. We validated one of the proteins, Anxa3, by in vitro and in vivo assays. Knocking down of Anxa3 in the cultured myotubes inhibited agrin-induced AChR clustering, whereas reduction of Anxa3 in mouse muscles induced abnormal postsynaptic development. Collectively, our phosphoproteomics analysis provides novel insights into the complicated signaling network downstream of agrin/Dok-7.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Qi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjie Zheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Labots M, Pham TV, Honeywell RJ, Knol JC, Beekhof R, de Goeij-de Haas R, Dekker H, Neerincx M, Piersma SR, van der Mijn JC, van der Peet DL, Meijerink MR, Peters GJ, van Grieken NC, Jiménez CR, Verheul HM. Kinase Inhibitor Treatment of Patients with Advanced Cancer Results in High Tumor Drug Concentrations and in Specific Alterations of the Tumor Phosphoproteome. Cancers (Basel) 2020; 12:cancers12020330. [PMID: 32024067 PMCID: PMC7072422 DOI: 10.3390/cancers12020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022] Open
Abstract
Identification of predictive biomarkers for targeted therapies requires information on drug exposure at the target site as well as its effect on the signaling context of a tumor. To obtain more insight in the clinical mechanism of action of protein kinase inhibitors (PKIs), we studied tumor drug concentrations of protein kinase inhibitors (PKIs) and their effect on the tyrosine-(pTyr)-phosphoproteome in patients with advanced cancer. Tumor biopsies were obtained from 31 patients with advanced cancer before and after 2 weeks of treatment with sorafenib (SOR), erlotinib (ERL), dasatinib (DAS), vemurafenib (VEM), sunitinib (SUN) or everolimus (EVE). Tumor concentrations were determined by LC-MS/MS. pTyr-phosphoproteomics was performed by pTyr-immunoprecipitation followed by LC-MS/MS. Median tumor concentrations were 2–10 µM for SOR, ERL, DAS, SUN, EVE and >1 mM for VEM. These were 2–178 × higher than median plasma concentrations. Unsupervised hierarchical clustering of pTyr-phosphopeptide intensities revealed patient-specific clustering of pre- and on-treatment profiles. Drug-specific alterations of peptide phosphorylation was demonstrated by marginal overlap of robustly up- and downregulated phosphopeptides. These findings demonstrate that tumor drug concentrations are higher than anticipated and result in drug specific alterations of the phosphoproteome. Further development of phosphoproteomics-based personalized medicine is warranted.
Collapse
Affiliation(s)
- Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Richard J. Honeywell
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Jaco C. Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Henk Dekker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Maarten Neerincx
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Johannes C. van der Mijn
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Donald L. van der Peet
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Martijn R. Meijerink
- Department of Radiology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Nicole C.T. van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Connie R. Jiménez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
- Correspondence: or (C.R.J.); (H.M.W.V.)
| | - Henk M.W. Verheul
- Department of Medical Oncology, RadboudUMC, Radboud University, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
- Correspondence: or (C.R.J.); (H.M.W.V.)
| |
Collapse
|
24
|
Hernandez-Valladares M, Wangen R, Berven FS, Guldbrandsen A. Protein Post-Translational Modification Crosstalk in Acute Myeloid Leukemia Calls for Action. Curr Med Chem 2019; 26:5317-5337. [PMID: 31241430 DOI: 10.2174/0929867326666190503164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Post-translational modification (PTM) crosstalk is a young research field. However, there is now evidence of the extraordinary characterization of the different proteoforms and their interactions in a biological environment that PTM crosstalk studies can describe. Besides gene expression and phosphorylation profiling of acute myeloid leukemia (AML) samples, the functional combination of several PTMs that might contribute to a better understanding of the complexity of the AML proteome remains to be discovered. OBJECTIVE By reviewing current workflows for the simultaneous enrichment of several PTMs and bioinformatics tools to analyze mass spectrometry (MS)-based data, our major objective is to introduce the PTM crosstalk field to the AML research community. RESULTS After an introduction to PTMs and PTM crosstalk, this review introduces several protocols for the simultaneous enrichment of PTMs. Two of them allow a simultaneous enrichment of at least three PTMs when using 0.5-2 mg of cell lysate. We have reviewed many of the bioinformatics tools used for PTM crosstalk discovery as its complex data analysis, mainly generated from MS, becomes challenging for most AML researchers. We have presented several non-AML PTM crosstalk studies throughout the review in order to show how important the characterization of PTM crosstalk becomes for the selection of disease biomarkers and therapeutic targets. CONCLUSION Herein, we have reviewed the advances and pitfalls of the emerging PTM crosstalk field and its potential contribution to unravel the heterogeneity of AML. The complexity of sample preparation and bioinformatics workflows demands a good interaction between experts of several areas.
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Rebecca Wangen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Jonas Lies vei 65, N-5021 Bergen, Norway
| | - Frode S Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Astrid Guldbrandsen
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Computational Biology Unit, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Bergen, Thormøhlensgt 55, N-5008 Bergen, Norway
| |
Collapse
|
25
|
Beekhof R, van Alphen C, Henneman AA, Knol JC, Pham TV, Rolfs F, Labots M, Henneberry E, Le Large TY, de Haas RR, Piersma SR, Vurchio V, Bertotti A, Trusolino L, Verheul HM, Jimenez CR. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases. Mol Syst Biol 2019; 15:e8250. [PMID: 30979792 PMCID: PMC6461034 DOI: 10.15252/msb.20188250] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Identifying hyperactive kinases in cancer is crucial for individualized treatment with specific inhibitors. Kinase activity can be discerned from global protein phosphorylation profiles obtained with mass spectrometry-based phosphoproteomics. A major challenge is to relate such profiles to specific hyperactive kinases fueling growth/progression of individual tumors. Hitherto, the focus has been on phosphorylation of either kinases or their substrates. Here, we combined label-free kinase-centric and substrate-centric information in an Integrative Inferred Kinase Activity (INKA) analysis. This multipronged, stringent analysis enables ranking of kinase activity and visualization of kinase-substrate networks in a single biological sample. To demonstrate utility, we analyzed (i) cancer cell lines with known oncogenes, (ii) cell lines in a differential setting (wild-type versus mutant, +/- drug), (iii) pre- and on-treatment tumor needle biopsies, (iv) cancer cell panel with available drug sensitivity data, and (v) patient-derived tumor xenografts with INKA-guided drug selection and testing. These analyses show superior performance of INKA over its components and substrate-based single-sample tool KARP, and underscore target potential of high-ranking kinases, encouraging further exploration of INKA's functional and clinical value.
Collapse
Affiliation(s)
- Robin Beekhof
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carolien van Alphen
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alex A Henneman
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jaco C Knol
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thang V Pham
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Rolfs
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariette Labots
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evan Henneberry
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tessa Ys Le Large
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Richard R de Haas
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander R Piersma
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Valentina Vurchio
- Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy
| | - Andrea Bertotti
- Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy
| | - Henk Mw Verheul
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Arrington JV, Hsu CC, Elder SG, Andy Tao W. Recent advances in phosphoproteomics and application to neurological diseases. Analyst 2018; 142:4373-4387. [PMID: 29094114 DOI: 10.1039/c7an00985b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphorylation has an incredible impact on the biological behavior of proteins, altering everything from intrinsic activity to cellular localization and complex formation. It is no surprise then that this post-translational modification has been the subject of intense study and that, with the advent of faster, more accurate instrumentation, the number of large-scale mass spectrometry-based phosphoproteomic studies has swelled over the past decade. Recent developments in sample preparation, phosphorylation enrichment, quantification, and data analysis strategies permit both targeted and ultra-deep phosphoproteome profiling, but challenges remain in pinpointing biologically relevant phosphorylation events. We describe here technological advances that have facilitated phosphoproteomic analysis of cells, tissues, and biofluids and note applications to neuropathologies in which the phosphorylation machinery may be dysregulated, much as it is in cancer.
Collapse
|
27
|
Li D, Wang L, Maziuk BF, Yao X, Wolozin B, Cho YK. Directed evolution of a picomolar-affinity, high-specificity antibody targeting phosphorylated tau. J Biol Chem 2018; 293:12081-12094. [PMID: 29899114 PMCID: PMC6078456 DOI: 10.1074/jbc.ra118.003557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Antibodies are essential biochemical reagents for detecting protein post-translational modifications (PTMs) in complex samples. However, recent efforts in developing PTM-targeting antibodies have reported frequent nonspecific binding and limited affinity of such antibodies. To address these challenges, we investigated whether directed evolution could be applied to improve the affinity of a high-specificity antibody targeting phosphothreonine 231 (pThr-231) of the human microtubule-associated protein tau. On the basis of existing structural information, we hypothesized that improving antibody affinity may come at the cost of loss in specificity. To test this hypothesis, we developed a novel approach using yeast surface display to quantify the specificity of PTM-targeting antibodies. When we affinity-matured the single-chain variable antibody fragment through directed evolution, we found that its affinity can be improved >20-fold over that of the WT antibody, reaching a picomolar range. We also discovered that most of the high-affinity variants exhibit cross-reactivity toward the nonphosphorylated target site but not to the phosphorylation site with a scrambled sequence. However, systematic quantification of the specificity revealed that such a tradeoff between the affinity and specificity did not apply to all variants and led to the identification of a picomolar-affinity variant that has a matching high specificity of the original phosphotau antibody. In cell- and tissue-imaging experiments, the high-affinity variant gave significantly improved signal intensity while having no detectable nonspecific binding. These results demonstrate that directed evolution is a viable approach for obtaining high-affinity PTM-specific antibodies and highlight the importance of assessing the specificity in the antibody engineering process.
Collapse
Affiliation(s)
- Dan Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Brandon F Maziuk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269; Department of Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Yong Ku Cho
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269; Department of Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269.
| |
Collapse
|
28
|
|
29
|
Núñez C, Chantada-Vázquez MDP, Bravo SB, Vázquez-Estévez S. Novel functionalized nanomaterials for the effective enrichment of proteins and peptides with post-translational modifications. J Proteomics 2018; 181:170-189. [DOI: 10.1016/j.jprot.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
|
30
|
Next-generation antibodies for post-translational modifications. Curr Opin Struct Biol 2018; 51:141-148. [PMID: 29753204 DOI: 10.1016/j.sbi.2018.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/24/2018] [Indexed: 01/08/2023]
Abstract
Despite increasing demands for antibodies to post-translational modifications (PTMs), fundamental difficulties in molecular recognition of PTMs hinder the generation of highly functional anti-PTM antibodies using conventional methods. Recently, advanced approaches in protein engineering and design that have been established for biologics development were applied to successfully generating highly functional anti-PTM antibodies. Furthermore, structural analyses of anti-PTM antibodies revealed unprecedented binding modes that substantially increased the antigen-binding surface. These features deepen the understanding of mechanisms underlying specific recognition of PTMs, which may lead to more effective approaches for generating anti-PTM antibodies with exquisite specificity and high affinity.
Collapse
|
31
|
Dekker LJM, Zeneyedpour L, Snoeijers S, Joore J, Leenstra S, Luider TM. Determination of Site-Specific Phosphorylation Ratios in Proteins with Targeted Mass Spectrometry. J Proteome Res 2018; 17:1654-1663. [PMID: 29457462 DOI: 10.1021/acs.jproteome.7b00911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We show that parallel reaction monitoring (PRM) can be used for exact quantification of phosphorylation ratios of proteins using stable-isotope-labeled peptides. We have compared two different PRM approaches on a digest of a U87 cell culture, namely, direct-PRM (tryptic digest measured by PRM without any further sample preparation) and TiO2-PRM (tryptic digest enriched with TiO2 cartridges, followed by PRM measurement); these approaches are compared for the following phosphorylation sites: neuroblast differentiation-associated protein (AHNAK S5480-p), calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D T337-p), and epidermal growth factor receptor (EGFR S1166-p). A reproducible percentage of phosphorylation could be determined (CV 6-13%) using direct-PRM or TiO2-PRM. In addition, we tested the approaches in a cell culture experiment in which U87 cells were deprived of serum. As a "gold standard" we included immune precipitation of EGFR followed by PRM (IP-PRM). For EGFR (S1166) and AHNAK (S5480) a statistical significant change in the percentage of phosphorylation could be observed as a result of serum deprivation; for EGFR (S1166) this change was observed for both TiO2-PRM and IP-PRM. The presented approach has the potential to multiplex and to quantify the ratio of phosphorylation in a single analysis.
Collapse
Affiliation(s)
- Lennard J M Dekker
- Erasmus MC , Department of Neurology , Wytemaweg 80 , 3015 CN Rotterdam , The Netherlands
| | - Lona Zeneyedpour
- Erasmus MC , Department of Neurology , Wytemaweg 80 , 3015 CN Rotterdam , The Netherlands
| | | | - Jos Joore
- Pepscope , Dantelaan 83 , 3533 VB Utrecht , The Netherlands
| | - Sieger Leenstra
- Erasmus MC , Department of Neurosurgery , 3015 CN Rotterdam , The Netherlands
| | - Theo M Luider
- Erasmus MC , Department of Neurology , Wytemaweg 80 , 3015 CN Rotterdam , The Netherlands
| |
Collapse
|
32
|
Rowland EA, Snowden CK, Cristea IM. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol 2017; 42:76-85. [PMID: 29169048 DOI: 10.1016/j.cbpa.2017.11.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
Lipoylation is a rare, but highly conserved lysine posttranslational modification. To date, it is known to occur on only four multimeric metabolic enzymes in mammals, yet these proteins are staples in the core metabolic landscape. The dysregulation of these mitochondrial proteins is linked to a range of human metabolic disorders. Perhaps most striking is that lipoylation itself, the proteins that add or remove the modification, as well as the proteins it decorates are all evolutionarily conserved from bacteria to humans, highlighting the importance of this essential cofactor. Here, we discuss the biological significance of protein lipoylation, the importance of understanding its regulation in health and disease states, and the advances in mass spectrometry-based proteomic technologies that can aid these studies.
Collapse
Affiliation(s)
- Elizabeth A Rowland
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Caroline K Snowden
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
33
|
Yao Y, Bian Y, Dong M, Wang Y, Lv J, Chen L, Wang H, Mao J, Dong J, Ye M. SH2 Superbinder Modified Monolithic Capillary Column for the Sensitive Analysis of Protein Tyrosine Phosphorylation. J Proteome Res 2017; 17:243-251. [PMID: 29083189 DOI: 10.1021/acs.jproteome.7b00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we present a method to specifically capture phosphotyrosine (pTyr) peptides from minute amount of sample for the sensitive analysis of protein tyrosine phosphorylation. We immobilized SH2 superbinder on a monolithic capillary column to construct a microreactor to enrich pTyr peptides. It was found that the synthetic pTyr peptide could be specifically enriched by the microreactor from the peptide mixture prepared by spiking of the synthetic pTyr peptide into the tryptic digests of α-casein and β-casein with molar ratios of 1:1000:1000. The microreactor was further applied to enrich pTyr peptides from pervanadate-treated HeLa cell digests for phosphoproteomics analysis, which resulted in the identification of 796 unique pTyr sites. In contrast, the conventional SH2 superbinder-based method identified 41 pTyr sites for the same sample, only 5.2% of the number achieved by the microreactor. Finally, this microreactor was also applied to analyze the pTyr in Shc1 complex, an immunopurified protein complex, which resulted in the identification of 15 pTyr sites. Together, this technique is best fitted to analyze the pTyr in minute amount of sample and will have broad application in fields where only a limited amount of sample is available.
Collapse
Affiliation(s)
- Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University , Zhengzhou, Henan 450052, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Dalian Ocean University, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianfang Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| |
Collapse
|
34
|
Bllaci L, Torsetnes SB, Wierzbicka C, Shinde S, Sellergren B, Rogowska-Wrzesinska A, Jensen ON. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO2 Affinity Resins. Anal Chem 2017; 89:11332-11340. [DOI: 10.1021/acs.analchem.7b02091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Loreta Bllaci
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Silje B. Torsetnes
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Celina Wierzbicka
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Sudhirkumar Shinde
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Adelina Rogowska-Wrzesinska
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Ole N. Jensen
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| |
Collapse
|
35
|
Dong M, Bian Y, Wang Y, Dong J, Yao Y, Deng Z, Qin H, Zou H, Ye M. Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis. Anal Chem 2017; 89:9307-9314. [DOI: 10.1021/acs.analchem.7b02078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mingming Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- Medical Research Center, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhen Deng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Hanfa Zou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
36
|
Labots M, van der Mijn JC, Beekhof R, Piersma SR, de Goeij-de Haas RR, Pham TV, Knol JC, Dekker H, van Grieken NC, Verheul HM, Jiménez CR. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection. J Proteomics 2017; 162:99-107. [DOI: 10.1016/j.jprot.2017.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022]
|
37
|
Deng Z, Dong M, Wang Y, Dong J, Li SSC, Zou H, Ye M. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis. Anal Chem 2017; 89:2405-2410. [DOI: 10.1021/acs.analchem.6b04288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhenzhen Deng
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 1000491, China
| | - Mingming Dong
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan Wang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 1000491, China
| | - Jing Dong
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shawn S.-C. Li
- Departments
of Biochemistry, Oncology and the Children’s Health Research
Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Hanfa Zou
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingliang Ye
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
38
|
Abstract
TCR signaling critically depends on protein phosphorylation across many proteins. Localization of each phosphorylation event relative to the T-cell receptor (TCR) and canonical T-cell signaling proteins will provide clues about the structure of TCR signaling networks. Quantitative phosphoproteomic analysis by mass spectrometry provides a wide-scale view of cellular phosphorylation networks. However, analysis of phosphorylation by mass spectrometry is still challenging due to the relative low abundance of phosphorylated proteins relative to all proteins and the extraordinary diversity of phosphorylation sites across the proteome. Highly selective enrichment of phosphorylated peptides is essential to provide the most comprehensive view of the phosphoproteome. Optimization of phosphopeptide enrichment methods coupled with highly sensitive mass spectrometry workflows significantly improves the sequencing depth of the phosphoproteome to over 10,000 unique phosphorylation sites from complex cell lysates. Here we describe a step-by-step method for phosphoproteomic analysis that has achieved widespread success for identification of serine, threonine, and tyrosine phosphorylation. Reproducible quantification of relative phosphopeptide abundance is provided by intensity-based label-free quantitation. An ideal set of mass spectrometry analysis parameters is also provided that optimize the yield of identified sites. We also provide guidelines for the bioinformatic analysis of this type of data to assess the quality of the data and to comply with proteomic data reporting requirements.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Arthur R Salomon
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, 02903, USA.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
39
|
Abe Y, Nagano M, Tada A, Adachi J, Tomonaga T. Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters. J Proteome Res 2016; 16:1077-1086. [PMID: 28152594 DOI: 10.1021/acs.jproteome.6b00576] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation is a major post-translational modification that regulates protein function, with phosphotyrosine (pY) modifications being implicated in oncogenesis. However, global profiling of pY statuses without treatment with a tyrosine phosphatase inhibitor such as pervanadate is still challenging due to the low occupancy of pY sites. In this study, we greatly improved the identification of pY sites by liquid chromatography-tandem mass spectrometry (LC-MS/MS) by optimization of both the pY-immunoprecipitation (pY-IP) protocol and the LC-MS/MS parameters. Our highly sensitive method reproducibly identified more than 1000 pY sites from 8 mg of protein lysate without the need for tyrosine phosphatase inhibitor treatment. Furthermore, >30% of the identified pY sites were not assigned in the PhosphositePlus database. We further applied our method to the comparison of pY status between PC3 cells with and without treatment using the epidermal growth factor receptor (EGFR) inhibitor Erlotinib. Under Erlotinib treatment, we observed not only a decrease in well-known modes of EGFR downstream signaling but also modulations of kinases that are not relevant to the EGFR cascade, such as PTK6 and MAPK13. Our newly developed method for pY proteomics has the potential to reveal unknown pY signaling modes and to identify novel kinase anticancer targets.
Collapse
Affiliation(s)
- Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition , Ibaraki Osaka 567-0085, Japan
| | - Maiko Nagano
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition , Ibaraki Osaka 567-0085, Japan
| | - Asa Tada
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition , Ibaraki Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition , Ibaraki Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition , Ibaraki Osaka 567-0085, Japan
| |
Collapse
|
40
|
Ding L, Yang R, Yang G, Cao J, Li P, Zhou Y. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. PLANTA 2016; 243:719-31. [PMID: 26669597 PMCID: PMC4757628 DOI: 10.1007/s00425-015-2441-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/03/2015] [Indexed: 05/10/2023]
Abstract
Phosphorylation and dephosphorylation events were initiated in wheat scab resistance. The putative FHB-responsive phosphoproteins are mainly involved in three functional groups and contain at least one tyrosine, serine, or threonine phosphorylation site. Fusarium head blight (FHB), caused by Fusarium graminearum, is a severe disease in wheat. Protein phosphorylation plays an important role in plant-pathogen interactions, however, a global analysis of protein phosphorylation in response to FHB infection remains to be explored. To study the effect of FHB on the phosphorylation state of wheat proteins, proteins extracted from spikes of a resistant wheat cultivar after 6 h of inoculation with F. graminearum or sterile H2O were separated by two-dimensional gel electrophoresis, and then the immunodetection of putative phosphoproteins was conducted by Western blotting using specific anti-phosphotyrosine antibody, anti-phosphothreonine antibody and anti-phosphoserine antibody. A total of 35 phosphorylated signals was detected and protein identities of 28 spots were determined. Functional categorization showed that the putative FHB-responsive phosphoproteins were mainly involved in defense/stress response, signal transduction, and metabolism. The phosphorylation status of proteins associated with signaling pathways mediated by salicylic acid, calcium ions, small GTPase, as well as with detoxification, reactive oxygen species scavenging, antimicrobial compound synthesis, and cell wall fortification was regulated in wheat spikes in response to F. graminearum infection. The present study reveals dynamics of wheat phosphoproteome in response to F. graminearum infection and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of wheat scab resistance.
Collapse
Affiliation(s)
- Lina Ding
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Ruiying Yang
- Laboratory Middle School, Juancheng, 274600, Shandong, China
| | - Guoxing Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yang Zhou
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
41
|
Guise AJ, Cristea IM. Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5). Methods Mol Biol 2016; 1436:47-84. [PMID: 27246208 PMCID: PMC5644287 DOI: 10.1007/978-1-4939-3667-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear-cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods that have proven effective for studying the functions and regulatory features of HDAC5. We present methods for assessing the subcellular localization, protein interactions, posttranslational modifications (PTMs), and activity of HDAC5 from the standpoint of investigating either the endogenous protein or tagged protein forms in human cells. Specifically, given that at the heart of HDAC5 regulation lie its dynamic localization, interactions, and PTMs, we present methods for assessing HDAC5 localization in fixed and live cells, for isolating HDAC5-containing protein complexes to identify its interactions and modifications, and for determining how these PTMs map to predicted HDAC5 structural motifs. Lastly, we provide examples of approaches for studying HDAC5 functions with a focus on its regulation during cell-cycle progression. These methods can readily be adapted for the study of other HDACs or non-HDAC-proteins of interest. Individually, these techniques capture temporal and spatial snapshots of HDAC5 functions; yet together, these approaches provide powerful tools for investigating both the regulation and regulatory roles of HDAC5 in different cell contexts relevant to health and disease.
Collapse
Affiliation(s)
- Amanda J Guise
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA.
| |
Collapse
|