1
|
Li L, Su Y, Xiang W, Huang G, Liang Q, Dun B, Zhang H, Xiao Z, Qiu L, Zhang J, Wu D. Transcriptomic network underlying physiological alterations in the stem of Myricaria laxiflora in response to waterlogging stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116991. [PMID: 39236657 DOI: 10.1016/j.ecoenv.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Myricaria laxiflora is an endangered shrub plant with remarkable tolerance to waterlogging stress, however, little attention has been paid to understanding the underlying mechanisms. Here, physiological and transcriptomic approaches were applied to uncover the physiological and molecular reconfigurations in the stem of M. laxiflora in response to waterlogging stress. The accumulation of the contents of H2O2 and malonaldehyde (MDA) alongside increased activities of enzymes for scavenging the reactive oxygen species (ROS) in the stem of M. laxiflora were observed under waterlogging stress. The principal component analysis (PCA) of transcriptomes from five different timepoints uncovered PC1 counted for 17.3 % of total variations and separated the treated and non-treated samples. A total of 8714 genes in the stem of M. laxiflora were identified as differentially expressed genes (DEGs) under waterlogging stress, which could be assigned into two different subgroups with distinct gene expression patterns and biological functions. The DEGs involved in glycolysis were generally upregulated, whereas opposite results were observed for nitrogen uptake and the assimilation pathway. The contents of abscisic acid (ABA) and jasmonic acid (JA) were sharply decreased alongside the decreased mRNA levels of the genes involved in corresponding synthesis pathways upon waterlogging stress. A network centered by eight key transcription factors has been constructed, which uncovered the inhibited cell division processes in the stem of M. laxiflora upon waterlogging stress. Taken together, the obtained results showed that glycolysis, nitrogen metabolism and meristem activities played an important role in the stem of M. laxiflora in response to waterlogging stress.
Collapse
Affiliation(s)
- Linbao Li
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Yang Su
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Weibo Xiang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Guiyun Huang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Qianyan Liang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Bicheng Dun
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Haibo Zhang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Zhiqiang Xiao
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Liwen Qiu
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Jun Zhang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Di Wu
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China.
| |
Collapse
|
2
|
Integrative pathway and network analysis provide insights on flooding-tolerance genes in soybean. Sci Rep 2023; 13:1980. [PMID: 36737640 PMCID: PMC9898312 DOI: 10.1038/s41598-023-28593-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Soybean is highly sensitive to flooding and extreme rainfall. The phenotypic variation of flooding tolerance is a complex quantitative trait controlled by many genes and their interaction with environmental factors. We previously constructed a gene-pool relevant to soybean flooding-tolerant responses from integrated multiple omics and non-omics databases, and selected 144 prioritized flooding tolerance genes (FTgenes). In this study, we proposed a comprehensive framework at the systems level, using competitive (hypergeometric test) and self-contained (sum-statistic, sum-square-statistic) pathway-based approaches to identify biologically enriched pathways through evaluating the joint effects of the FTgenes within annotated pathways. These FTgenes were significantly enriched in 36 pathways in the Gene Ontology database. These pathways were related to plant hormones, defense-related, primary metabolic process, and system development pathways, which plays key roles in soybean flooding-induced responses. We further identified nine key FTgenes from important subnetworks extracted from several gene networks of enriched pathways. The nine key FTgenes were significantly expressed in soybean root under flooding stress in a qRT-PCR analysis. We demonstrated that this systems biology framework is promising to uncover important key genes underlying the molecular mechanisms of flooding-tolerant responses in soybean. This result supplied a good foundation for gene function analysis in further work.
Collapse
|
3
|
Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress. Int J Mol Sci 2022; 23:ijms231810360. [PMID: 36142271 PMCID: PMC9499361 DOI: 10.3390/ijms231810360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Flooding impairs wheat growth and considerably affects yield productivity worldwide. On the other hand, irradiation with millimeter waves enhanced the growth of chickpea and soybean under flooding stress. In the current work, millimeter-wave irradiation notably enhanced wheat growth, even under flooding stress. To explore the protective mechanisms of millimeter-wave irradiation on wheat under flooding, quantitative proteomics was performed. According to functional categorization, proteins whose abundances were changed significantly with and without irradiation under flooding stress were correlated to glycolysis, reactive-oxygen species scavenging, cell organization, and hormonal metabolism. Immunoblot analysis confirmed that fructose-bisphosphate aldolase and β tubulin accumulated in root and leaf under flooding; however, even in such condition, their accumulations were recovered to the control level in irradiated wheat. The abundance of ascorbate peroxidase increased in leaf under flooding and recovered to the control level in irradiated wheat. Because the abundance of auxin-related proteins changed with millimeter-wave irradiation, auxin was applied to wheat under flooding, resulting in the application of auxin improving its growth, even in such condition. These results suggest that millimeter-wave irradiation on wheat seeds improves the recovery of plant growth from flooding via the regulation of glycolysis, reactive-oxygen species scavenging, and cell organization. Additionally, millimeter-wave irradiation could promote tolerance against flooding through the regulation of auxin contents in wheat.
Collapse
|
4
|
Li L, Huang G, Xiang W, Zhu H, Zhang H, Zhang J, Ding Z, Liu J, Wu D. Integrated Transcriptomic and Proteomic Analyses Uncover the Regulatory Mechanisms of Myricaria laxiflora Under Flooding Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:924490. [PMID: 35755690 PMCID: PMC9226631 DOI: 10.3389/fpls.2022.924490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 06/01/2023]
Abstract
Flooding is one of the major environmental stresses that severely influence plant survival and development. However, the regulatory mechanisms underlying flooding stress remain largely unknown in Myricaria laxiflora, an endangered plant mainly distributed in the flood zone of the Yangtze River, China. In this work, transcriptome and proteome were performed in parallel in roots of M. laxiflora during nine time-points under the flooding and post-flooding recovery treatments. Overall, highly dynamic and stage-specific expression profiles of genes/proteins were observed during flooding and post-flooding recovery treatment. Genes related to auxin, cell wall, calcium signaling, and MAP kinase signaling were greatly down-regulated exclusively at the transcriptomic level during the early stages of flooding. Glycolysis and major CHO metabolism genes, which were regulated at the transcriptomic and/or proteomic levels with low expression correlations, mainly functioned during the late stages of flooding. Genes involved in reactive oxygen species (ROS) scavenging, mitochondrial metabolism, and development were also regulated exclusively at the transcriptomic level, but their expression levels were highly up-regulated upon post-flooding recovery. Moreover, the comprehensive expression profiles of genes/proteins related to redox, hormones, and transcriptional factors were also investigated. Finally, the regulatory networks of M. laxiflora in response to flooding and post-flooding recovery were discussed. The findings deepen our understanding of the molecular mechanisms of flooding stress and shed light on the genes and pathways for the preservation of M. laxiflora and other endangered plants in the flood zone.
Collapse
Affiliation(s)
- Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Haofei Zhu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Haibo Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Zehong Ding
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Jihong Liu
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| |
Collapse
|
5
|
Komatsu S, Yamaguchi H, Hitachi K, Tsuchida K. Proteomic, Biochemical, and Morphological Analyses of the Effect of Silver Nanoparticles Mixed with Organic and Inorganic Chemicals on Wheat Growth. Cells 2022; 11:1579. [PMID: 35563885 PMCID: PMC9104970 DOI: 10.3390/cells11091579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat is vulnerable to numerous diseases; on the other hand, silver nanoparticles (AgNPs) exhibit a sterilizing action. To understand the combined effects of AgNPs with nicotinate and potassium nitrate (KNO3) for plant growth and sterilization, a gel- and label-free proteomics was performed. Root weight was promoted by the treatment of AgNPs mixed with nicotinate and KNO3. From a total of 5557 detected proteins, 90 proteins were changed by the mixture of AgNPs, nicotinate, and KNO3; among them, 25 and 65 proteins increased and decreased, respectively. The changed proteins were mainly associated with redox and biotic stress in the functional categorization. By immunoblot analysis, the abundance of glutathione reductase/peroxiredoxin and pathogen-related protein three significantly decreased with the mixture. Furthermore, from the changed proteins, the abundance of starch synthase and lipoxygenase significantly increased and decreased, respectively. Through biochemical analysis, the starch contents increased with the mixture. The application of esculetin, which is a lipoxygenase inhibitor, increased the weight and length of the root. These results suggest that the AgNPs mixed with nicotinate and KNO3 cause positive effects on wheat seedlings by regulating pathogen-related protein and reactive-oxygen species scavenging. Furthermore, increasing starch and decreasing lipoxygenase might improve wheat growth.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| |
Collapse
|
6
|
Wang S, Zhou H, Feng N, Xiang H, Liu Y, Wang F, Li W, Feng S, Liu M, Zheng D. Physiological response of soybean leaves to uniconazole under waterlogging stress at R1 stage. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153579. [PMID: 34839099 DOI: 10.1016/j.jplph.2021.153579] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 05/12/2023]
Abstract
Waterlogging is a major limiting factor in global crop production and seriously endangers growth and yield improvement in low-lying, rainfed regions. Soybean is an important economic crop affected by waterlogging stress. The current study investigates the effects of waterlogging stress on the leaf physiology and yield of two soybean varieties (Kenfeng 14, waterlogging-tolerant and Kenfeng 16, waterlogging-sensitive) and the mitigation effect of uniconazole (S3307) in promoting growth and productivity under waterlogging conditions. The results showed that waterlogging stress increased antioxidant enzyme activity and decreased the contents of non-enzymatic antioxidants such as AsA and GSH. Furthermore, the content of MDA and H2O2 increased significantly, indicating oxidative stress and O2-· production rate also improved, and the increase in the waterlogging-sensitive variety Kenfeng 16 was greater than that of the waterlogging-tolerant variety Kenfeng 14. Spraying S3307, however, increased the activities of antioxidants such as SOD, POD, CAT, and APX. GR, MDHAR, and DHAR increased the content of non-enzymatic antioxidants, effectively inhibited the increase of MDA, H2O2 content, and O2-· production rate, and alleviated the loss of yield factors caused by waterlogging stress. The waterlogging-tolerant variety Kenfeng 14 recovered better than the waterlogging-sensitive variety Kenfeng 16. In summary, S3307 ameliorated the effects of waterlogging stress on the physiological characteristics of soybean leaves and improved yield as a result of improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, S3307 could decelerate the damages caused by waterlogging stress to some extent.
Collapse
Affiliation(s)
- Shiya Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, 163319, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518108, China
| | - Hongtao Xiang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yang Liu
- Yantai Academy of Agricultural Sciences, Shandong province, Yantai, 265500, China
| | - Feng Wang
- Qiqihar Agricultural Technology Extension Center, Qiqihar, 161006, China
| | - Wan Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shengjie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meiling Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518108, China.
| |
Collapse
|
7
|
Jain N, Farhat S, Kumar R, Singh N, Singh S, Sreevathsa R, Kalia S, Singh NK, Teruhiro T, Rai V. Alteration of proteome in germinating seedlings of piegonpea ( Cajanus cajan) after salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2833-2848. [PMID: 35035139 PMCID: PMC8720132 DOI: 10.1007/s12298-021-01116-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Pigeonpea (Cajanus cajan) is an important crop in semi-arid regions and a significant source of dietary proteins in India. The plant is sensitive to salinity stress, which adversely affects its productivity. Based on the dosage-dependent influence of salinity stress on the growth and ion contents in the young seedlings of pigeonpea, a comparative proteome analysis of control and salt stressed (150 mM NaCl) plants was conducted using 7 days-old seedlings. Among various amino acids, serine, aspartate and asparagine were the amino acids that showed increment in the root, whereas serine, aspartate and phenylalanine showed an upward trend in shoots under salt stress. Furthermore, a label-free and gel-free comparative Q-Tof, Liquid Chromatography-Mass spectrometry (LC-MS) revealed total of 118 differentially abundant proteins in roots and shoots with and without salt stress conditions. Proteins related to DNA-binding with one finger (Dof) transcription factor family and glycine betaine (GB) biosynthesis were differentially expressed in the shoot and root of the salinity-stressed seedlings. Exogenous application of choline on GB accumulation under salt stress showed the increase of GB pathway in C. cajan. Gene expression analysis for differentially abundant proteins revealed the higher induction of ethanolamine kinase (CcEthKin), choline-phosphate cytidylyltransferase 1-like (CcChoPh), serine hydroxymethyltransferase (CcSHMT) and Dof protein (CcDof29). The results indicate the importance of, choline precursor, serine biosynthetic pathways and glycine betaine synthesis in salinity stress tolerance. The glycine betaine protects plant from cellular damages and acts as osmoticum under stress condition. Protein interaction network (PIN) analysis demonstrated that 61% of the differentially expressed proteins exhibited positive interactions and 10% of them formed the center of the PIN. Further, The PIN analysis also highlighted the potential roles of the cytochrome c oxidases in sensing and signaling cascades governing salinity stress responses in pigeonpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01116-w.
Collapse
Affiliation(s)
- Neha Jain
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Sufia Farhat
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
- IK Gujral Punjab Technical University, Jalandhar, Punjab India
| | - Ram Kumar
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Nisha Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Sangeeta Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | | | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Takabe Teruhiro
- Research Institute, Meijo University, Nagoya, 468-8502 Japan
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| |
Collapse
|
8
|
Waterlogging Resistance Evaluation Index and Photosynthesis Characteristics Selection: Using Machine Learning Methods to Judge Poplar’s Waterlogging Resistance. MATHEMATICS 2021. [DOI: 10.3390/math9131542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Flood disasters are the major natural disaster that affects the growth of agriculture and forestry crops. Due to rapid growth and strong waterlogging resistance characteristics, many studies have explained the waterlogging resistance mechanism of poplar from different perspectives. However, there is no accurate method to define the evaluation index of waterlogging resistance. In addition, there is also a lack of research on predicting the waterlogging resistance of poplars. Based on the changes of poplar biomass and seedling height, the evaluation index of poplar resistance to waterlogging was well determined, and the characteristics of photosynthesis were used to predict the waterlogging resistance of poplars. First, four methods of hierarchical clustering, lasso, stepwise regression and all-subsets regression were used to extract the photosynthesis characteristics. After that, the support vector regression model of poplar resistance to waterlogging was established by using the characteristic parameters of photosynthesis. Finally, the results show that the SVR model based on Stepwise regression and Lasso method has high precision. On the test set, the coefficient of determination (R2) was 0.8581 and 0.8492, the mean square error (MSE) was 0.0104 and 0.0341, and the mean relative error (MRE) was 9.78% and 9.85%, respectively. Therefore, using the characteristic parameters of photosynthesis to predict the waterlogging resistance of poplars is feasible.
Collapse
|
9
|
Transcriptome Analysis Reveals Genes of Flooding-Tolerant and Flooding-Sensitive Rapeseeds Differentially Respond to Flooding at the Germination Stage. PLANTS 2021; 10:plants10040693. [PMID: 33916802 PMCID: PMC8065761 DOI: 10.3390/plants10040693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/31/2022]
Abstract
Flooding results in significant crop yield losses due to exposure of plants to hypoxic stress. Various studies have reported the effect of flooding stress at seedling establishment or later stages. However, the molecular mechanism prevailing at the germination stage under flooding stress remains enigmatic. The present study highlights the comparative transcriptome analysis in two rapeseed lines, i.e., flooding-tolerant (Santana) and -sensitive (23651) lines under control and 6-h flooding treatments at the germination stage. A total of 1840 up-regulated and 1301 down-regulated genes were shared by both lines in response to flooding. There were 4410 differentially expressed genes (DEGs) with increased expression and 4271 DEGs with reduced expression shared in both control and flooding conditions. Gene ontology (GO) enrichment analysis revealed that “transcription regulation”, “structural constituent of cell wall”, “reactive oxygen species metabolic”, “peroxidase”, oxidoreductase”, and “antioxidant activity” were the common processes in rapeseed flooding response. In addition, the processes such as “hormone-mediated signaling pathway”, “response to organic substance response”, “motor activity”, and “microtubule-based process” are likely to confer rapeseed flooding resistance. Mclust analysis clustered DEGs into nine modules; genes in each module shared similar expression patterns and many of these genes overlapped with the top 20 DEGs in some groups. This work provides a comprehensive insight into gene responses and the regulatory network in rapeseed flooding stress and provides guidelines for probing the underlying molecular mechanisms in flooding resistance.
Collapse
|
10
|
Liu A, Xiao Z, Wang Z, Lam HM, Chye ML. Galactolipid and Phospholipid Profile and Proteome Alterations in Soybean Leaves at the Onset of Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:644408. [PMID: 33815451 PMCID: PMC8010258 DOI: 10.3389/fpls.2021.644408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/18/2021] [Indexed: 05/12/2023]
Abstract
Salinity is a major environmental factor that constrains soybean yield and grain quality. Given our past observations using the salt-sensitive soybean (Glycine max [L.] Merr.) accession C08 on its early responses to salinity and salt-induced transcriptomic modifications, the aim of this study was to assess the lipid profile changes in this cultivar before and after short-term salt stress, and to explore the adaptive mechanisms underpinning lipid homeostasis. To this end, lipid profiling and proteomic analyses were performed on the leaves of soybean seedlings subjected to salt treatment for 0, 0.5, 1, and 2 h. Our results revealed that short-term salt stress caused dynamic lipid alterations resulting in recycling for both galactolipids and phospholipids. A comprehensive understanding of membrane lipid adaption following salt treatment was achieved by combining time-dependent lipidomic and proteomic data. Proteins involved in phosphoinositide synthesis and turnover were upregulated at the onset of salt treatment. Salinity-induced lipid recycling was shown to enhance jasmonic acid and phosphatidylinositol biosyntheses. Our study demonstrated that salt stress resulted in a remodeling of membrane lipid composition and an alteration in membrane lipids associated with lipid signaling and metabolism in C08 leaves.
Collapse
Affiliation(s)
- Ailin Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Zhixia Xiao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Hon-Ming Lam,
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- Mee-Len Chye,
| |
Collapse
|
11
|
Wang X, Komatsu S. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean. Int J Mol Sci 2020; 21:E7497. [PMID: 33053653 PMCID: PMC7589014 DOI: 10.3390/ijms21207497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant mechanisms in soybean. Subcellular proteomics has potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and under stress stimuli. Furthermore, post-translational modifications play important roles in stress response and tolerance to flooding stress. Although many flood-response mechanisms have been reported, flood-tolerant mechanisms have not been fully clarified for soybean because of limitations in germplasm with flooding tolerance. This review provides an update on current biochemical and molecular networks involved in soybean tolerance against flooding stress, as well as recent developments in the area of functional genomics in terms of developing flood-tolerant soybeans. This work will expedite marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
12
|
Lapaz ADM, de Camargos LS, Yoshida CHP, Firmino AC, de Figueiredo PAM, Aguilar JV, Nicolai AB, Silva de Paiva WD, Cruz VH, Tomaz RS. Response of soybean to soil waterlogging associated with iron excess in the reproductive stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1635-1648. [PMID: 32801492 PMCID: PMC7415068 DOI: 10.1007/s12298-020-00845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/23/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Soil waterlogging is a common problem in some agricultural areas, including regions under soybean (Glycine max) cultivation. In waterlogged soils, soil O2 depletion occurs due to aerobic microorganisms and plants, affecting the metabolic and physiological processes of plants after suffering anoxia in their root tissue. Another harmful factor in this situation is the exponential increase in the availability of iron (Fe) in the soil, which may result in absorption of excess Fe. The present study sought to evaluate the response mechanisms in soybean leaves 'Agroeste 3680' by physiological and biochemical analyses associating them with the development of pods in non-waterlogged and waterlogged soil, combined with one moderate and two toxic levels of Fe. Gas exchange was strongly affected by soil waterlogging. Excess Fe without soil waterlogging reduced photosynthetic pigments, and potentiated this reduction when associated with soil waterlogging. Starch and ureide accumulation in the first newly expanded trifoliate leaves proved to be response mechanisms induced by soil waterlogging and excess Fe, since plants cultivated under soil non-waterlogged soil at 25 mg dm-3 Fe showed lower contents when compared to stressed plants. Thus, starch and ureide accumulation could be considered efficient biomarkers of phytotoxicity caused by soil waterlogging and excess Fe in soybean plants. The reproductive development was abruptly interrupted by the imposition of stresses, leading to a loss of pod dry biomass, which was largely due to the substantial decrease in the net photosynthetic rate, as expressed by area (A), the blockage of carbohydrate transport to sink tissues and an increase of malondialdehyde (MDA). The negative effect on reproductive development was more pronounced under waterlogged soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Victor Hugo Cruz
- São Paulo State University (UNESP), Dracena, SP 17900-000 Brazil
| | | |
Collapse
|
13
|
Mustafa G, Hasan M, Yamaguchi H, Hitachi K, Tsuchida K, Komatsu S. A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings. J Proteomics 2020; 224:103833. [PMID: 32450145 DOI: 10.1016/j.jprot.2020.103833] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) are synthesized by different methods and response mechanism of plants varied towards NPs based on their origin. To study the effects of bio synthesized (BS) and chemically synthesized (CS) silver NPs on soybean, a gel-free/ label-free proteomic technique was used. Length of root and hypocotyl was enhanced by BS compared to CS silver NPs. 10 ppm BS silver NPs enhanced the length of root and hypocotyl compared to 1 and 50 ppm. A total of 190 and 173 differentially changed proteins were identified in BS and CS silver NPs treated soybean, respectively. Twenty proteins commonly changed between BS and CS silver NPs treated soybean. Differentially-changed proteins were associated with protein-degradation and stress according to functional categorization. From proteomics, abundances of peroxidases were increased under CS silver NPs. Immunoblot analysis depicted that accumulation of ascorbate peroxidase, glutathione reductase, and peroxiredoxin remained unchanged under both BS and CS silver NPs. ATP content decreased under CS silver NPs compared to BS silver NPs. ADH activity increased in CS silver NPs treated soybean. These results suggest that BS silver NPs enhanced the growth of soybean by regulating proteins related to protein-degradation and ATP contents, which are negatively affected by CS silver NPs. BIOLOGICAL SIGNIFICANCE: This study highlighted the response mechanism of soybean towards bio synthesized (BS) and chemically synthesized (CS) silver nanoparticles (NPs) using a gel-free/ label-free proteomics technique. Length of root and hypocotyl was enhanced by BS silver NPs compared to CS silver NPs. 10 ppm BS silver NPs enhanced the length of root and hypocotyl compared to other concentrations. Differentially changed proteins were associated with protein degradation and stress. From the proteomics, the abundances of peroxidases were increased under CS silver NPs. Immunoblot analysis depicted that accumulation of ascorbate peroxidase, glutathione reductase, and peroxiredoxin remained unchanged under both BS and CS silver NPs. ATP content decreased under CS silver NPs compared to BS silver NPs. ADH activity increased in CS silver NPs compared to BS silver NPs treated soybean. These results suggest that the BS silver NPs enhanced the growth of soybean by regulating the proteins related to protein degradation and ATP contents, which are negatively affected by the CS silver NPs.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| | - Murtaza Hasan
- Department of Biochemistry and Biotechnology, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
14
|
Zhong Z, Furuya T, Ueno K, Yamaguchi H, Hitachi K, Tsuchida K, Tani M, Tian J, Komatsu S. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions. Int J Mol Sci 2020; 21:E486. [PMID: 31940953 PMCID: PMC7013696 DOI: 10.3390/ijms21020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Improving soybean growth and tolerance under environmental stress is crucial for sustainable development. Millimeter waves are a radio-frequency band with a wavelength range of 1-10 mm that has dynamic effects on organisms. To investigate the potential effects of millimeter-waves irradiation on soybean seedlings, morphological and proteomic analyses were performed. Millimeter-waves irradiation improved the growth of roots/hypocotyl and the tolerance of soybean to flooding stress. Proteomic analysis indicated that the irradiated soybean seedlings recovered under oxidative stress during growth, whereas proteins related to glycolysis and ascorbate/glutathione metabolism were not affected. Immunoblot analysis confirmed the promotive effect of millimeter waves to glycolysis- and redox-related pathways under flooding conditions. Sugar metabolism was suppressed under flooding in unirradiated soybean seedlings, whereas it was activated in the irradiated ones, especially trehalose synthesis. These results suggest that millimeter-waves irradiation on soybean seeds promotes the recovery of soybean seedlings under oxidative stress, which positively regulates soybean growth through the regulation of glycolysis and redox related pathways.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (Z.Z.); (K.U.)
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China;
| | - Takashi Furuya
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan; (T.F.); (M.T.)
| | - Kimitaka Ueno
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (Z.Z.); (K.U.)
| | - Hisateru Yamaguchi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (H.Y.); (K.H.); (K.T.)
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (H.Y.); (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (H.Y.); (K.H.); (K.T.)
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan; (T.F.); (M.T.)
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China;
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (Z.Z.); (K.U.)
| |
Collapse
|
15
|
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi SF, Yousefi B, Jeandet P, Xu S, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv 2020; 38:107316. [PMID: 30458225 DOI: 10.1016/j.biotechadv.2018.11.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/28/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023]
Abstract
Plants, fungi, and microorganisms are equipped with biosynthesis machinery for producing thousands of secondary metabolites. These compounds have important functions in nature as a defence against predators or competitors as well as other ecological significances. The full utilization of these compounds for food, medicine, and other purposes requires a thorough understanding of their structures and the distinct biochemical pathways of their production in cellular systems. In this review, flavonoids as classical examples of secondary metabolites are employed to highlight recent advances in understanding how valuable compounds can be regulated at various levels. With extensive diversity in their chemistry and pharmacology, understanding the metabolic engineering of flavonoids now allows us to fine-tune the eliciting of their production, accumulation, and extraction from living systems. More specifically, recent advances in the shikimic acid and acetate biosynthetic pathways of flavonoids production from metabolic engineering point of view, from genes expression to multiple principles of regulation, are addressed. Specific examples of plants and microorganisms as the sources of flavonoids-based compounds with particular emphasis on therapeutic applications are also discussed.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Dunja Šamec
- Department of Molecular Biology, Institute 'Ruđer Bošković', Zagreb, Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Luigi Milella
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Ipek Suntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, - Vigo Campus, Vigo, Spain
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago, Spain; Instituto de Investigación en Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Philippe Jeandet
- Unité de Recherche RIBP EA 4707, SFR Condorcet FR CNRS 3417, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP, 1039, 51687 Reims CEDEX, France
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Min CW, Gupta R, Agrawal GK, Rakwal R, Kim ST. Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach. Expert Rev Proteomics 2019; 16:795-804. [PMID: 31398080 DOI: 10.1080/14789450.2019.1654860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022]
Abstract
Introduction: The last decade has yielded significant developments in the field of proteomics, especially in mass spectrometry (MS) and data analysis tools. In particular, a shift from gel-based to MS-based proteomics has been observed, thereby providing a platform with which to construct proteome atlases for all life forms. Nevertheless, the analysis of plant proteomes, especially those of samples that contain high-abundance proteins (HAPs), such as soybean seeds, remains challenging. Areas covered: Here, we review recent progress in soybean seed proteomics and highlight advances in HAPs depletion methods and peptide pre-fractionation, identification, and quantification methods. We also suggest a pipeline for future proteomic analysis, in order to increase the dynamic coverage of the soybean seed proteome. Expert opinion: Because HAPs limit the dynamic resolution of the soybean seed proteome, the depletion of HAPs is a prerequisite of high-throughput proteome analysis, and owing to the use of two-dimensional gel electrophoresis-based proteomic approaches, few soybean seed proteins have been identified or characterized. Recent advances in proteomic technologies, which have significantly increased the proteome coverage of other plants, could be used to overcome the current complexity and limitation of soybean seed proteomics.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265 , Kathmandu , Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited , Birgunj , Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265 , Kathmandu , Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited , Birgunj , Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Ibaraki , Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and industry Convergence Research Institute, Pusan National University , Miryang , Korea
| |
Collapse
|
17
|
Wang Y, Cong Y, Wang Y, Guo Z, Yue J, Xing Z, Gao X, Chai X. Identification of Early Salinity Stress-Responsive Proteins in Dunaliella salina by isobaric tags for relative and absolute quantitation (iTRAQ)-Based Quantitative Proteomic Analysis. Int J Mol Sci 2019; 20:ijms20030599. [PMID: 30704074 PMCID: PMC6386831 DOI: 10.3390/ijms20030599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Salt stress is one of the most serious abiotic factors that inhibit plant growth. Dunaliella salina has been recognized as a model organism for stress response research due to its high capacity to tolerate extreme salt stress. A proteomic approach based on isobaric tags for relative and absolute quantitation (iTRAQ) was used to analyze the proteome of D. salina during early response to salt stress and identify the differentially abundant proteins (DAPs). A total of 141 DAPs were identified in salt-treated samples, including 75 upregulated and 66 downregulated DAPs after 3 and 24 h of salt stress. DAPs were annotated and classified into gene ontology functional groups. The Kyoto Encyclopedia of Genes and Genomes pathway analysis linked DAPs to tricarboxylic acid cycle, photosynthesis and oxidative phosphorylation. Using search tool for the retrieval of interacting genes (STRING) software, regulatory protein⁻protein interaction (PPI) networks of the DAPs containing 33 and 52 nodes were built at each time point, which showed that photosynthesis and ATP synthesis were crucial for the modulation of early salinity-responsive pathways. The corresponding transcript levels of five DAPs were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). These results presented an overview of the systematic molecular response to salt stress. This study revealed a complex regulatory mechanism of early salt tolerance in D. salina and potentially contributes to developing strategies to improve stress resilience.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Hydrobiology in Liaoning Province's Universities, Dalian Ocean University, Dalian 116021, China.
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Yuting Cong
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Yonghua Wang
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Zihu Guo
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Jinrong Yue
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Zhenyu Xing
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Xiangnan Gao
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| | - Xiaojie Chai
- College of fisheries and life science, Dalian Ocean University, Dalian 116021, China.
| |
Collapse
|
18
|
Peng Y, Zhou Z, Zhang Z, Yu X, Zhang X, Du K. Molecular and physiological responses in roots of two full-sib poplars uncover mechanisms that contribute to differences in partial submergence tolerance. Sci Rep 2018; 8:12829. [PMID: 30150759 PMCID: PMC6110812 DOI: 10.1038/s41598-018-30821-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022] Open
Abstract
Poplar is a major afforestation tree species in flood-prone areas. Here, we compared molecular and physiological responses in the roots of two full-sib poplar clones, LS1 (flood-tolerant) and LS2 (flood-susceptive), subjected to stagnant flooding using transcript and metabolite profiling. LS1 displayed less phenotypic damage and superior leaf gas exchange and plant growth compared with those of LS2. We concluded that three characteristics might contribute to the differences in flood tolerance between LS1 and LS2. First, fermentation was initiated through lactic dehydrogenation in LS1 roots under flooding and subsequently dominated by alcohol fermentation. However, lactic dehydrogenase was persistently active in flooded LS2. Second, 13 differentially expressed genes associated with energy and O2 consumption processes under soil flooding had lower transcript levels in LS1 than those in LS2, which might contribute to better energy-/O2-saving abilities and behaviours in flood-tolerant LS1 than those in flood-susceptible LS2 under hypoxic stress. Third, LS1 possessed increased reactive oxygen species scavenging abilities compared with those of LS2 under edaphic flooding. Our data are a valuable contribution to understanding the mechanisms involved in the flood tolerance of poplar.
Collapse
Affiliation(s)
- YanJie Peng
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - ZhiXiang Zhou
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhe Zhang
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - XiaoLi Yu
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - XinYe Zhang
- Hubei Academy of Forestry, Wuhan, 430075, P. R. China
| | - KeBing Du
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
19
|
Wang X, Komatsu S. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. J Proteomics 2018; 172:201-215. [PMID: 29133124 DOI: 10.1016/j.jprot.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Soybean is the important crop with abundant protein, vegetable oil, and several phytochemicals. With such predominant values, soybean is cultivated with a long history. However, flooding and drought stresses exert deleterious effects on soybean growth. The present review summarizes the morphological changes and affected events in soybean exposed to such extreme-water conditions. Sensitive organ in stressed soybean at different-developmental stages is presented based on protein profiles. Protein quality control and calcium homeostasis in the endoplasmic reticulum are discussed in soybean under both stresses. In addition, the way of calcium homeostasis in mediating protein folding and energy metabolism is addressed. Finally, stress response to flooding and drought is systematically demonstrated. This review concludes the recent findings of plant response to flooding and drought stresses in soybean employed proteomic approaches. BIOLOGICAL SIGNIFICANCE Soybean is considered as traditional-health food because of nutritional elements and pharmacological values. Flooding and drought exert deleterious effects to soybean growth. Proteomic approaches have been employed to elucidate stress response in soybean exposed to flooding and drought stresses. In this review, stress response is presented on organ-specific manner in the early-stage plant and soybean seedling exposed to combined stresses. The endoplasmic reticulum (ER) stress is induced by both stresses; and stress-response in the ER is addressed in the root tip of early-stage soybean. Moreover, calcium-response processes in stressed plant are described in the ER and in the cytosol. Additionally, stress-dependent response was discussed in flooded and drought-stressed plant. This review depicts stress response in the sensitive organ of stressed soybean and forms the basis to develop molecular markers related to plant defense under flooding and drought stresses.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
20
|
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. FRONTIERS IN PLANT SCIENCE 2018; 9:122. [PMID: 29472941 PMCID: PMC5810178 DOI: 10.3389/fpls.2018.00122] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Environmental Research and Technology Platform, Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| |
Collapse
|