1
|
Matos GAPDE, Santos ELD, Fritsche Y, Ornellas TS, Steiner N, Stefenon VM. In vitro induced cold memory fails to enhance embryogenic cultures development in Araucaria angustifolia. AN ACAD BRAS CIENC 2024; 96:e20240574. [PMID: 39504085 DOI: 10.1590/0001-3765202420240574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 11/08/2024] Open
Abstract
This research aimed to study how exposing somatic embryos of Araucaria angustifolia to cold temperatures in vitro could enhance somatic embryogenesis. The somatic embryos were induced from immature zygotic embryos, grown for 120 days, and then subjected to 4.5°C for 0, 2, 4, 8, or 16 days. After the cold treatment, the embryogenic cultures were returned to 25±2°C for 20 days and examined using light microscopy and cytochemistry. It was found that the embryogenic cultures at the PEM III stage did not show further development, and the growth of the embryogenic masses was negatively affected in the longer-duration cold treatment. Overcoming these challenges in the somatic embryogenesis protocol for A. angustifolia requires further integrative investigations on epigenetic events driving the zygotic embryo development.
Collapse
Affiliation(s)
- Gabriel Antônio P DE Matos
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Fitotecnia, Rod. Admar Gonzaga, 1346, 88034-000 Florianópolis, SC, Brazil
| | - Evelyn L Dos Santos
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Fitotecnia, Rod. Admar Gonzaga, 1346, 88034-000 Florianópolis, SC, Brazil
| | - Yohan Fritsche
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Fitotecnia, Rod. Admar Gonzaga, 1346, 88034-000 Florianópolis, SC, Brazil
| | - Thiago S Ornellas
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Fitotecnia, Rod. Admar Gonzaga, 1346, 88034-000 Florianópolis, SC, Brazil
| | - Neusa Steiner
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Botânica, Campus Universitário Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Valdir Marcos Stefenon
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Fitotecnia, Rod. Admar Gonzaga, 1346, 88034-000 Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Kaziuk FD, Furlanetto ALDDM, Dos Santos ALW, Floh EIS, Donatti L, Merlin Rocha ME, Fortes F, Martinez GR, Cadena SMSC. The metabolic response of Araucaria angustifolia embryogenic cells to heat stress is associated with their maturation potential. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1010-1027. [PMID: 37743049 DOI: 10.1071/fp22272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
Araucaria angustifolia is a critically endangered species and its distribution can be affected by an increase in temperature. In this study, we evaluated the effects of heat stress (30°C) on Araucaria angustifolia cell lines responsive (SE1) and non-responsive (SE6) to the development of somatic embryos. The viability of both cell lines was reduced by heat stress and mitochondria were the organelles most affected. Heat stress for 24h increased the reactive oxygen species (ROS) levels in SE1 cells, followed by a reduction at 48 and 72h. In SE6 cells, an increase occurred after 24 and 48h of stress, returning to control levels at 72h. H2 O2 levels were increased after 24h for both SE1 and SE6 cells, being higher for SE6. Interestingly, at 48 and 72h, H2 O2 levels decreased in SE1 cells, while in SE6, the values returned to the control levels. The respiration of SE6 cells in the presence of oxidisable substrates was inhibited by heat stress, in agreement with the high lipid peroxidation levels. The AaSERK1 gene was identified in both cultures, with greater expression in the SE1 line. Heat stress for 24 and 48h increased gene expression only in this cell line. The activity of peroxidase, superoxide dismutase and enzymes of the glutathione/ascorbate cycle was increased in both cell lines subjected to heat stress. Catalase activity was increased only in SE6 cells at 72h of exposure. These results show that responsive SE1 cells can modulate ROS levels more efficiently than SE6 when these cells are stressed by heat. This ability may be related to the maturation capacity of these cells.
Collapse
Affiliation(s)
- Fernando Diego Kaziuk
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | - Lucelia Donatti
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maria Eliane Merlin Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Fabiane Fortes
- Department of Biology, State University of Paraná, União da Vitória, Paraná, Brazil
| | - Glaucia Regina Martinez
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | |
Collapse
|
3
|
Adero M, Tripathi JN, Tripathi L. Advances in Somatic Embryogenesis of Banana. Int J Mol Sci 2023; 24:10999. [PMID: 37446177 DOI: 10.3390/ijms241310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The cultivation of bananas and plantains (Musa spp.) holds significant global economic importance, but faces numerous challenges, which may include diverse abiotic and biotic factors such as drought and various diseases caused by fungi, viruses, and bacteria. The genetic and asexual nature of cultivated banana cultivars makes them unattractive for improvement via traditional breeding. To overcome these constraints, modern biotechnological approaches like genetic modification and genome editing have become essential for banana improvement. However, these techniques rely on somatic embryogenesis, which has only been successfully achieved in a limited number of banana cultivars. Therefore, developing new strategies for improving somatic embryogenesis in banana is crucial. This review article focuses on advancements in banana somatic embryogenesis, highlighting the progress, the various stages of regeneration, cryopreservation techniques, and the molecular mechanisms underlying the process. Furthermore, this article discusses the factors that could influence somatic embryogenesis and explores the prospects for improving the process, especially in recalcitrant banana cultivars. By addressing these challenges and exploring potential solutions, researchers aim to unlock the full potential of somatic embryogenesis as a tool for banana improvement, ultimately benefiting the global banana industry.
Collapse
Affiliation(s)
- Mark Adero
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya
| | | | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya
| |
Collapse
|
4
|
Polesi LG, Fraga HPDF, Almeida FA, Silveira V, Guerra MP. Comparative proteomic analysis and antioxidant enzyme activity provide new insights into the embryogenic competence of Guadua chacoensis (Bambusoideae, Poaceae). J Proteomics 2023; 273:104790. [PMID: 36535623 DOI: 10.1016/j.jprot.2022.104790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Somatic embryogenesis (SE) involves modifications of cellular, biochemical, genetic, and epigenetic patterns. Our work investigated proteins as markers of embryogenic response and characterized the redox state of embryogenic cultures (EC) of Guadua chacoensis. We identified a total of 855 proteins; 129 were up- and 136 down-accumulated in EC as compared with non-embryogenic culture (NEC). Additionally, 37 and 22 proteins were identified as unique in EC and NEC, respectively. Heat-shock proteins as unique proteins and increased activity in Superoxide Dismutase and Guaiacol Peroxidase in EC suggest that the embryogenic response requires activation of the stress response mechanism. Ribosomal, translational, and glycolytic proteins in EC seem to be associated with protein synthesis and energy sources for embryo development, respectively. Accumulation of cell wall-related proteins, such as Arabinogalactan and Polygalacturonase inhibitors, and signaling transduction proteins, including Chitinase, Phospholipase, and Guanine nucleotide-binding proteins in EC seems to be associated with embryogenic response. Enhancement of H2O2 content in EC compared to NEC suggests a possible role as a secondary messenger in SE. Altogether, the present study identified marker proteins of embryogenic response in G. chacoensis and revealed the activation of ROS scavenging enzymes to assure cell redox homeostasis and SE responses. SIGNIFICANCE: Somatic embryogenesis is a promising technique for the propagation and conservation of bamboo species; however, this route has been the least understood and studied until now. This study corresponds to the first work approaching proteomics complemented with biochemical analyses in the somatic embryogenesis of bamboo, bringing robust and precise information that can improve our understanding of this complex morphogenetic route.
Collapse
Affiliation(s)
- Luiza Giacomolli Polesi
- Graduate Program in Plant Genetic Resources, Laboratory of Plant Developmental Physiology and Genetics, Federal University of Santa Catarina, Florianópolis, SC 88034-000, Brazil
| | | | - Felipe Astolpho Almeida
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Miguel Pedro Guerra
- Graduate Program in Plant Genetic Resources, Laboratory of Plant Developmental Physiology and Genetics, Federal University of Santa Catarina, Florianópolis, SC 88034-000, Brazil; Graduate Program in Agricultural and Natural Ecosystems, Federal University of Santa Catarina, Curitibanos Campus, Ulysses Gaboardi Road, km 3, 89520-000 Curitibanos, Brazil.
| |
Collapse
|
5
|
Castela G, Providência J, Monteiro M, Oliveiros B, Silva S, Brito M, Machado E, Neto Murta J, Castelo-Branco M, Correa Z. Effectiveness of Intra-Arterial Chemotherapy for the Treatment of Intraocular Retinoblastoma: Relevance of a Multidisciplinary Setting. Clin Ophthalmol 2023; 17:487-496. [PMID: 36755890 PMCID: PMC9901457 DOI: 10.2147/opth.s398488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose We aim to report about effectiveness and safety in the context of our centers' setting in the management of retinoblastoma with intra-arterial chemotherapy (IAC) in a 5-year retrospective analysis of the Portuguese population. Patients and Methods Retrospective analysis of consecutive cases of retinoblastoma selected to initiate IAC between 2015 and 2020, at the Portuguese National Reference Center. All included patients underwent complete ophthalmological evaluation under anesthesia with fundus photography. Diagnosis and classification of retinoblastoma was made according to the International Classification of Intraocular Retinoblastoma (ICRB). The patients were further divided into two groups: Group I for primary IAC and Group II for secondary IAC. Tumor recurrence or relapses, systemic metastasis and deaths were documented. Main efficacy outcome included ocular salvage and recurrence-free survival rates estimated using the Kaplan-Meier method. Results Twenty-eight eyes (19 eyes included in Group I and 9 eyes included in Group II) were eligible and a total of 130 IAC procedures were performed, with a median number of sessions of 4 (range 1-8) for each treated eye, during a median follow-up of 21 months (range 4-64). Of the included eyes, 22 (78.6%) were preserved. An overall survival of 100% was achieved. Considering the preserved eyes, the overall median decimal visual acuity achieved at the last visit was 0.15 (range 0.02-0.8). Three patients had permanent adverse events related to IAC (cataract, vitreous hemorrhage and choroidal ischemia). Considering the survival analysis of recurrence, the mean survival without recurrence was 84.2% for Group I and 66.7% for Group II, and the mean survival without enucleation was 78.6% (no events in Group II). Conclusion IAC has been shown to be an effective and safe treatment for children with intraocular retinoblastoma. This study demonstrates that IAC is effective even in moderate sample sizes, when a multidisciplinary approach is available.
Collapse
Affiliation(s)
- Guilherme Castela
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal,Correspondence: Guilherme Castela, Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Praceta Prof Mota Pinto, Coimbra, 3004-561, Portugal, Tel +351919702206, Email
| | - Joana Providência
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Madalena Monteiro
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Bárbara Oliveiros
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Sónia Silva
- Department of Pediatric Oncology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Manuel Brito
- Department of Pediatric Oncology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Egídio Machado
- Department of Medical Imaging, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joaquim Neto Murta
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Zélia Correa
- University of Miami, Bascom Palmer Eye Institute, Miami, FL, USA
| |
Collapse
|
6
|
Cordeiro D, Canhoto J, Correia S. Regulatory non-coding RNAs: Emerging roles during plant cell reprogramming and in vitro regeneration. FRONTIERS IN PLANT SCIENCE 2022; 13:1049631. [PMID: 36438127 PMCID: PMC9684189 DOI: 10.3389/fpls.2022.1049631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plant regeneration is a well-known capacity of plants occurring either in vivo or in vitro. This potential is the basis for plant micropropagation and genetic transformation as well as a useful system to analyse different aspects of plant development. Recent studies have proven that RNA species with no protein-coding capacity are key regulators of cellular function and essential for cell reprogramming. In this review, the current knowledge on the role of several ncRNAs in plant regeneration processes is summarized, with a focus on cell fate reprogramming. Moreover, the involvement/impact of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and small-interfering RNAs (siRNAs) in the regulatory networks of cell dedifferentiation, proliferation and differentiation is also analysed. A deeper understanding of plant ncRNAs in somatic cell reprogramming will allow a better modulation of in vitro regeneration processes such as organogenesis and somatic embryogenesis.
Collapse
|
7
|
Peng C, Gao F, Tretyakova IN, Nosov AM, Shen H, Yang L. Transcriptomic and Metabolomic Analysis of Korean Pine Cell Lines with Different Somatic Embryogenic Potential. Int J Mol Sci 2022; 23:13301. [PMID: 36362088 PMCID: PMC9658236 DOI: 10.3390/ijms232113301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 10/14/2023] Open
Abstract
The embryogenesis capacity of conifer callus is not only highly genotype-dependent, but also gradually lost after long-term proliferation. These problems have seriously limited the commercialization of conifer somatic embryogenesis (SE) technology. In this study, the responsive SE cell line (R-EC), the blocked SE cell line (B-EC), and the loss of SE cell line (L-EC) were studied. The morphological, physiological, transcriptomic, and metabolomic profiles of these three types of cells were analyzed. We found that R-EC had higher water content, total sugar content, and putrescine (Put) content, as well as lower superoxide dismutase (SOD) activity and H2O2 content compared to B-EC and L-EC. A total of 2566, 13,768, and 13,900 differentially expressed genes (DEGs) and 219, 253, and 341 differentially expressed metabolites (DEMs) were found in the comparisons of R-EC versus B-EC, R-EC versus B-EC, and B-EC versus L-EC, respectively. These DEGs and DEMs were mainly found to be involved in plant signal transduction, starch and sugar metabolism, phenylpropane metabolism, and flavonoid metabolism. We found that the AUX1 and AUX/IAA families of genes were significantly up-regulated after the long-term proliferation of callus, resulting in higher auxin content. Most phenylpropane and flavonoid metabolites, which act as antioxidants to protect cells from damage, were found to be significantly up-regulated in R-EC.
Collapse
Affiliation(s)
- Chunxue Peng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Fang Gao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Iraida Nikolaevna Tretyakova
- Laboratory of Forest Genetics and Breeding, V.N. Sukachev Institute of Forest, Siberian Branch of RAS, Krasnoyarsk 660036, Russia
| | - Alexander Mikhaylovich Nosov
- Department of Cell Biology, Institute of Plant Physiology K.A. Timiryazev, Russian Academy of Sciences, Moscow 127276, Russia
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| |
Collapse
|
8
|
Castander-Olarieta A, Pereira C, Mendes VM, Correia S, Manadas B, Canhoto J, Montalbán IA, Moncaleán P. Thermopriming-associated proteome and sugar content responses in Pinus radiata embryogenic tissue. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111327. [PMID: 35696927 DOI: 10.1016/j.plantsci.2022.111327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Improving the capacity of plants to face adverse environmental conditions requires a deep understanding of the molecular mechanisms governing stress response and adaptation. Proteomics, combined with metabolic analyses, offers a wide resource of information to be used in plant breeding programs. Previous studies have shown that somatic embryogenesis in Pinus spp. is a suitable tool not only to investigate stress response processes but also to modulate the behaviour of somatic plants. Based on this, the objective of this study was to analyse the protein and soluble sugar profiles of Pinus radiata embryonal masses after the application of high temperatures to unravel the mechanisms involved in thermopriming and memory acquisition at early stages of the somatic embryogenesis process. Results confirmed that heat provokes deep readjustments in the life cycle of proteins, together with a significant reduction in the carbon-flux of central-metabolism pathways. Heat-priming also promotes the accumulation of proteins involved in oxidative stress defence, in the synthesis of specific amino acids such as isoleucine, influences cell division, the organization of the cytoskeleton and cell-walls, and modifies the levels of free soluble sugars like glucose or fructose. All this seems to be regulated by proteins linked with epigenetic, transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Cátia Pereira
- Department of Forestry Science, NEIKER-BRTA, Arkaute, Spain; Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Vera M Mendes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra Correia
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
9
|
Peng C, Gao F, Wang H, Tretyakova IN, Nosov AM, Shen H, Yang L. Morphological and Physiological Indicators for Screening Cell Lines with High Potential for Somatic Embryo Maturation at an Early Stage of Somatic Embryogenesis in Pinus Koraiensis. PLANTS 2022; 11:plants11141867. [PMID: 35890500 PMCID: PMC9316463 DOI: 10.3390/plants11141867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Many cell lines in the embryogenic callus cannot produce somatic embryos (SEs) even if they meet the optimal SE maturation culture conditions during conifer somatic embryogenesis. This phenomenon hinders the progress of the industrial-scale reproduction of conifers. Therefore, there is an urgent need to obtain morphological and physiological markers to screen embryogenic calli in response to SE maturation conditions. To detect cell lines with high somatic embryogenesis potential during the proliferation process, we counted the number of pro-embryos and early SEs (ESEs) in different cell lines and storage substances, endogenous hormones, and polyamine contents. The results showed that the yield of P. koraiensis SEs was heavily dependent on genotype (p = 0.001). There were high levels of PE III (pro-embryo III) number, ESE number, and soluble protein content, in the response cell lines (R cell lines), which were 1.6-, 3-, and 1.1-fold those of the obstructive cell lines (B cell lines), respectively. The B cell line had high levels of starch, auxin (IAA), Put, Spd, and putrescine: spermine (Put: Spm) compared to the R cell line. In addition, the numbers of PE III, ESEs, and soluble protein content were significantly positively correlated with SE yield. In contrast, the contents of starch, abscisic acid (ABA), Put, Spm, and Spd were significantly negatively correlated with SE yield. To ensure the accuracy of the results, we used nine cell lines to test the results. The PE III and ESE numbers and the Spm and Spd contents were positively correlated with SE yield, while the levels of starch, ABA, IAA, Put: Spd, and Put: Spm were negatively correlated with SE yield. Thus, we recommend using high PE III and ESEs as morphological indicators and low levels of starch, IAA, ABA, and Put: Spm as physiological markers to screen cell lines with a high somatic embryogenesis potential. In addition, we also found that the relationship between Spd, Spm, and SE yield was opposite in the two experimental results. Therefore, we speculate that the differences in Spd and Spm content are mainly affected by genotype. In conclusion, this study obtained the morphological and physiological markers of some high-somatic embryogenic cell lines by comparing the differences between nine somatic embryogenic cell lines. Our results can guide the improvement of conifer somatic embryogenesis technology and can provide a theoretical basis for accelerating the application of biotechnology in large-scale artificial breeding.
Collapse
Affiliation(s)
- Chunxue Peng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (C.P.); (F.G.); (H.W.)
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Fang Gao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (C.P.); (F.G.); (H.W.)
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Hao Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (C.P.); (F.G.); (H.W.)
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Iraida Nikolaevna Tretyakova
- Laboratory of Forest Genetics and Breeding, Institution of the Russian Academy of Sciences, V.N. Sukachev Institute of Forest Siberian Branch of RAS, 660036 Krasnoyarsk, Russia;
| | - Alexander Mikhaylovich Nosov
- Department of Cell Biology, Institute of Plant Physiology, K.A. Timiryazev Russian Academy of Sciences, 127276 Moscow, Russia;
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (C.P.); (F.G.); (H.W.)
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
- Correspondence: (H.S.); (L.Y.); Tel.: +86-0451-821-915-0918 (L.Y.)
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (C.P.); (F.G.); (H.W.)
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
- Correspondence: (H.S.); (L.Y.); Tel.: +86-0451-821-915-0918 (L.Y.)
| |
Collapse
|
10
|
Borges Araujo AJ, Cerruti GV, Zuccarelli R, Rodriguez Ruiz M, Freschi L, Singh R, Moerschbacher BM, Floh EIS, Wendt dos Santos AL. Proteomic Analysis of S-Nitrosation Sites During Somatic Embryogenesis in Brazilian Pine, Araucaria angustifolia (Bertol.) Kuntze. FRONTIERS IN PLANT SCIENCE 2022; 13:902068. [PMID: 35845673 PMCID: PMC9280032 DOI: 10.3389/fpls.2022.902068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cysteine S-nitrosation is a redox-based post-translational modification that mediates nitric oxide (NO) regulation of various aspects of plant growth, development and stress responses. Despite its importance, studies exploring protein signaling pathways that are regulated by S-nitrosation during somatic embryogenesis have not been performed. In the present study, endogenous cysteine S-nitrosation site and S-nitrosated proteins were identified by iodo-TMT labeling during somatic embryogenesis in Brazilian pine, an endangered native conifer of South America. In addition, endogenous -S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase (GSNOR) activity were determined in cell lines with contrasting embryogenic potential. Overall, we identified an array of proteins associated with a large variety of biological processes and molecular functions with some of them already described as important for somatic embryogenesis (Class IV chitinase, pyruvate dehydrogenase E1 and dehydroascorbate reductase). In total, our S-nitrosoproteome analyses identified 18 endogenously S-nitrosated proteins and 50 in vitro S-nitrosated proteins (after GSNO treatment) during cell culture proliferation and embryo development. Furthermore, SNO levels and GSNOR activity were increased during embryo formation. These findings expand our understanding of the Brazilian pine proteome and shed novel insights into the potential use of pharmacological manipulation of NO levels by using NO inhibitors and donors during somatic embryogenesis.
Collapse
Affiliation(s)
| | | | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Rodriguez Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ratna Singh
- Department of Plant Biology and Biotechnology, WWU Münster, Münster, Germany
| | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
11
|
Elbl PM, de Souza DT, Rosado D, de Oliveira LF, Navarro BV, Matioli SR, Floh EIS. Building an embryo: An auxin gene toolkit for zygotic and somatic embryogenesis in Brazilian pine. Gene 2022; 817:146168. [PMID: 34995731 DOI: 10.1016/j.gene.2021.146168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
Many studies in the model species Arabidopsis thaliana characterized genes involved in embryo formation. However, much remains to be learned about the portfolio of genes that are involved in signal transduction and transcriptional regulation during plant embryo development in other species, particularly in an evolutionary context, especially considering that some genes involved in embryo patterning are not exclusive of land plants. This study, used a combination of domain architecture phylostratigraphy and phylogenetic reconstruction to investigate the evolutionary history of embryo patterning and auxin metabolism (EPAM) genes in Viridiplantae. This approach shed light on the co-optation of auxin metabolism and other molecular mechanisms that contributed to the radiation of land plants, and specifically to embryo formation. These results have potential to assist conservation programs, by directing the development of tools for obtaining somatic embryos. In this context, we employed this methodology with critically endangered and non-model species Araucaria angustifolia, the Brazilian pine, which is current focus of conservation efforts using somatic embryogenesis. So far, this approach had little success since somatic embryos fail to completely develop. By profiling the expression of genes that we identified as necessary for the emergence of land-plant embryos, we found striking differences between zygotic and somatic embryos that might explain the developmental arrest and be used to improve A. angustifolia somatic culture.
Collapse
Affiliation(s)
- Paula M Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil.
| | - Diego T de Souza
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP, Brazil
| | - Daniele Rosado
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | - Leandro F de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil
| | - Bruno V Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil; Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Sergio R Matioli
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Eny I S Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Dorigan de Matos Furlanetto AL, Kaziuk FD, Martinez GR, Donatti L, Merlin Rocha ME, Dos Santos ALW, Floh EIS, Cadena SMSC. Mitochondrial bioenergetics and enzymatic antioxidant defense differ in Paraná pine cell lines with contrasting embryogenic potential. Free Radic Res 2021; 55:255-266. [PMID: 33961525 DOI: 10.1080/10715762.2021.1921172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Araucaria angustifolia is classified as a critically endangered species by the International Union for Conservation of Nature. This threat is worsened by the inefficiency of methods for ex-situ conservation and propagation. In conifers, somatic embryogenesis (SE) associated with cryopreservation is an efficient method to achieve germplasm conservation and mass clonal propagation. However, the efficiency of SE is highly dependent on genotype responsivity to the artificial stimulus used in vitro during cell line proliferation and later during somatic embryo development. In this study, we evaluated the activity of antioxidant enzymes and characterized mitochondrial functions during the proliferation of embryogenic cells of A. angustifolia responsive (SE1) and non-responsive (SE6) to the development of somatic embryos. The activities of the antioxidant enzymes GR (EC 1.6.4.2), MDHAR (EC 1.6.5.4), and POX (EC 1.11.1.7) were increased in SE1 culture, while in SE6 culture, only the activity of DHAR (EC 1.8.5.1) was significantly higher. Additionally, SE6 culture presented a higher number of mitochondria, which agreed with the increased rate of oxygen consumption compared to responsive SE1 culture; however, the mitochondrial volume was lower. Although the ATP levels did not differ, the NAD(P)H levels were higher in SE1 cells. NDs, AOX, and UCP were less active in responsive SE1 than in non-responsive cells. Our results show significant differences between SE1 and SE6 embryogenic cells regarding mitochondrial functions and antioxidant enzyme activities, which may be intrinsic to the in vitro proliferation phase of both cell lines, possessing a crucial role for the induction of in vitro maturation process.
Collapse
Affiliation(s)
| | - Fernando Diego Kaziuk
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Glaucia Regina Martinez
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lucelia Donatti
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Plant Proteomics and Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:51-66. [DOI: 10.1007/978-3-030-80352-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Abstract
Korean pine broadleaf mixed forest is an important ecosystem for maintaining biodiversity in Northeast China. Korean pine is also an important species for the production of timber and nuts in the mountainous areas of Northeast China. In this study, we compared three types of Korean pine callus and found that embryogenic callus had high amounts of storage substances (protein, sugar and starch). Non-embryonic callus had high levels of polyphenols and polyphenol oxidation, while callus that lost somatic embryogenesis potential had lower levels of storage substances (protein, sugar and starch) and higher contents of peroxidase and catalase. These results indicate that high contents of storage substances (protein, sugar and starch), and low levels of polyphenols and polyphenol oxidase can be used as physiological markers of callus with somatic embryogenic potential. During the development process of Korean pine somatic embryos, fresh weight and dry weight gradually increased, while water content gradually decreased. Soluble protein, starch, soluble sugar and superoxide dismutase also increased during development, while peroxidase and catalase levels reduced over time. These results indicate that somatic embryogenesis involves energy storage, and antioxidant enzymes cooperate to regulate the occurrence and development of embryos. These results provide physiological markers for identification of embryogenic callus with somatic embryogenesis, to evaluate callus suitable for somatic embryogenesis, and provide basis for further research on the molecular mechanisms of somatic embryogenesis.
Collapse
|
15
|
Marimuthu K, Subbaraya U, Suthanthiram B, Marimuthu SS. Molecular analysis of somatic embryogenesis through proteomic approach and optimization of protocol in recalcitrant Musa spp. PHYSIOLOGIA PLANTARUM 2019; 167:282-301. [PMID: 30883793 DOI: 10.1111/ppl.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Somatic embryogenesis (SE) is a complex stress related process regulated by numerous biological factors. SE is mainly applicable to mass propagation and genetic improvement of plants through gene transfer technology and induced mutations. In banana, SE is highly genome dependent as the efficiency varies with cultivars. To understand the molecular mechanism of SE, a proteomics approach was carried out to identify proteins expressed during embryogenic calli (EC) induction, regeneration and germination of somatic embryos in the banana cultivar cv. Rasthali (AAB). In total, 70 spots were differentially expressed in various developmental stages of SE, of which 16 were uniquely expressed and 17 were highly abundant in EC compared to non-embryogenic calli and explants. Also, four spots were uniquely expressed in germinating somatic embryos. The functional annotation of identified proteins revealed that calcium signaling along with stress and endogenous hormones related proteins played a vital role in EC induction and germination of somatic embryos. Thus, based on this outcome, the callus induction media was modified and tested in five cultivars. Among them, cultivars Grand Naine (AAA), Monthan (ABB) and Ney Poovan (AB) showed a better response in tryptophan added media, whereas Red Banana (AAA) and Karpuravalli (ABB) showed maximum EC induction in kinetin and CaCl2 supplemented media respectively. Simultaneously, germination media were modified to induce proteins responsible for germination. In cv. Rasthali, media supplemented with 10 mM CaCl2 showed a maximum increase in germination (51.79%) over control plants. Thus, the present study revealed that media modification based on proteomic analysis can induce SE in recalcitrant cultivars and also enhance germination in cultivars amenable for SE.
Collapse
Affiliation(s)
- Kumaravel Marimuthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| | - Uma Subbaraya
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| | | | - Saraswathi S Marimuthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| |
Collapse
|
16
|
Almeida FA, Vale EM, Reis RS, Santa-Catarina C, Silveira V. LED lamps enhance somatic embryo maturation in association with the differential accumulation of proteins in the Carica papaya L. 'Golden' embryogenic callus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:109-118. [PMID: 31491701 DOI: 10.1016/j.plaphy.2019.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The use of light-emitting diode (LED) lamps has been shown to be a promising approach for improving somatic embryo maturation during somatic embryogenesis. The aim of this work was to study the influence of the light source on somatic embryo differentiation and its relationship with the differential abundance of proteins in the Carica papaya L. 'Golden' embryogenic callus at 14 days of maturation. The white plus medium-blue (WmB) LED and fluorescent lamp treatments produced an average of 82.4 and 47.6 cotyledonary somatic embryos per callus, respectively. A shotgun proteomics analysis revealed 28 upaccumulated and 7 downaccumulated proteins. The proteins upaccumulated in the embryogenic callus matured under the WmB LED lamp compared with that matured under the fluorescent lamp included indole-3-acetic acid-amido synthetase (GH3) and actin-depolymerizing factor 2 (ADF2), which are involved in the regulation of auxin levels by auxin conjugation and transport. Additionally, proteins related to energy production (aconitate, ADH1, GAPCp, PKp and TPI), cell wall remodeling (PG and GLPs), and intracellular trafficking (NUP50A, IST1, small GTPases and H+-PPase) showed significantly higher abundance in the embryogenic callus incubated under the WmB LED lamp than in that incubated under the fluorescent lamp. The results showed that the WmB LED lamp improved somatic embryo maturation in association with the differential accumulation of proteins in the C. papaya 'Golden' embryogenic callus.
Collapse
Affiliation(s)
- Felipe Astolpho Almeida
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ, 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | - Ellen Moura Vale
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ, 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | - Ricardo Souza Reis
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ, 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ, 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
17
|
Furlanetto ALDM, Cadena SMSC, Martinez GR, Ferrando B, Stevnsner T, Møller IM. Short-term high temperature treatment reduces viability and inhibits respiration and DNA repair enzymes in Araucaria angustifolia cells. PHYSIOLOGIA PLANTARUM 2019; 166:513-524. [PMID: 29952010 DOI: 10.1111/ppl.12793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/12/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
We evaluated the effect of global warming on Araucaria angustifolia (Bert.) O. Kuntze, a critically endangered native tree of Southern Brazil, by studying the effects of short-term high temperature treatment on cell viability, respiration and DNA repair of embryogenic cells. Compared with control cells grown at 25°C, cell viability was reduced by 40% after incubation at 30 and 37°C for 24 and 6 h, respectively, while 2 h at 40 and 42°C killed 95% of the cells. Cell respiration was unaffected at 30-37°C, but dramatically reduced after 2 h at 42°C. The in vitro activity of enzymes of the base excision repair (BER) pathway was determined. Apurinic/apyrimidine endonuclease, measured in extracts from cells incubated for 2 h at 42°C, was completely inactivated while lower temperatures had no effect. The activities of three enzymes of the mitochondrial BER pathway were measured after 30-min preincubation of isolated mitochondria at 25-40°C and one of them, uracil glycosylase, was completely inhibited at 40°C. We conclude that cell viability, respiration and DNA repair have different temperature sensitivities between 25 and 37°C, and that they are all very sensitive to 40 or 42°C. Thus, A. angustifolia will likely be vulnerable to the short-term high temperature events associated with global warming.
Collapse
Affiliation(s)
- Ana L D M Furlanetto
- Department of Biochemistry and Molecular Biology - Life Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Brazil
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Silvia M S C Cadena
- Department of Biochemistry and Molecular Biology - Life Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Glaucia R Martinez
- Department of Biochemistry and Molecular Biology - Life Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Beatriz Ferrando
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ian M Møller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Salaj T, Klubicová K, Matusova R, Salaj J. Somatic Embryogenesis in Selected Conifer Trees Pinus nigra Arn. and Abies Hybrids. FRONTIERS IN PLANT SCIENCE 2019; 10:13. [PMID: 30761164 PMCID: PMC6361753 DOI: 10.3389/fpls.2019.00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/07/2019] [Indexed: 05/12/2023]
Abstract
Somatic embryogenesis was achieved in the conifers Pinus nigra Arn. and in the hybrids Abies alba ×A. cephalonica and Abies alba ×A. numidica. For initiation of embryogenic tissue in P. nigra, immature zygotic embryos enclosed in megagametophytes were used. The initiated embryogenic cultures were maintained and proliferated on solid culture medium DCR supplemented with 9 μM 2,4-D and 2.2 μM BA. Microscopic investigations revealed the presence of bipolar early somatic embryos in proliferating tissue. Suspension cultures have also been established by resuspending the embryogenic tissue in liquid culture medium. Experimentation with abscisic acid concentration resulted in successful somatic embryo maturation. Besides abscisic acid, the carbohydrate content or higher concentration of gelling agent in maturation medium were also important requirements for somatic embryo maturation. Germination of cotyledonary somatic embryos occurred on hormone-free medium and terminated in somatic seedlings regeneration. The regenerated somatic seedlings were transferred to soil and were capable of successful development. For initiation of embryogenic tissue in Abies hybrids juvenile explants as immature or mature zygotic embryos as well as cotyledons were used and 4.4 μM BA as sole plant growth regulator was sufficient. Medium of the same composition was also suitable for their long-term maintenance. Maturation of somatic embryos was achieved on solid DCR medium supplemented with 38 μM abscisic acid, polyethylene glycol (0, 5, 7.5, and 10% PEG-4000) and different carbohydrates such as maltose, sucrose and glucose (each 3%). PEG-4000 stimulated somatic embryo development depending on the carbohydrate source used. Cotyledonary somatic embryos germinated after desiccation treatment and the regenerated somatic seedlings were transferred to soil. Cryopreservation of embryogenic tissue could be an alternative method for long-term maintenance. For cryopreservation the slow-freezing method was used with success. Tissue regeneration in the post thaw period was relatively high and the regenerated tissue produced mature somatic embryos and subsequent plantlets. The embryogenic tissue was also used in experiments focused on genetic transformation either by biolistic (P. nigra) or Agrobacterium-mediated (Abies hybrids) methods. A proteomic study was performed to gain a deeper insight into the early stages of P. nigra somatic embryogenesis.
Collapse
Affiliation(s)
- Terézia Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | | | | | | |
Collapse
|
19
|
Gautier F, Eliášová K, Leplé JC, Vondráková Z, Lomenech AM, Le Metté C, Label P, Costa G, Trontin JF, Teyssier C, Lelu-Walter MA. Repetitive somatic embryogenesis induced cytological and proteomic changes in embryogenic lines of Pseudotsuga menziesii [Mirb.]. BMC PLANT BIOLOGY 2018; 18:164. [PMID: 30097018 PMCID: PMC6086078 DOI: 10.1186/s12870-018-1337-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND To explore poorly understood differences between primary and subsequent somatic embryogenic lines of plants, we induced secondary (2ry) and tertiary (3ry) lines from cotyledonary somatic embryos (SEs) of two Douglas-fir genotypes: SD4 and TD17. The 2ry lines exhibited significantly higher embryogenic potential (SE yields) than the 1ry lines initiated from zygotic embryos (SD4, 2155 vs 477; TD17, 240 vs 29 g- 1 f.w.). Moreover, we observed similar differences in yield between 2ry and 3ry lines of SD4 (2400 vs 3921 g- 1 f.w.). To elucidate reasons for differences in embryogenic potential induced by repetitive somatic embryogenesis we then compared 2ry vs 1ry and 2ry vs 3ry lines at histo-cytological (using LC-MS/MS) and proteomic levels. RESULTS Repetitive somatic embryogenesis dramatically improved the proliferating lines' cellular organization (genotype SD4's most strongly). Frequencies of singulated, bipolar SEs and compact polyembryogenic centers with elongated suspensors and apparently cleavable embryonal heads increased in 2ry and (even more) 3ry lines. Among 2300-2500 identified proteins, 162 and 228 were classified significantly differentially expressed between 2ry vs 1ry and 3ry vs 2ry lines, respectively, with special emphasis on "Proteolysis" and "Catabolic process" Gene Ontology categories. Strikingly, most of the significant proteins (> 70%) were down-regulated in 2ry relative to 1ry lines, but up-regulated in 3ry relative to 2ry lines, revealing a down-up pattern of expression. GO category enrichment analyses highlighted the opposite adjustments of global protein patterns, particularly for processes involved in chitin catabolism, lignin and L-phenylalanine metabolism, phenylpropanoid biosynthesis, oxidation-reduction, and response to karrikin. Sub-Network Enrichment Analyses highlighted interactions between significant proteins and both plant growth regulators and secondary metabolites after first (especially jasmonic acid, flavonoids) and second (especially salicylic acid, abscisic acid, lignin) embryogenesis cycles. Protein networks established after each induction affected the same "Plant development" and "Defense response" biological processes, but most strongly after the third cycle, which could explain the top embryogenic performance of 3ry lines. CONCLUSIONS This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the lines' embryogenic status.
Collapse
Affiliation(s)
- Florian Gautier
- BioForA, INRA, ONF, F-45075 Orléans, France
- SylvaLIM, University Limoges, F-78060 Limoges, France
| | - Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha, 6-Lysolaje Czech Republic
| | - Jean-Charles Leplé
- BioForA, INRA, ONF, F-45075 Orléans, France
- BIOGECO, INRA, University Bordeaux, F-33610 Cestas, France
| | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha, 6-Lysolaje Czech Republic
| | - Anne-Marie Lomenech
- Plateforme Protéome, Centre de Génomique Fonctionnelle, University Bordeaux, F-33000 Bordeaux, France
| | | | - Philippe Label
- University Clermont Auvergne, INRA, PIAF, F-63000 Clermont–Ferrand, France
| | - Guy Costa
- SylvaLIM, University Limoges, F-78060 Limoges, France
| | - Jean-François Trontin
- Pôle Biotechnologie et Sylviculture Avancée, FCBA, Campus Forêt-Bois de Pierroton, F-33610 Cestas, France
| | | | | |
Collapse
|
20
|
de Oliveira LF, Navarro BV, Cerruti GV, Elbl P, Minocha R, Minocha SC, Dos Santos ALW, Floh EIS. Polyamine- and Amino Acid-Related Metabolism: The Roles of Arginine and Ornithine are Associated with the Embryogenic Potential. PLANT & CELL PHYSIOLOGY 2018; 59:1084-1098. [PMID: 29490084 DOI: 10.1093/pcp/pcy049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/24/2018] [Indexed: 05/25/2023]
Abstract
The mechanisms that control polyamine (PA) metabolism in plant cell lines with different embryogenic potential are not well understood. This study involved the use of two Araucaria angustifolia cell lines, one of which was defined as being blocked, in that the cells were incapable of developing somatic embryos, and the other as being responsive, as the cells could generate somatic embryos. Cellular PA metabolism was modulated by using 5 mM arginine (Arg) or ornithine (Orn) at two time points during cell growth. Two days after subculturing with Arg, an increase in citrulline (Cit) content was observed, followed by a higher expression of genes related to PA catabolism in the responsive cell line; whereas, in the blocked cell line, we only observed an accumulation of PAs. After 14 d, metabolism was directed towards putrescine accumulation in both cell lines. Exogenous Arg and Orn not only caused a change in cellular contents of PAs, but also altered the abundance of a broader spectrum of amino acids. Specifically, Cit was the predominant amino acid. We also noted changes in the expression of genes related to PA biosynthesis and catabolism. These results indicate that Arg and Orn act as regulators of both biosynthetic and catabolic PA metabolites; however, we suggest that they have distinct roles associated with embryogenic potential of the cells.
Collapse
Affiliation(s)
- Leandro Francisco de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, room 107, São Paulo, SP 05508-090, Brazil
| | - Bruno Viana Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, room 107, São Paulo, SP 05508-090, Brazil
| | - Giovanni Victório Cerruti
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, room 107, São Paulo, SP 05508-090, Brazil
| | - Paula Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, room 107, São Paulo, SP 05508-090, Brazil
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, 271 Mast Rd, Durham, NH 03824, USA
| | - Subhash C Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - André Luis Wendt Dos Santos
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, room 107, São Paulo, SP 05508-090, Brazil
| | - Eny Iochevet Segal Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, room 107, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
21
|
Heringer AS, Santa-Catarina C, Silveira V. Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics 2018; 18:e1700265. [DOI: 10.1002/pmic.201700265] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/08/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Angelo Schuabb Heringer
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| |
Collapse
|
22
|
Wendt Dos Santos AL, Souza Reis R, Schuabb Heringer A, Segal Floh EI, Santa-Catarina C, Silveira V. Proteomics as a Tool to Study Molecular Changes During Plant Morphogenesis In Vitro. Methods Mol Biol 2018; 1815:339-349. [PMID: 29981134 DOI: 10.1007/978-1-4939-8594-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteome analysis represents a promising approach for plant tissue culture since it is now possible to identify and quantify proteins on a large scale. Biomarker discovery and the study of the molecular events associated with in vitro plant morphogenesis are considered potential targets for application of proteomics technologies. This chapter describes a protocol for application in in vitro plant material using two proteomics approaches: 2-DE coupled to mass spectrometry and liquid chromatography-linked tandem mass spectrometry.
Collapse
Affiliation(s)
- André Luis Wendt Dos Santos
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | - Ricardo Souza Reis
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Angelo Schuabb Heringer
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Eny Iochevet Segal Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
23
|
Aguilar-Hernández V, Loyola-Vargas VM. Advanced Proteomic Approaches to Elucidate Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1658. [PMID: 30524454 PMCID: PMC6262180 DOI: 10.3389/fpls.2018.01658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/25/2018] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis (SE) is a cell differentiation process by which a somatic cell changes its genetic program and develops into an embryonic cell. Investigating this process with various explant sources in vitro has allowed us to trace somatic embryo development from germination to plantlets and has led to the generation of new technologies, including genetic transformation, endangered species conservation, and synthetic seed production. A transcriptome data comparison from different stages of the developing somatic embryo has revealed a complex network controlling the somatic cell's fate, suggesting that an interconnected network acts at the protein level. Here, we discuss the current progress on SE using proteomic-based data, focusing on changing patterns of proteins during the establishment of the somatic embryo. Despite the advanced proteomic approaches available so far, deciphering how the somatic embryo is induced is still in its infancy. The new proteomics techniques that lead to the quantification of proteins with different abundances during the induction of SE are opening this area of study for the first time. These quantitative differences can elucidate the different pathways involved in SE induction. We envisage that the application of these proteomic technologies can be pivotal to identifying proteins critical to the process of SE, demonstrating the cellular localization, posttranslational modifications, and turnover protein events required to switch from a somatic cell to a somatic embryo cell and providing new insights into the molecular mechanisms underlying SE. This work will help to develop biotechnological strategies for mass production of quality crop material.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Victor Aguilar-Hernández, orcid.org/0000-0001-8239-4047
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
24
|
Navarro BV, Elbl P, De Souza AP, Jardim V, de Oliveira LF, Macedo AF, dos Santos ALW, Buckeridge MS, Floh EIS. Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia. PLoS One 2017; 12:e0180051. [PMID: 28678868 PMCID: PMC5497979 DOI: 10.1371/journal.pone.0180051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
Three zygotic developmental stages and two somatic Araucaria angustifolia cell lines with contrasting embryogenic potential were analyzed to identify the carbohydrate-mediated responses associated with embryo formation. Using a comparison between zygotic and somatic embryogenesis systems, the non-structural carbohydrate content, cell wall sugar composition and expression of genes involved in sugar sensing were analyzed, and a network analysis was used to identify coordinated features during embryogenesis. We observed that carbohydrate-mediated responses occur mainly during the early stages of zygotic embryo formation, and that during seed development there are coordinated changes that affect the development of the different structures (embryo and megagametophyte). Furthermore, sucrose and starch accumulation were associated with the responsiveness of the cell lines. This study sheds light on how carbohydrate metabolism is influenced during zygotic and somatic embryogenesis in the endangered conifer species, A. angustifolia.
Collapse
Affiliation(s)
- Bruno V. Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Paula Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Amanda P. De Souza
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Vinicius Jardim
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Leandro F. de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Amanda F. Macedo
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - André L. W. dos Santos
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Marcos S. Buckeridge
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Eny I. S. Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
- * E-mail:
| |
Collapse
|
25
|
de Oliveira LF, Elbl P, Navarro BV, Macedo AF, Dos Santos ALW, Floh EIS, Cooke J. Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development. TREE PHYSIOLOGY 2017; 37:116-130. [PMID: 28175909 DOI: 10.1093/treephys/tpw107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 05/25/2023]
Abstract
Polyamines (PAs), such as spermidine and spermine, as well as amino acids that are substrates for their biosynthesis, are known to be essential for plant development. However, little is known about the gene expression and metabolic switches associated with the ornithine/arginine and PA biosynthetic pathway during seed development in conifers. To understand these metabolic switches, the enzyme activity of arginine decarboxylase and ornithine decarboxylase, as well as the contents of PAs and amino acids were evaluated in three Araucaria angustifolia (Bertol. Kuntze) seed developmental stages in combination with expression profile analyses of genes associated with the ornithine/arginine and PA biosynthetic pathway. Twelve genes were selected for further analysis and it was shown that the expression profiles of AaADC and AaSAMDC were up-regulated during zygotic embryo development. Polyamines and amino acids were found to accumulate differently in embryos and megagametophytes, and the transition from the globular to the cotyledonary stage was marked by an increase in free and conjugated spermidine and spermine contents. Putrescine is made from arginine, which was present at low content at the late embryogenesis stage, when high content of citrulline was observed. Differences in amino acids, PAs and gene expression profiles of biosynthetic genes at specific seed stages and at each seed transition stage were investigated, providing insights into molecular and physiological aspects of conifer embryogenesis for use in future both basic and applied studies.
Collapse
Affiliation(s)
- Leandro F de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Paula Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Bruno V Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Amanda F Macedo
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - André L W Dos Santos
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Eny I S Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | | |
Collapse
|
26
|
Jing D, Zhang J, Xia Y, Kong L, OuYang F, Zhang S, Zhang H, Wang J. Proteomic analysis of stress-related proteins and metabolic pathways in Picea asperata somatic embryos during partial desiccation. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:27-38. [PMID: 27271942 PMCID: PMC5253475 DOI: 10.1111/pbi.12588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/14/2016] [Accepted: 05/30/2016] [Indexed: 05/22/2023]
Abstract
Partial desiccation treatment (PDT) stimulates germination and enhances the conversion of conifer somatic embryos. To better understand the mechanisms underlying the responses of somatic embryos to PDT, we used proteomic and physiological analyses to investigate these responses during PDT in Picea asperata. Comparative proteomic analysis revealed that, during PDT, stress-related proteins were mainly involved in osmosis, endogenous hormones, antioxidative proteins, molecular chaperones and defence-related proteins. Compared with those in cotyledonary embryos before PDT, these stress-related proteins remained at high levels on days 7 (D7) and 14 (D14) of PDT. The proteins that differentially accumulated in the somatic embryos on D7 were mapped to stress and/or stimuli. They may also be involved in the glyoxylate cycle and the chitin metabolic process. The most significant difference in the differentially accumulated proteins occurred in the metabolic pathways of photosynthesis on D14. Furthermore, in accordance with the changes in stress-related proteins, analyses of changes in water content, abscisic acid, indoleacetic acid and H2 O2 levels in the embryos indicated that PDT is involved in water-deficit tolerance and affects endogenous hormones. Our results provide insight into the mechanisms responsible for the transition from morphologically mature to physiologically mature somatic embryos during the PDT process in P. asperata.
Collapse
Affiliation(s)
- Danlong Jing
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianwei Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yan Xia
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Lisheng Kong
- Department of BiologyCentre for Forest BiologyUniversity of VictoriaVictoriaBCCanada
| | - Fangqun OuYang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|