1
|
Chen Y, Chang Q, Fang Q, Zhang Z, Wu D, Bian L, Chen S. Genome-Wide Identification, Molecular Characterization, and Expression Analysis of the HSP70 and HSP90 Gene Families in Thamnaconus septentrionalis. Int J Mol Sci 2024; 25:5706. [PMID: 38891896 PMCID: PMC11172388 DOI: 10.3390/ijms25115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Heat shock proteins (HSPs) are a class of highly conserved proteins that play an important role in biological responses to various environmental stresses. The mariculture of Thamnaconus septentrionalis, a burgeoning aquaculture species in China, frequently encounters stressors such as extreme temperatures, salinity variations, and elevated ammonia levels. However, systematic identification and analysis of the HSP70 and HSP90 gene families in T. septentrionalis remain unexplored. This study conducted the first genome-wide identification of 12 HSP70 and 4 HSP90 genes in T. septentrionalis, followed by a comprehensive analysis including phylogenetics, gene structure, conserved domains, chromosomal localization, and expression profiling. Expression analysis from RNA-seq data across various tissues and developmental stages revealed predominant expression in muscle, spleen, and liver, with the highest expression found during the tailbud stage, followed by the gastrula, neurula, and juvenile stages. Under abiotic stress, most HSP70 and HSP90 genes were upregulated in response to high temperature, high salinity, and low salinity, notably hspa5 during thermal stress, hspa14 in high salinity, and hsp90ab1 under low salinity conditions. Ammonia stress led to a predominance of downregulated HSP genes in the liver, particularly hspa2, while upregulation was observed in the gills, especially for hsp90b1. Quantitative real-time PCR analysis corroborated the expression levels under environmental stresses, validating their involvement in stress responses. This investigation provides insights into the molecular mechanisms of HSP70 and HSP90 in T. septentrionalis under stress, offering valuable information for future functional studies of HSPs in teleost evolution, optimizing aquaculture techniques, and developing stress-resistant strains.
Collapse
Affiliation(s)
- Ying Chen
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Qing Chang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Qinmei Fang
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Ziyang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Dan Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Li Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| | - Siqing Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.C.); (Z.Z.); (D.W.)
| |
Collapse
|
2
|
Han X, Jin S, Shou C, Han Z. Hsp70 Gene Family in Sebastiscus marmoratus: The Genome-Wide Identification and Transcriptome Analysis under Thermal Stress. Genes (Basel) 2023; 14:1779. [PMID: 37761919 PMCID: PMC10531354 DOI: 10.3390/genes14091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Heat shock protein 70 kDa (Hsp70) is a highly conserved heat stress protein that is important in biotic processes and responses to abiotic stress. Hsp70 genes may be important in Sebastiscus marmoratus, for it is a kind of nearshore reef fish, and habitat temperature change is more drastic during development. However, genome-wide identification and expression analysis in the Hsp70 gene family of S. marmoratus are still lacking. Here, a total of 15 Hsp70 genes in the genome of S. marmoratus are identified, and their expression patterns were investigated using transcriptomic data from thermal stress experiments. The expansion and gene duplication events of Hsp70 genes from the Hspa4, Hspa8, and Hspa12a subfamilies in S. marmoratus are revealed by phylogenetic analysis. qRT-PCR expression patterns demonstrated that seven Hsp70 genes were significantly up-regulated and none were significantly down-regulated after heat treatment. Only the hsp70 gene was significantly up-regulated after cold treatment. The selection test further showed a purifying selection on the duplicated gene pairs, suggesting that these genes underwent subfunctionalization. Our results add novel insight to aquaculture and biological research on S. marmoratus, providing important information on how Hsp70 genes are regulated in Scorpaeniformes under thermal stress.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316002, China
| |
Collapse
|
3
|
Wang X, Komatsu S. Subcellular Proteomics to Elucidate Soybean Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2865. [PMID: 37571018 PMCID: PMC10421527 DOI: 10.3390/plants12152865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Climate change jeopardizes soybean production by declining seed yield and quality. In this review, the morphophysiological alterations of soybean in response to abiotic stress are summarized, followed by illustrations of cellular metabolisms and regulatory mechanisms to organellar stress based on subcellular proteomics. This highlights the communications associated with reactive oxygen species scavenging, molecular chaperones, and phytohormone signals among subcellular compartments. Given the complexity of climate change and the limitations of plants in coping with multiple abiotic stresses, a generic response to environmental constraints is proposed between calcium and abscisic acid signals in subcellular organelles. This review summarizes the findings of subcellular proteomics in stressed soybean and discusses the future prospects of subcellular proteomics for promoting the improvement of climate-tolerant crops.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
4
|
Kausar R, Wang X, Komatsu S. Crop Proteomics under Abiotic Stress: From Data to Insights. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212877. [PMID: 36365330 PMCID: PMC9657731 DOI: 10.3390/plants11212877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/22/2022] [Indexed: 06/09/2023]
Abstract
Food security is a major challenge in the present world due to erratic weather and climatic changes. Environmental stress negatively affects plant growth and development which leads to reduced crop yields. Technological advancements have caused remarkable improvements in crop-breeding programs. Proteins have an indispensable role in developing stress resilience and tolerance in crops. Genomic and biotechnological advancements have made the process of crop improvement more accurate and targeted. Proteomic studies provide the information required for such targeted approaches. The crosstalk among cellular components is being analyzed by subcellular proteomics. Additionally, the functional diversity of proteins is being unraveled by post-translational modifications during abiotic stress. The exploration of precise cellular responses and the networking among different cellular organelles help in the prediction of signaling pathways and protein-protein interactions. High-throughput mass-spectrometry-based protein studies are now possible due to incremental advancements in mass-spectrometry techniques, sample protocols, and bioinformatic tools as well as the increasing availability of plant genome sequence information for multiple species. In this review, the key role of proteomic analysis in identifying the abiotic-stress-responsive mechanisms in various crops was summarized. The development and availability of advanced computational tools were discussed in detail. The highly variable protein responses among different crops have provided a wide avenue for molecular-marker-assisted genetic buildup studies to develop smart, high-yielding, and stress-tolerant varieties to cope with food-security challenges.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
5
|
Dissecting the Chloroplast Proteome of the Potato (Solanum Tuberosum L.) and Its Comparison with the Tuber Amyloplast Proteome. PLANTS 2022; 11:plants11151915. [PMID: 35893618 PMCID: PMC9332351 DOI: 10.3390/plants11151915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
The chloroplast, the energy organelle unique to plants and green algae, performs many functions, including photosynthesis and biosynthesis of metabolites. However, as the most critical tuber crop worldwide, the chloroplast proteome of potato (Solanum tuberosum) has not been explored. Here, we use Percoll density gradient centrifugation to isolate intact chloroplasts from leaves of potato cultivar E3 and establish a reference proteome map of potato chloroplast by bottom-up proteomics. A total of 1834 non-redundant proteins were identified in the chloroplast proteome, including 51 proteins encoded by the chloroplast genome. Extensive sequence-based localization prediction revealed over 62% of proteins to be chloroplast resident by at least one algorithm. Sixteen proteins were selected to evaluate the prediction result by transient fluorescence assay, which confirmed that 14 were distributed in distinct internal compartments of the chloroplast. In addition, we identified 136 phosphorylation sites in 61 proteins encoded by chloroplast proteome. Furthermore, we reconstruct the snapshots along starch metabolic pathways in the two different types of plastids by a comparative analysis between chloroplast and previously reported amyloplast proteomes. Altogether, our results establish a comprehensive proteome map with post-translationally modified sites of potato chloroplast, which would provide the theoretical principle for the research of the photosynthesis pathway and starch metabolism.
Collapse
|
6
|
Liu S, Ou Y, Li Y, Sulaiman K, Tao M, Shawky E, Tian J, Zhu W. Tandem mass tag-based proteomic analysis of endoplasmic reticulum proteins in mulberry leaves under ultraviolet-B and dark stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13667. [PMID: 35289407 DOI: 10.1111/ppl.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/13/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Mulberry leaves have been used in traditional Chinese medicine due to their antioxidant, antidiabetic, and antihyperlipidemic properties. A previous study showed that ultraviolet-B radiation followed by dark incubation could improve the contents of active ingredients in mulberry leaves, such as moracin N and chalcomoracin. The endoplasmic reticulum (ER) serves as a protein quality control center and the location for protein synthesis, which is involved in the response to the environmental stress in plants. To investigate the mechanisms in response to ultraviolet-B radiation followed by dark incubation (UV + D), ER proteomics was performed on mulberry leaves. The ER protein markers, glucose-regulated protein (GRP78), and calnexin (CNX), were significantly higher in the ER fraction than in the total protein fraction, indicating that the ER was purified. Compared to the control, the abundance of protein disulfide isomerase, UDP-glucose glycoprotein glucosyltransferase, CNX, and calreticulin proteins decreased, while of the abundance of heat shock-related proteins increased under stress. P450 enzyme system-related proteins and ribosomal proteins showed significant increases. These results suggest that under UV + D stress, mulberry leaves activated the cell redox and ER quality control systems, enhancing protein synthesis and weakening N-glycan biosynthesis in the ER to resist the damage.
Collapse
Affiliation(s)
- Shengzhi Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yuting Ou
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yaohan Li
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kaisa Sulaiman
- The Xinjiang Uygur Autonomous Region National Institute of Traditional Chinese Medicine, Urumchi, China
| | - Minglei Tao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
7
|
Kosová K, Vítámvás P, Prášil IT, Klíma M, Renaut J. Plant Proteoforms Under Environmental Stress: Functional Proteins Arising From a Single Gene. FRONTIERS IN PLANT SCIENCE 2021; 12:793113. [PMID: 34970290 PMCID: PMC8712444 DOI: 10.3389/fpls.2021.793113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/16/2021] [Indexed: 05/30/2023]
Abstract
Proteins are directly involved in plant phenotypic response to ever changing environmental conditions. The ability to produce multiple mature functional proteins, i.e., proteoforms, from a single gene sequence represents an efficient tool ensuring the diversification of protein biological functions underlying the diversity of plant phenotypic responses to environmental stresses. Basically, two major kinds of proteoforms can be distinguished: protein isoforms, i.e., alterations at protein sequence level arising from posttranscriptional modifications of a single pre-mRNA by alternative splicing or editing, and protein posttranslational modifications (PTMs), i.e., enzymatically catalyzed or spontaneous modifications of certain amino acid residues resulting in altered biological functions (or loss of biological functions, such as in non-functional proteins that raised as a product of spontaneous protein modification by reactive molecular species, RMS). Modulation of protein final sequences resulting in different protein isoforms as well as modulation of chemical properties of key amino acid residues by different PTMs (such as phosphorylation, N- and O-glycosylation, methylation, acylation, S-glutathionylation, ubiquitinylation, sumoylation, and modifications by RMS), thus, represents an efficient means to ensure the flexible modulation of protein biological functions in response to ever changing environmental conditions. The aim of this review is to provide a basic overview of the structural and functional diversity of proteoforms derived from a single gene in the context of plant evolutional adaptations underlying plant responses to the variability of environmental stresses, i.e., adverse cues mobilizing plant adaptive mechanisms to diminish their harmful effects.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Ilja Tom Prášil
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Miroslav Klíma
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
9
|
Li T, Zhu D, Han Z, Zhang J, Zhang M, Yan Y. Label-Free Quantitative Proteome Analysis Reveals the Underlying Mechanisms of Grain Nuclear Proteins Involved in Wheat Water-Deficit Response. FRONTIERS IN PLANT SCIENCE 2021; 12:748487. [PMID: 34759942 PMCID: PMC8572964 DOI: 10.3389/fpls.2021.748487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, we performed the first nuclear proteome analysis of wheat developing grains under water deficit by using a label-free based quantitative proteomic approach. In total, we identified 625 unique proteins as differentially accumulated proteins (DAPs), of which 398 DAPs were predicted to be localized in nucleus. Under water deficit, 146 DAPs were up-regulated and mainly involved in the stress response and oxidation-reduction process, while 252 were down-regulated and mainly participated in translation, the cellular amino metabolic process, and the oxidation-reduction process. The cis-acting elements analysis of the key nuclear DAPs encoding genes demonstrated that most of these genes contained the same cis-acting elements in the promoter region, mainly including ABRE involved in abscisic acid response, antioxidant response element, MYB responsive to drought regulation and MYC responsive to early drought. The cis-acting elements related to environmental stress and hormones response were relatively abundant. The transcription expression profiling of the nuclear up-regulated DAPs encoding genes under different organs, developmental stages and abiotic stresses was further detected by RNA-seq and Real-time quantitative polymerase chain reaction, and more than 50% of these genes showed consistency between transcription and translation expression. Finally, we proposed a putative synergistic responsive network of wheat nuclear proteome to water deficit, revealing the underlying mechanisms of wheat grain nuclear proteome in response to water deficit.
Collapse
Affiliation(s)
- Tingting Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Dong Zhu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhisheng Han
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Junwei Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
10
|
Liu Y, Ma L, Cao D, Gong Z, Fan J, Hu H, Jin X. Investigation of cell wall proteins of C. sinensis leaves by combining cell wall proteomics and N-glycoproteomics. BMC PLANT BIOLOGY 2021; 21:384. [PMID: 34416854 PMCID: PMC8377857 DOI: 10.1186/s12870-021-03166-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/10/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis. RESULTS A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest functional class, most of which (especially Class III peroxidases) participate in defense response. As expected, identified CWPs are mainly related to plant cell wall formation and defense response. CONCLUSION This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight into cell wall formation and defense response in C. sinensis.
Collapse
Affiliation(s)
- Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Linlong Ma
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Dan Cao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Ziming Gong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Jing Fan
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Hongju Hu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress. Int J Mol Sci 2021; 22:ijms22094840. [PMID: 34063651 PMCID: PMC8124925 DOI: 10.3390/ijms22094840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023] Open
Abstract
Salt stress is the second most important abiotic stress factor in the world, which seriously affects crop growth, development and grain production. In this study, we performed the first integrated physiological and endoplasmic reticulum (ER) proteome analysis of wheat seedling leaves under salt stress using a label-free-based quantitative proteomic approach. Salt stress caused significant decrease in seedling height, root length, relative water content and chlorophyll content of wheat seedling leaves, indicating that wheat seedling growth was significantly inhibited under salt stress. The ER proteome analysis identified 233 ER-localized differentially accumulated proteins (DAPs) in response to salt stress, including 202 upregulated and 31 downregulated proteins. The upregulated proteins were mainly involved in the oxidation-reduction process, transmembrane transport, the carboxylic acid metabolic process, stress response, the arbohydrate metabolic process and proteolysis, while the downregulated proteins mainly participated in the metabolic process, biological regulation and the cellular process. In particular, salt stress induced significant upregulation of protein disulfide isomerase-like proteins and heat shock proteins and significant downregulation of ribosomal protein abundance. Further transcript expression analysis revealed that half of the detected DAP genes showed a consistent pattern with their protein levels under salt stress. A putative metabolic pathway of ER subproteome of wheat seedling leaves in response to salt stress was proposed, which reveals the potential roles of wheat ER proteome in salt stress response and defense.
Collapse
|
12
|
Iwasaki Y, Itoh T, Hagi Y, Matsuta S, Nishiyama A, Chaya G, Kobayashi Y, Miura K, Komatsu S. Proteomics Analysis of Plasma Membrane Fractions of the Root, Leaf, and Flower of Rice. Int J Mol Sci 2020; 21:ijms21196988. [PMID: 32977500 PMCID: PMC7583858 DOI: 10.3390/ijms21196988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022] Open
Abstract
The plasma membrane regulates biological processes such as ion transport, signal transduction, endocytosis, and cell differentiation/proliferation. To understand the functional characteristics and organ specificity of plasma membranes, plasma membrane protein fractions from rice root, etiolated leaf, green leaf, developing leaf sheath, and flower were analyzed by proteomics. Among the proteins identified, 511 were commonly accumulated in the five organs, whereas 270, 132, 359, 146, and 149 proteins were specifically accumulated in the root, etiolated leaf, green leaf, developing leaf sheath, and developing flower, respectively. The principle component analysis revealed that the functions of the plasma membrane in the root was different from those of green and etiolated leaves and that the plasma membrane protein composition of the leaf sheath was similar to that of the flower, but not that of the green leaf. Functional classification revealed that the root plasma membrane has more transport-related proteins than the leaf plasma membrane. Furthermore, the leaf sheath and flower plasma membranes were found to be richer in proteins involved in signaling and cell function than the green leaf plasma membrane. To validate the proteomics data, immunoblot analysis was carried out, focusing on four heterotrimeric G protein subunits, Gα, Gβ, Gγ1, and Gγ2. All subunits could be detected by both methods and, in particular, Gγ1 and Gγ2 required concentration by immunoprecipitation for mass spectrometry detection.
Collapse
Affiliation(s)
- Yukimoto Iwasaki
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.I.); (Y.H.); (S.M.); (A.N.); (G.C.); (Y.K.); (K.M.)
- Correspondence: (Y.I.); (S.K.); Tel.: +81-776-61-6000 (ext. 3514) (Y.I.); +81-776-29-2466 (S.K.)
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.I.); (Y.H.); (S.M.); (A.N.); (G.C.); (Y.K.); (K.M.)
| | - Yusuke Hagi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.I.); (Y.H.); (S.M.); (A.N.); (G.C.); (Y.K.); (K.M.)
| | - Sakura Matsuta
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.I.); (Y.H.); (S.M.); (A.N.); (G.C.); (Y.K.); (K.M.)
| | - Aki Nishiyama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.I.); (Y.H.); (S.M.); (A.N.); (G.C.); (Y.K.); (K.M.)
| | - Genki Chaya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.I.); (Y.H.); (S.M.); (A.N.); (G.C.); (Y.K.); (K.M.)
| | - Yuki Kobayashi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.I.); (Y.H.); (S.M.); (A.N.); (G.C.); (Y.K.); (K.M.)
| | - Kotaro Miura
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.I.); (Y.H.); (S.M.); (A.N.); (G.C.); (Y.K.); (K.M.)
| | - Setsuko Komatsu
- Department of Environmental and Food Sciences, Fukui University of Technology, Fukui 910-8505, Japan
- Correspondence: (Y.I.); (S.K.); Tel.: +81-776-61-6000 (ext. 3514) (Y.I.); +81-776-29-2466 (S.K.)
| |
Collapse
|
13
|
Abstract
Subcellular proteomics include, in its experimental workflow, steps aimed at purifying organelles. The purity of the subcellular fraction should be assessed before mass spectrometry analysis, in order to confidently conclude the presence of associated specific proteoforms, deepening the knowledge of its biological function. In this chapter, a protocol for isolating endoplasmic reticulum (ER) and purity assessment is reported, and it precedes the proteomic analysis through a gel-free/label-free proteomic approach. Dysfunction of quality-control mechanisms of protein metabolism in ER leads to ER stress. Additionally, ER, which is a calcium-storage organelle, is responsible for signaling and homeostatic function, and calcium homeostasis is required for plant tolerance. With such predominant cell functions, effective protocols to fractionate highly purified ER are needed. Here, isolation methods and purity assessments of ER are described. In addition, a gel-free/label-free proteomic approach of ER is presented.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui, Japan.
| |
Collapse
|
14
|
Santos C, Nogueira FCS, Domont GB, Fontes W, Prado GS, Habibi P, Santos VO, Oliveira-Neto OB, Grossi-de-Sá MF, Jorrín-Novo JV, Franco OL, Mehta A. Proteomic Analysis and Functional Validation of a Brassica oleracea Endochitinase Involved in Resistance to Xanthomonas campestris. FRONTIERS IN PLANT SCIENCE 2019; 10:414. [PMID: 31031780 PMCID: PMC6473119 DOI: 10.3389/fpls.2019.00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/19/2019] [Indexed: 05/02/2023]
Abstract
Black rot is a severe disease caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), which can lead to substantial losses in cruciferous vegetable production worldwide. Although the use of resistant cultivars is the main strategy to control this disease, there are limited sources of resistance. In this study, we used the LC-MS/MS technique to analyze young cabbage leaves and chloroplast-enriched samples at 24 h after infection by Xcc, using both susceptible (Veloce) and resistant (Astrus) cultivars. A comparison between susceptible Xcc-inoculated plants and the control condition, as well as between resistant Xcc-inoculated plants with the control was performed and more than 300 differentially abundant proteins were identified in each comparison. The chloroplast enriched samples contributed with the identification of 600 additional protein species in the resistant interaction and 900 in the susceptible one, which were not detected in total leaf sample. We further determined the expression levels for 30 genes encoding the identified differential proteins by qRT-PCR. CHI-B4 like gene, encoding an endochitinase showing a high increased abundance in resistant Xcc-inoculated leaves, was selected for functional validation by overexpression in Arabidopsis thaliana. Compared to the wild type (Col-0), transgenic plants were highly resistant to Xcc indicating that CHI-B4 like gene could be an interesting candidate to be used in genetic breeding programs aiming at black rot resistance.
Collapse
Affiliation(s)
- Cristiane Santos
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fábio C. S. Nogueira
- Proteomics Unit, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Proteomics Unit, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Fontes
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | | | - Peyman Habibi
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Department of Bioprocess Engineering and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Osmundo B. Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Bioquímica e Biologia Molecular, Escola de Medicina, Faculdades Integradas da União Educacional do Planalto Central, Brasília, Brazil
| | - Maria Fatima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Centro de Analises Proteomicas e Bioquimica, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Jesus V. Jorrín-Novo
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| | - Octavio L. Franco
- Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Centro de Analises Proteomicas e Bioquimica, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| |
Collapse
|
15
|
Zenda T, Liu S, Wang X, Jin H, Liu G, Duan H. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms. Int J Mol Sci 2018; 19:E3225. [PMID: 30340410 PMCID: PMC6213998 DOI: 10.3390/ijms19103225] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023] Open
Abstract
Drought stress is the major abiotic factor threatening maize (Zea mays L.) yield globally. Therefore, revealing the molecular mechanisms fundamental to drought tolerance in maize becomes imperative. Herein, we conducted a comprehensive comparative analysis of two maize inbred lines contrasting in drought stress tolerance based on their physiological and proteomic responses at the seedling stage. Our observations showed that divergent stress tolerance mechanisms exist between the two inbred-lines at physiological and proteomic levels, with YE8112 being comparatively more tolerant than MO17 owing to its maintenance of higher relative leaf water and proline contents, greater increase in peroxidase (POD) activity, along with decreased level of lipid peroxidation under stressed conditions. Using an iTRAQ (isobaric tags for relative and absolute quantification)-based method, we identified a total of 721 differentially abundant proteins (DAPs). Amongst these, we fished out five essential sets of drought responsive DAPs, including 13 DAPs specific to YE8112, 107 specific DAPs shared between drought-sensitive and drought-tolerant lines after drought treatment (SD_TD), three DAPs of YE8112 also regulated in SD_TD, 84 DAPs unique to MO17, and five overlapping DAPs between the two inbred lines. The most significantly enriched DAPs in YE8112 were associated with the photosynthesis antenna proteins pathway, whilst those in MO17 were related to C5-branched dibasic acid metabolism and RNA transport pathways. The changes in protein abundance were consistent with the observed physiological characterizations of the two inbred lines. Further, quantitative real-time polymerase chain reaction (qRT-PCR) analysis results confirmed the iTRAQ sequencing data. The higher drought tolerance of YE8112 was attributed to: activation of photosynthesis proteins involved in balancing light capture and utilization; enhanced lipid-metabolism; development of abiotic and biotic cross-tolerance mechanisms; increased cellular detoxification capacity; activation of chaperones that stabilize other proteins against drought-induced denaturation; and reduced synthesis of redundant proteins to help save energy to battle drought stress. These findings provide further insights into the molecular signatures underpinning maize drought stress tolerance.
Collapse
Affiliation(s)
- Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Xuan Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Jin
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Guo Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
16
|
Komatsu S, Hashiguchi A. Subcellular Proteomics: Application to Elucidation of Flooding-Response Mechanisms in Soybean. Proteomes 2018; 6:E13. [PMID: 29495455 PMCID: PMC5874772 DOI: 10.3390/proteomes6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Soybean, which is rich in protein and oil, is cultivated in several climatic zones; however, its growth is markedly decreased by flooding. Proteomics is a useful tool for understanding the flooding-response mechanism in soybean. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and during stress. Under flooding, proteins related to signaling, stress and the antioxidative system are increased in the plasma membrane; scavenging enzymes for reactive-oxygen species are suppressed in the cell wall; protein translation is suppressed through inhibition of proteins related to preribosome biogenesis and mRNA processing in the nucleus; levels of proteins involved in the electron transport chain are reduced in the mitochondrion; and levels of proteins related to protein folding are decreased in the endoplasmic reticulum. This review discusses the advantages of a gel-free/label-free proteomic technique and methods of plant subcellular purification. It also summarizes cellular events in soybean under flooding and discusses future prospects for generation of flooding-tolerant soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
17
|
Wang X, Komatsu S. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. J Proteomics 2018; 172:201-215. [PMID: 29133124 DOI: 10.1016/j.jprot.2017.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Soybean is the important crop with abundant protein, vegetable oil, and several phytochemicals. With such predominant values, soybean is cultivated with a long history. However, flooding and drought stresses exert deleterious effects on soybean growth. The present review summarizes the morphological changes and affected events in soybean exposed to such extreme-water conditions. Sensitive organ in stressed soybean at different-developmental stages is presented based on protein profiles. Protein quality control and calcium homeostasis in the endoplasmic reticulum are discussed in soybean under both stresses. In addition, the way of calcium homeostasis in mediating protein folding and energy metabolism is addressed. Finally, stress response to flooding and drought is systematically demonstrated. This review concludes the recent findings of plant response to flooding and drought stresses in soybean employed proteomic approaches. BIOLOGICAL SIGNIFICANCE Soybean is considered as traditional-health food because of nutritional elements and pharmacological values. Flooding and drought exert deleterious effects to soybean growth. Proteomic approaches have been employed to elucidate stress response in soybean exposed to flooding and drought stresses. In this review, stress response is presented on organ-specific manner in the early-stage plant and soybean seedling exposed to combined stresses. The endoplasmic reticulum (ER) stress is induced by both stresses; and stress-response in the ER is addressed in the root tip of early-stage soybean. Moreover, calcium-response processes in stressed plant are described in the ER and in the cytosol. Additionally, stress-dependent response was discussed in flooded and drought-stressed plant. This review depicts stress response in the sensitive organ of stressed soybean and forms the basis to develop molecular markers related to plant defense under flooding and drought stresses.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
18
|
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. FRONTIERS IN PLANT SCIENCE 2018; 9:122. [PMID: 29472941 PMCID: PMC5810178 DOI: 10.3389/fpls.2018.00122] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Environmental Research and Technology Platform, Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
19
|
Wang X, Komatsu S. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:117-148. [PMID: 28427531 DOI: 10.1016/bs.afnr.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean.
Collapse
Affiliation(s)
- Xin Wang
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|