1
|
Tian W, Zhang P, Yu N, Zhu J, Liu C, Liu X, Liu Y. Role of COX6C and NDUFB3 in septic shock and stroke. Open Med (Wars) 2024; 19:20241050. [PMID: 39655053 PMCID: PMC11627056 DOI: 10.1515/med-2024-1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 12/12/2024] Open
Abstract
Background Septic shock is a clinical syndrome characterized by acute circulatory disturbance. Stroke is an acute cerebrovascular disease caused by brain tissue damage. However, the relationship of COX6C and NDUFB3 to them is unclear. Method The stroke dataset GSE58294 and the septic shock dataset GSE15491 were downloaded from the gene expression omnibus database. Screening of differentially expressed genes (DEGs), weighted gene co-expression network analysis, construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis, and comparative toxicogenomics database (CTD) analysis were performed. Gene expression heat map was drawn. TargetScan screened miRNAs regulating central DEGs. Results A total of 664 DEGs were obtained. Gene ontology analysis showed that they were mainly enriched in leukocyte activation, intracellular vesicle, neutrophil activation, and cytokine receptor activity. According to Kyoto Encyclopedia of Genes and Genomes analysis, they are mainly enriched in metabolic pathways, phagosomes, and Staphylococcus aureus infection. Core genes (UQCRQ, USMG5 [ATP5MD], COX6C, NDUFB3, ATP5L [ATP5MG], COX7C, NDUFA1, NDUFA4) were highly expressed in septic shock and stroke samples. CTD analysis found that eight core genes are associated with liver enlargement, inflammation, proliferation, fibrosis, and necrosis. Conclusion COX6C and NDUFB3 genes are highly expressed in septic shock and stroke. The higher the COX6C and NDUFB3 genes, the worse the prognosis.
Collapse
Affiliation(s)
- Wenbin Tian
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pei Zhang
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Yu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junyu Zhu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuefang Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Early Changes in Transcriptomic Profiles in Synaptodendrosomes Reveal Aberrant Synaptic Functions in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23168888. [PMID: 36012153 PMCID: PMC9408306 DOI: 10.3390/ijms23168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders characterized by the progressive decline of cognitive functions, and is closely associated with the dysfunction of synapses, which comprise the basic structure that mediates the communication between neurons. Although the protein architecture and machinery for protein translation at synapses are extensively studied, the impact that local changes in the mRNA reservoir have on AD progression is largely unknown. Here, we investigated the changes in transcriptomic profiles in the synaptodendrosomes purified from the cortices of AD mice at ages 3 and 6 months, a stage when early signatures of synaptic dysfunction are revealed. The transcriptomic profiles of synaptodendrosomes showed a greater number of localized differentially expressed genes (DEGs) in 6-month-old AD mice compared with mice 3 months of age. Gene Ontology (GO) analysis showed that these DEGs are majorly enriched in mitochondrial biogenesis and metabolic activity. More specifically, we further identified three representative DEGs in mitochondrial and metabolic pathways—Prnp, Cst3, and Cox6c—that regulate the dendritic spine density and morphology in neurons. Taken together, this study provides insights into the transcriptomic changes in synaptodendrosomes during AD progression, which may facilitate the development of intervention strategies targeting local translation to ameliorate the pathological progression of AD.
Collapse
|
3
|
Novel role of COX6c in the regulation of oxidative phosphorylation and diseases. Cell Death Dis 2022; 8:336. [PMID: 35879322 PMCID: PMC9314418 DOI: 10.1038/s41420-022-01130-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase subunit VIc (COX6c) is one of the most important subunits of the terminal enzyme of the respiratory chain in mitochondria. Numerous studies have demonstrated that COX6c plays a critical role in the regulation of oxidative phosphorylation (OXPHOS) and energy production. The release of COX6c from the mitochondria may be a hallmark of the intrinsic apoptosis pathway. Moreover, The changes in COX6c expression are widespread in a variety of diseases and can be chosen as a potential biomarker for diagnosis and treatment. In light of its exclusive effects, we present the elaborate roles that COX6c plays in various diseases. In this review, we first introduced basic knowledge regarding COX6c and its functions in the OXPHOS and apoptosis pathways. Subsequently, we described the regulation of COX6c expression and activity in both positive and negative ways. Furthermore, we summarized the elaborate roles that COX6c plays in various diseases, including cardiovascular disease, kidney disease, brain injury, skeletal muscle injury, and tumors. This review highlights recent advances and provides a comprehensive summary of COX6c in the regulation of OXPHOS in multiple diseases and may be helpful for drug design and the prediction, diagnosis, treatment, and prognosis of diseases.
Collapse
|
4
|
Liang Y, Feng Q, Wang Z. Mass Spectrometry Imaging as a New Method: To Reveal the Pathogenesis and the Mechanism of Traditional Medicine in Cerebral Ischemia. Front Pharmacol 2022; 13:887050. [PMID: 35721195 PMCID: PMC9204101 DOI: 10.3389/fphar.2022.887050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Mass spectrometry imaging (MSI) can describe the spatial distribution of molecules in various complex biological samples, such as metabolites, lipids, peptides and proteins in a comprehensive way, and can provide highly relevant supplementary information when combined with other molecular imaging techniques and chromatography techniques, so it has been used more and more widely in biomedical research. The application of mass spectrometry imaging in neuroscience is developing. It is very advantageous and necessary to use MSI to study various pathophysiological processes involved in brain injury and functional recovery during cerebral ischemia. Therefore, this paper introduces the techniques of mass spectrometry, including the principle of mass spectrometry, the acquisition and preparation of imaging samples, the commonly used ionization techniques, and the optimization of the current applied methodology. Furthermore, the research on the mechanism of cerebral ischemia by mass spectrometry was reviewed, such as phosphatidylcholine involved, dopamine, spatial distribution and level changes of physiological substances such as ATP in the Krebs cycle; The characteristics of mass spectrometry imaging as one of the methods of metabolomics in screening biomarkers related to cerebral ischemia were analyzed the advantages of MSI in revealing drug distribution and the mechanism of traditional drugs were summarized, and the existing problems of MSI were also analyzed and relevant suggestions were put forward.
Collapse
Affiliation(s)
- Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoqiao Feng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Zhang Wang,
| |
Collapse
|
5
|
Houdelet C, Arafah K, Bocquet M, Bulet P. Molecular histoproteomy by MALDI mass spectrometry imaging to uncover markers of the impact of Nosema on Apis mellifera. Proteomics 2022; 22:e2100224. [PMID: 34997678 DOI: 10.1002/pmic.202100224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful technology used to investigate the spatio-temporal distribution of a huge number of molecules throughout a body/tissue section. In this paper, we report the use of MALDI IMS to follow the molecular impact of an experimental infection of Apis mellifera with the microsporidia Nosema ceranae. We performed representative molecular mass fingerprints of selected tissues obtained by dissection. This was followed by MALDI IMS workflows optimization including specimen embedding and positioning as well as washing and matrix application. We recorded the local distribution of peptides/proteins within different tissues from experimentally infected versus non infected honeybees. As expected, a distinction in these molecular profiles between the two conditions was recorded from different anatomical sections of the gut tissue. More importantly, we observed differences in the molecular profiles in the brain, thoracic ganglia, hypopharyngeal glands, and hemolymph. We introduced MALDI IMS as an effective approach to monitor the impact of N. ceranae infection on A. mellifera. This opens perspectives for the discovery of molecular changes in peptides/proteins markers that could contribute to a better understanding of the impact of stressors and toxicity on different tissues of a bee in a single experiment.
Collapse
Affiliation(s)
- Camille Houdelet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France.,Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| | - Karim Arafah
- Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| | | | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France.,Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| |
Collapse
|
6
|
Castellanos-Garcia LJ, Sikora KN, Doungchawee J, Vachet RW. LA-ICP-MS and MALDI-MS image registration for correlating nanomaterial biodistributions and their biochemical effects. Analyst 2021; 146:7720-7729. [PMID: 34821231 DOI: 10.1039/d1an01783g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) imaging and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) are complementary methods that measure distributions of elements and biomolecules in tissue sections. Quantitative correlations of the information provided by these two imaging modalities requires that the datasets be registered in the same coordinate system, allowing for pixel-by-pixel comparisons. We describe here a computational workflow written in Python that accomplishes this registration, even for adjacent tissue sections, with accuracies within ±50 μm. The value of this registration process is demonstrated by correlating images of tissue sections from mice injected with gold nanomaterial drug delivery systems. Quantitative correlations of the nanomaterial delivery vehicle, as detected by LA-ICP-MS imaging, with biochemical changes, as detected by MALDI-MSI, provide deeper insight into how nanomaterial delivery systems influence lipid biochemistry in tissues. Moreover, the registration process allows the more precise images associated with LA-ICP-MS imaging to be leveraged to achieve improved segmentation in MALDI-MS images, resulting in the identification of lipids that are most associated with different sub-organ regions in tissues.
Collapse
Affiliation(s)
| | - Kristen N Sikora
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Banstola B, Murray KK. A nanoparticle co-matrix for multiple charging in matrix-assisted laser desorption ionization imaging of tissue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8424. [PMID: 30822818 DOI: 10.1002/rcm.8424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE A two-component matrix of 2-nitrophloroglucinol (2-NPG) and silica nanoparticles was used for matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging of high-charge-state biomolecules in tissue. Potential advantages include increased effective mass range and efficiency of fragmentation. METHODS A mixture of 2-NPG matrix and silica nanoparticles was applied to cyrosectioned 10 μm thick mouse brain tissue. The mixture was pipetted onto the tissue for profiling and sprayed for tissue imaging. MALDI images were obtained under high vacuum in a commercial time-of-flight mass spectrometer. RESULTS The combined 2-NPG and nanoparticle matrix produced highly charged ions from tissue with high-vacuum MALDI. Nanoparticles of 20, 70, 400, and 1000 nm in diameter were tested, the 20 nm particles producing the highest charge states. Images of mouse brain tissue obtained from highly charged ions show similar spatial localization. CONCLUSIONS The combined 2-NPG and nanoparticle matrix produces highly charged ions from tissue through a mechanism that may rely on the high surface area of the particles which can dry the tissue, and their ability to bind analyte molecules thereby assisting in crystal formation and production of multiply charged ions on laser irradiation.
Collapse
Affiliation(s)
- Bijay Banstola
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
8
|
Novel imaging and related techniques for studies of diseases of the central nervous system: a review. Cell Tissue Res 2020; 380:415-424. [PMID: 32072308 DOI: 10.1007/s00441-020-03183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Imaging technologies for the analysis of the central nervous system are rapidly developing. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging, tracer-based magnetic resonance imaging, CLARITY technology and optogenetics can be used to visualize small molecules in brain tissues, the interstitial system of the brain and neuronal circuits in whole-brain samples. These tools serve as powerful technical means to explore the mechanisms underlying disease models and to evaluate the effects of drugs. Here, we review the constituting principles of these imaging techniques and describe their applications in the field of neuroscience.
Collapse
|
9
|
Ryan DJ, Patterson NH, Putnam NE, Wilde AD, Weiss A, Perry WJ, Cassat JE, Skaar EP, Caprioli RM, Spraggins JM. MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies. Anal Chem 2019; 91:7578-7585. [PMID: 31149808 PMCID: PMC6652190 DOI: 10.1021/acs.analchem.8b05889] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to target discrete features within tissue using liquid surface extractions enables the identification of proteins while maintaining the spatial integrity of the sample. Here, we present a liquid extraction surface analysis (LESA) workflow, termed microLESA, that allows proteomic profiling from discrete tissue features of ∼110 μm in diameter by integrating nondestructive autofluorescence microscopy and spatially targeted liquid droplet micro-digestion. Autofluorescence microscopy provides the visualization of tissue foci without the need for chemical stains or the use of serial tissue sections. Tryptic peptides are generated from tissue foci by applying small volume droplets (∼250 pL) of enzyme onto the surface prior to LESA. The microLESA workflow reduced the diameter of the sampled area almost 5-fold compared to previous LESA approaches. Experimental parameters, such as tissue thickness, trypsin concentration, and enzyme incubation duration, were tested to maximize proteomics analysis. The microLESA workflow was applied to the study of fluorescently labeled Staphylococcus aureus infected murine kidney to identify unique proteins related to host defense and bacterial pathogenesis. Proteins related to nutritional immunity and host immune response were identified by performing microLESA at the infectious foci and surrounding abscess. These identifications were then used to annotate specific proteins observed in infected kidney tissue by MALDI FT-ICR IMS through accurate mass matching.
Collapse
Affiliation(s)
- Daniel J. Ryan
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Nicole E. Putnam
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aimee D. Wilde
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - William J. Perry
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
| | - James E. Cassat
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- United States (U.S.) Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Ave South #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M. Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| |
Collapse
|
10
|
Ryan DJ, Spraggins JM, Caprioli RM. Protein identification strategies in MALDI imaging mass spectrometry: a brief review. Curr Opin Chem Biol 2019; 48:64-72. [PMID: 30476689 PMCID: PMC6382520 DOI: 10.1016/j.cbpa.2018.10.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/26/2018] [Accepted: 10/26/2018] [Indexed: 01/21/2023]
Abstract
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful technology used to investigate the spatial distributions of thousands of molecules throughout a tissue section from a single experiment. As proteins represent an important group of functional molecules in tissue and cells, the imaging of proteins has been an important point of focus in the development of IMS technologies and methods. Protein identification is crucial for the biological contextualization of molecular imaging data. However, gas-phase fragmentation efficiency of MALDI generated proteins presents significant challenges, making protein identification directly from tissue difficult. This review highlights methods and technologies specifically related to protein identification that have been developed to overcome these challenges in MALDI IMS experiments.
Collapse
Affiliation(s)
- Daniel J. Ryan
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, 465 21 Ave #9160, Nashville, TN 37235, USA
| |
Collapse
|
11
|
He H, Qin L, Zhang Y, Han M, Li J, Liu Y, Qiu K, Dai X, Li Y, Zeng M, Guo H, Zhou Y, Wang X. 3,4-Dimethoxycinnamic Acid as a Novel Matrix for Enhanced In Situ Detection and Imaging of Low-Molecular-Weight Compounds in Biological Tissues by MALDI-MSI. Anal Chem 2019; 91:2634-2643. [DOI: 10.1021/acs.analchem.8b03522] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinming Li
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Kaidi Qiu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaoyan Dai
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing 100081, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Huihong Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
12
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
13
|
Xu G, Li J. Recent advances in mass spectrometry imaging for multiomics application in neurology. J Comp Neurol 2018; 527:2158-2169. [DOI: 10.1002/cne.24571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Guang Xu
- Hubei Education Cloud Service Engineering Technology Research CenterHubei University of Education Wuhan China
| | - Jianjun Li
- Human Health TherapeuticsNational Research Council Canada Ottawa Ontario
| |
Collapse
|
14
|
Vaysse PM, Heeren RMA, Porta T, Balluff B. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst 2018. [PMID: 28642940 DOI: 10.1039/c7an00565b] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry is being used in many clinical research areas ranging from toxicology to personalized medicine. Of all the mass spectrometry techniques, mass spectrometry imaging (MSI), in particular, has continuously grown towards clinical acceptance. Significant technological and methodological improvements have contributed to enhance the performance of MSI recently, pushing the limits of throughput, spatial resolution, and sensitivity. This has stimulated the spread of MSI usage across various biomedical research areas such as oncology, neurological disorders, cardiology, and rheumatology, just to name a few. After highlighting the latest major developments and applications touching all aspects of translational research (i.e. from early pre-clinical to clinical research), we will discuss the present challenges in translational research performed with MSI: data management and analysis, molecular coverage and identification capabilities, and finally, reproducibility across multiple research centers, which is the largest remaining obstacle in moving MSI towards clinical routine.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Tiffany Porta
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
15
|
Dilillo M, de Graaf EL, Yadav A, Belov ME, McDonnell LA. Ultraviolet Photodissociation of ESI- and MALDI-Generated Protein Ions on a Q-Exactive Mass Spectrometer. J Proteome Res 2018; 18:557-564. [PMID: 30484663 DOI: 10.1021/acs.jproteome.8b00896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The identification of molecular ions produced by MALDI or ESI strongly relies on their fragmentation to structurally informative fragments. The widely diffused fragmentation techniques for ESI multiply charged ions are either incompatible (ECD and ETD) or show lower efficiency (CID, HCD), with the predominantly singly charged peptide and protein ions formed by MALDI. In-source decay has been successfully adopted to sequence MALDI-generated ions, but it further increases spectral complexity, and it is not compatible with mass-spectrometry imaging. Excellent UVPD performances, in terms of number of fragment ions and sequence coverage, has been demonstrated for electrospray ionization for multiple proteomics applications. UVPD showed a much lower charge-state dependence, and so protein ions produced by MALDI may exhibit equal propensity to fragment. Here we report UVPD implementation on an Orbitrap Q-Exactive Plus mass spectrometer equipped with an ESI/EP-MALDI. UVPD of MALDI-generated ions was benchmarked against MALDI-ISD, MALDI-HCD, and ESI-UVPD. MALDI-UVPD outperformed MALDI-HCD and ISD, efficiently sequencing small proteins ions. Moreover, the singly charged nature of MALDI-UVPD avoids the bioinformatics challenges associated with highly congested ESI-UVPD mass spectra. Our results demonstrate the ability of UVPD to further improve tandem mass spectrometry capabilities for MALDI-generated protein ions. Data are available via ProteomeXchange with identifier PXD011526.
Collapse
Affiliation(s)
- Marialaura Dilillo
- Fondazione Pisana per la Scienza ONLUS , 56107 San Giuliano Terme, Pisa , Italy
| | - Erik L de Graaf
- Fondazione Pisana per la Scienza ONLUS , 56107 San Giuliano Terme, Pisa , Italy
| | - Avinash Yadav
- Fondazione Pisana per la Scienza ONLUS , 56107 San Giuliano Terme, Pisa , Italy.,Scuola Normale Superiore di Pisa , 56126 Pisa , Italy
| | - Mikhail E Belov
- Spectroglyph LLC , Kennewick , Washington 99338 , United States
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS , 56107 San Giuliano Terme, Pisa , Italy.,Center for Proteomics and Metabolomics , Leiden University Medical Center , 2333 ZA Leiden , The Netherlands
| |
Collapse
|
16
|
Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, Urbani A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics 2018; 15:683-696. [PMID: 30058389 DOI: 10.1080/14789450.2018.1505510] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.
Collapse
Affiliation(s)
- Viviana Greco
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| | - Cristian Piras
- c Dipartimento di Medicina Veterinaria , Università degli studi di Milano , Milano , Italy
| | - Luisa Pieroni
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy
| | - Maurizio Ronci
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy.,e Department of Medical, Oral and Biotechnological Sciences , University "G. D'Annunzio" of Chieti-Pescara , Chieti , Italy
| | - Lorenza Putignani
- f Unit of Parasitology Bambino Gesù Children's Hospital , IRCCS , Rome , Italy.,g Unit of Human Microbiome , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Paola Roncada
- h Dipartimento di Scienze della Salute , Università degli studi "Magna Græcia" di Catanzaro , Catanzaro , Italy
| | - Andrea Urbani
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| |
Collapse
|
17
|
Noble KV, Reyzer ML, Barth JL, McDonald H, Tuck M, Schey KL, Krug EL, Lang H. Use of Proteomic Imaging Coupled With Transcriptomic Analysis to Identify Biomolecules Responsive to Cochlear Injury. Front Mol Neurosci 2018; 11:243. [PMID: 30065626 PMCID: PMC6056684 DOI: 10.3389/fnmol.2018.00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Exposure to noise or ototoxic agents can result in degeneration of cells in the sensory epithelium and auditory nerve, as well as non-sensory cells of the cochlear lateral wall. However, the molecular mechanisms underlying this pathology remain unclear. The purpose of this study was to localize and identify proteins in the cochlea that are responsive to noise or ototoxic exposure using a complementary proteo-transcriptomic approach. MALDI imaging of cochlear sections revealed numerous protein signals with distinct cochlear localization patterns in both cochlear injury models, of which six were chosen for further investigation. A query of proteomic databases identified 709 candidates corresponding to m/z values for the six proteins. An evaluation of mRNA expression data from our previous studies of these injured models indicated that 208 of the candidates were affected in both injury models. Downstream validation analyses yielded proteins with confirmatory distributions and responses to injury. The combined analysis of MALDI imaging with gene expression data provides a new strategy to identify molecular regulators responsive to cochlear injury. This study demonstrates the applicability of MALDI imaging for investigating protein localization and abundance in frozen sections from animals modeling cochlear pathology.
Collapse
Affiliation(s)
- Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Michael Tuck
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Edward L. Krug
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
18
|
Simats A, García-Berrocoso T, Ramiro L, Giralt D, Gill N, Penalba A, Bustamante A, Rosell A, Montaner J. Characterization of the rat cerebrospinal fluid proteome following acute cerebral ischemia using an aptamer-based proteomic technology. Sci Rep 2018; 8:7899. [PMID: 29784938 PMCID: PMC5962600 DOI: 10.1038/s41598-018-26237-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 11/08/2022] Open
Abstract
The limited accessibility to the brain has turned the cerebrospinal fluid (CSF) into a valuable source that may contribute to the complete understanding of the stroke pathophysiology. Here we have described the CSF proteome in the hyper-acute phase of cerebral ischemia by performing an aptamer-based proteomic assay (SOMAscan) in CSF samples collected before and 30 min after male Wistar rats had undergone a 90 min Middle Cerebral Artery Occlusion (MCAO) or sham-surgery. Proteomic results indicated that cerebral ischemia acutely increased the CSF levels of 716 proteins, mostly overrepresented in leukocyte chemotaxis and neuronal death processes. Seven promising candidates were further evaluated in rat plasma and brain (CKB, CaMK2A, CaMK2B, CaMK2D, PDXP, AREG, CMPK). The 3 CaMK2 family-members and CMPK early decreased in the infarcted brain area and, together with AREG, co-localized with neurons. Conversely, CKB levels remained consistent after the insult and specifically matched with astrocytes. Further exploration of these candidates in human plasma revealed the potential of CKB and CMPK to diagnose stroke, while CaMK2B and CMPK resulted feasible biomarkers of functional stroke outcome. Our findings provided insights into the CSF proteome following cerebral ischemia and identified new outstanding proteins that might be further considered as potential biomarkers of stroke.
Collapse
Affiliation(s)
- Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia Gill
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
19
|
Ryan DJ, Nei D, Prentice BM, Rose KL, Caprioli RM, Spraggins JM. Protein identification in imaging mass spectrometry through spatially targeted liquid micro-extractions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:442-450. [PMID: 29226434 PMCID: PMC5812809 DOI: 10.1002/rcm.8042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 05/02/2023]
Abstract
RATIONALE Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro-extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment. METHODS Proteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top-down and bottom-up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 μm spatial resolution. RESULTS Robotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2-μL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data. CONCLUSIONS Robotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.
Collapse
Affiliation(s)
- Daniel J Ryan
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
| | - David Nei
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
| | - Boone M Prentice
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
- Department of Medicine, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
| | - Jeffrey M Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
| |
Collapse
|
20
|
Liu H, Zhou Y, Wang J, Xiong C, Xue J, Zhan L, Nie Z. N-Phenyl-2-naphthylamine as a Novel MALDI Matrix for Analysis and in Situ Imaging of Small Molecules. Anal Chem 2017; 90:729-736. [PMID: 29172460 DOI: 10.1021/acs.analchem.7b02710] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Due to its strong ultraviolet absorption, low background interference in the small molecular range, and salt tolerance capacity, N-phenyl-2-naphthylamine (PNA) was developed as a novel matrix in the present study for analysis and imaging of small molecules by matrix-assisted laser desorption/ionization mass spectrometry time-of-fight (MALDI-TOF MS). The newly developed matrix displayed good performance in analysis of a wide range of small-molecule metabolites including free fatty acids, amino acids, peptides, antioxidants, and phospholipids. In addition, PNA-assisted LDI MS imaging of small molecules in brain tissue of rats subjected to middle cerebral artery occlusion (MCAO) revealed unique distributions and changes of 89 small-molecule metabolites including amino acids, antioxidants, free fatty acids, phospholipids, and sphingolipids in brain tissue 24 h postsurgery. Fifty-nine of the altered metabolites were identified, and all the changed metabolites were subject to relative quantitation and statistical analysis. The newly developed matrix has great potential application in the field of biomedical research.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Yueming Zhou
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China.,College of Chemistry, Biology and Material Sciences, East China University of Technology , Nanchang 330013, China
| | - Jiyun Wang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Caiqiao Xiong
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Jinjuan Xue
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Lingpeng Zhan
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China.,National Center for Mass Spectrometry in Beijing , Beijing 100190, China
| |
Collapse
|