1
|
Zhou S, Huang J, Zhang H, Song X, Jiang Y, Zhao X, Shen X. Live yeast (Saccharomyces cerevisiae) improves growth performance and liver metabolic status of lactating Hu sheep. J Dairy Sci 2025:S0022-0302(25)00095-5. [PMID: 39986452 DOI: 10.3168/jds.2024-25829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/19/2025] [Indexed: 02/24/2025]
Abstract
Yeast, a natural starter culture, is widely used to improve digestion function in ruminants. However, whether yeast affects the physiological state of the liver in ruminants is currently unknown. The aim of this study was to investigate the effects of yeast on liver metabolic status and physiological functions of Hu sheep during lactation. A total of 24 lactating Hu sheep were randomly divided into 4 groups with 6 sheep in each group: the control group (normal diet) and the low-, medium-, and high-dose groups, in which each sheep was fed an additional 0.5 g, 1 g, and 2 g yeast per morning, respectively. Blood, liver, small intestine samples were collected for subsequent analysis, and milk production and BW were recorded during the experimental period. The results showed that dietary yeast supplementation mitigated BW loss, enhanced liver function, and increased milk protein and lactose contents in Hu sheep during lactation. Compared with the normal diet, dietary yeast supplementation reduced the content of lipid droplets in the liver, significantly upregulated the expression of lipid β-oxidation-related enzymes (PPARα and CPT1A), and significantly decreased the expression of lipid synthesis-related enzymes (FASN, PPARγ, DGAT1, and DGAT2) in the liver without affecting the capacity of the small intestine to absorb foodborne lipids. In addition, dietary yeast supplementation significantly decreased blood nonesterified free fatty acid content and increased blood glucose and liver expression of key enzymes involved in gluconeogenesis (PCK1α, FBP, and G6PC). These results suggest that dietary yeast supplementation may alleviate weight loss and enhance milk quality in Hu sheep during lactation. Furthermore, it can improve liver metabolic adaptability and protect liver health by regulating lipid metabolism and metabolic glucose homeostasis in the liver. Notably, adding 1 g or 2 g of yeast to the daily diet yields superior effects.
Collapse
Affiliation(s)
- Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Jie Huang
- Huzhou Research Institute of Hu Sheep, Huzhou Academy of Agricultural Science, Huzhou, Zhejiang, P. R. China
| | - Hao Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xiaokun Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Yijin Jiang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xu Zhao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095.
| |
Collapse
|
2
|
Zhang B, Wang J, Li M, Wen J, Loor JJ, Wang S, Ji Z, Lv X, Wang G, Xia C, Yang W, Xu C. Calcium Release-Activated Calcium Modulator ORAI1-Sensitive Serine Dehydratase Regulates Fatty Acid-Induced CD4 + Th17/Treg Imbalance in Dairy Cows. Animals (Basel) 2025; 15:388. [PMID: 39943158 PMCID: PMC11815743 DOI: 10.3390/ani15030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
High concentrations of free fatty acids (FFAs) caused by negative energy balance render the cow more prone to inflammatory diseases in part due to an imbalance in the types of immune cells and their specific functions. We previously demonstrated that ORAI calcium release-activated calcium modulator 1 (ORAI1) was associated with increased CD4+ Th17 content, but the precise mechanisms remain unclear. The purpose of this study was to evaluate the efficacy of FFAs on CD4+ T cell inflammatory response. High FFAs in dairy cows caused the transcript level of the pro-inflammatory factor IL-17A, plasma concentration of IL-17A, and amount of intracellular IL-17A to increase while the transcript levels and intracellular amount of the anti-inflammatory factor FOXP3 were downregulated. These changes indicated Th17/Treg imbalance and inflammation in dairy cows with high FFA. Moreover, ORAI1 and SDS abundance was elevated in dairy cows with high FFAs by transcriptomics, QPCR, and Western blot. Knockdown of SDS (siSDS) did not alter ORAI1 expression in CD4+ T cells from high-FFA cows, while it decreased the expression of inflammatory factors. Transfection of CD4+ T cells using siRNA knockdown for ORAI1 (siORAI1) revealed that SDS and inflammatory factor abundance decreased. Serine can be catabolized to pyruvate by the action of serine dehydratase (SDS). Data from this study suggested that high FFAs caused by negative energy balance after calving regulates the Th17/Treg balance via SDS, but SDS does not regulate ORAI1 abundance. The above data suggested a pro-inflammatory mechanism in CD4+ T cells regulated by the ORAI1-sensitive SDS pathway in early postpartum cows experiencing high-FFA conditions. Thus, targeting this pathway may represent a new therapeutic and interventional approach for preventing immune-related disorders around parturition.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (B.Z.); (J.W.); (J.W.); (Z.J.); (G.W.)
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (B.Z.); (J.W.); (J.W.); (Z.J.); (G.W.)
- College of Animal Science, Ningxia University, Yinchuan 750021, China;
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (M.L.); (X.L.); (C.X.); (W.Y.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (B.Z.); (J.W.); (J.W.); (Z.J.); (G.W.)
| | - Juan J. Loor
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Shuang Wang
- College of Animal Science, Ningxia University, Yinchuan 750021, China;
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (M.L.); (X.L.); (C.X.); (W.Y.)
| | - Ziwei Ji
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (B.Z.); (J.W.); (J.W.); (Z.J.); (G.W.)
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (M.L.); (X.L.); (C.X.); (W.Y.)
| | - Guihua Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (B.Z.); (J.W.); (J.W.); (Z.J.); (G.W.)
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (M.L.); (X.L.); (C.X.); (W.Y.)
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (M.L.); (X.L.); (C.X.); (W.Y.)
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Sun N, Zou S, Feng J, Guo G, Liu Q, Zhang Y, Chen L, Huo W, Wang C. Effects of Dietary Coated Folic Acid and Folic Acid Addition on Lactation Performance, Rumen Fermentation, and Hepatic Lipid Content in Early Lactation Dairy Cows. Animals (Basel) 2025; 15:169. [PMID: 39858167 PMCID: PMC11758292 DOI: 10.3390/ani15020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluated the influences of coated folic acid (CFA) and folic acid (FA) on lactation performance, apparent digestibility, rumen volatile fatty acid (VFA) production, blood metabolism, and hepatic lipid content in cows. A total of 140 Holstein cows were allocated to seven groups in a randomized block design. Cows in the control received no addition, those in the in low CFA (LCFA), medium CFA (MCFA), and high CFA (HCFA) groups received CFA at 135, 270, and 405 mg FA/d, and those in the low FA (LFA), medium FA (MFA), and high FA (HFA) groups received FA at 135, 270, and 405 mg/d. The experiment began 5 weeks before calving to 6 weeks after calving. When increasing the level of CFA, the fat-corrected milk (FCM), fat and protein yields, de novo fatty acid content, and feed efficiency increased linearly. A linear increase was observed for nutrient digestibility and ruminal total VFAs. The blood total protein, albumin, superoxide dismutase, glutathione peroxidase, and folate increased linearly, but blood non-esterified fatty acids and β-hydroxybutyric acid and hepatic lipids decreased linearly. When increasing the level of FA, the FCM and milk fat yields increased linearly, but the rumen total VFA increased quadratically. Compared with MFA, cows receiving MCFA had a greater milk yield and lower hepatic lipids. Overall, the addition of CFA increased the milk yield and decreased the hepatic lipid content in cows.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (N.S.); (S.Z.); (J.F.); (G.G.); (Y.Z.); (L.C.); (W.H.); (C.W.)
| | | | | | | | | |
Collapse
|
4
|
Zhou B, Zhang B, Han J, Zhang J, Li J, Dong W, Zhao X, Zhang Y, Zhang Q. Role of Acyl-CoA Thioesterase 7 in Regulating Fatty Acid Metabolism and Its Contribution to the Onset and Progression of Bovine Clinical Mastitis. Int J Mol Sci 2024; 25:13046. [PMID: 39684757 DOI: 10.3390/ijms252313046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Clinical mastitis (CM) is a prevalent and severe inflammatory disease in dairy cows affecting the mammary glands. Fatty acid (FA) metabolism and associated enzymes are crucial for many physiological and pathological processes in dairy cows. However, the relationships among FA metabolism, FA-associated enzymes, and CM, as well as the mechanisms underlying their interactions, in dairy cows are not fully understood. The aim of this study was to characterize biological process (BP) terms, pathways, and differentially expressed proteins (DEPs) related to FA metabolism from our previous data-independent acquisition proteomic study. Six BPs involving 14 downregulated and 20 upregulated DEPs, and four pathways involving 10 downregulated and 11 upregulated DEPs related to FA synthesis and metabolism were systematically identified. Associated analysis suggested that 12 candidate DEPs obtained from BPs and pathways, especially acyl-CoA thioesterase 7 (ACOT7), regulate long-chain FA (LCFA) elongation and the biosynthesis of unsaturated FAs. Immunohistochemical and immunofluorescence staining results showed that ACOT7 was present mainly in the cytoplasm of mammary epithelial cells. The qRT-PCR and Western blotting results showed that ACOT7 mRNA and protein levels in the mammary glands of the CM group were significantly upregulated compared to those in the healthy group. This evidence indicates that ACOT7 is positively correlated with CM onset and progression in Holstein cows. These findings offer novel insights into the role of FA metabolism and related enzymes in CM and offer potential targets for the development of therapeutic strategies and biomarkers for the prevention and treatment of CM in dairy cows.
Collapse
Affiliation(s)
- Bin Zhou
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Bohao Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangyuan Han
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Junjun Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jianfu Li
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Weitao Dong
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Martins CF, Matzapetakis M, Ribeiro DM, Kuleš J, Horvatić A, Guillemin N, Eckersall PD, Freire JPB, Almeida AM, Prates JAM. Metabolomics and proteomics insights into hepatic responses of weaned piglets to dietary Spirulina inclusion and lysozyme supplementation. BMC Vet Res 2024; 20:505. [PMID: 39506864 PMCID: PMC11539757 DOI: 10.1186/s12917-024-04339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Studying the effect of dietary Spirulina and lysozyme supplementation on the metabolome and proteome of liver tissue contributes to understanding potential hepatic adaptations of piglets to these novel diets. This study aimed to understand the influence of including 10% Spirulina on the metabolome and proteome of piglet liver tissue. Three groups of 10 post-weaned piglets, housed in pairs, were fed for 28 days with one of three experimental diets: a cereal and soybean meal-based diet (Control), a base diet with 10% Spirulina (SP), and an SP diet supplemented with 0.01% lysozyme (SP + L). At the end of the trial, animals were sacrificed and liver tissue was collected. Metabolomics analysis (n = 10) was performed using NMR data analysed with PCA and PLS-DA. Proteomics analysis (n = 5) was conducted using a filter aided sample preparation (FASP) protocol and Tandem Mass Tag (TMT)-based quantitative approach with an Orbitrap mass spectrometer. RESULTS Growth performance showed an average daily gain reduction of 9.5% and a feed conversion ratio increase of 10.6% in groups fed Spirulina compared to the control group. Metabolomic analysis revealed no significant differences among the groups and identified 60 metabolites in the liver tissue. Proteomics analysis identified 2,560 proteins, with 132, 11, and 52 differentially expressed in the Control vs. SP, Control vs. SP + L and SP vs. SP + L comparisons, respectively. This study demonstrated that Spirulina enhances liver energy conversion efficiency, detoxification and cellular secretion. It improves hepatic metabolic efficiency through alterations in fatty acid oxidation (e.g., upregulation of enzymes like fatty acid synthase and increased acetyl-CoA levels), carbohydrate catabolism (e.g., increased glucose and glucose-6-phosphate), pyruvate metabolism (e.g., higher levels of pyruvate and phosphoenolpyruvate carboxykinase), and cellular defence mechanisms (e.g., upregulation of glutathione and metallothionein). Lysozyme supplementation mitigates some adverse effects of Spirulina, bringing physiological responses closer to control levels. This includes fewer differentially expressed proteins and improved dry matter, organic matter and energy digestibility. Lysozyme also enhances coenzyme availability, skeletal myofibril assembly, actin-mediated cell contraction, tissue regeneration and development through mesenchymal migration and nucleic acid synthesis pathways. CONCLUSIONS While Spirulina inclusion had some adverse effects on growth performance, it also enhanced hepatic metabolic efficiency by improving fatty acid oxidation, carbohydrate catabolism and cellular defence mechanisms. The addition of lysozyme further improved these benefits by reducing some of the negative impacts on growth and enhancing nutrient digestibility, tissue regeneration, and overall metabolic balance. Together, Spirulina and lysozyme demonstrate potential as functional dietary components, but further optimization is needed to fully realize their benefits without compromising growth performance.
Collapse
Affiliation(s)
- Cátia Falcão Martins
- Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, Lisbon, 1300-477, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, Av. da Universidade Técnica, Lisbon, 1300-477, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal
| | - Manolis Matzapetakis
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal
| | - Josipa Kuleš
- Laboratory of Proteomics, Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
| | - Anita Horvatić
- Laboratory of Proteomics, Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Nicholas Guillemin
- Laboratory of Proteomics, Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
| | - Peter David Eckersall
- Laboratory of Proteomics, Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - João P B Freire
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal.
| | - José A M Prates
- Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, Lisbon, 1300-477, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences, Av. da Universidade Técnica, Lisbon, 1300-477, Portugal.
| |
Collapse
|
6
|
Muniz MMM, Serrenho RC, Duffield T, de Oliveira Junior GA, McArt JAA, Baes CF, Schenkel FS, Squires EJ. Identification of genetic markers associated with hyperketonemia patterns in early lactation Holstein cows. J Anim Breed Genet 2024; 141:702-721. [PMID: 38783641 DOI: 10.1111/jbg.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Ketosis, evidenced by hyperketonemia with elevated blood β-hydroxybutyrate (BHB) levels, is a significant metabolic disorder of dairy cattle, typically diagnosed within the first 6 weeks post-calving when high energy levels are essential to milk production. Our study aimed to identify genetic markers linked to hyperketonemia (HYK) patterns in Holstein cows during early lactation and compare these to HYK-negative cows. We screened 964 cows for HYK using a threshold of BHB ≥1.2 mmol/L during the first 2 weeks postpartum (screening period, SP). Cows that tested negative initially were retested the following week. Cows were deemed HYK-negative (CON group) if BHB levels were below 1.2 mmol/L in both tests, while those with BHB levels exceeding this threshold at any test were treated and classified as HYK-positive (HYK+). Post-treatment, HYK+ cows were monitored for two-week follow-up period (FP) and classified based on their recovery: cured (CUR; consistently low BHB), recurrent (REC; fluctuating BHB levels), severe (SEV; high initial BHB that decreased), or chronic (CHR; persistently high BHB). Using 489 cows that were genotyped, a GWAS was conducted using GCTA software, revealing significant associations of several SNPs across different HYK patterns when compared to the CON group. These SNPs were primarily linked to genes affecting milk traits and were enriched in biological pathways relevant to protein glycosylation, inflammatory response, glucose homeostasis, and fatty acid synthesis. Our findings highlight genomic regions, potential candidate genes, and biological pathways related to ketosis, underscoring potential targets for improving health management in dairy cattle. These insights could lead to better strategies for managing ketosis through genetic selection, ultimately enhancing dairy cattle welfare and productivity. Further research with a larger number of cows is recommended to validate these findings and help confirm the implicated SNPs and genes.
Collapse
Affiliation(s)
- Maria Malane M Muniz
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Rita Couto Serrenho
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Todd Duffield
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Gerson A de Oliveira Junior
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Jessica A A McArt
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Christine F Baes
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Flavio Schramm Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - E James Squires
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Zhang J, Zhang X, Liu H, Wang P, Li L, Bionaz M, Lin P, Yao J. Altered bile acid and correlations with gut microbiome in transition dairy cows with different glucose and lipid metabolism status. J Dairy Sci 2024; 107:9915-9933. [PMID: 38908707 DOI: 10.3168/jds.2024-24658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024]
Abstract
The transition from pregnancy to lactation is critical in dairy cows. Among others, dairy cows experience a metabolic stress due to a large change in glucose and lipid metabolism. Recent studies revealed that bile acids (BA), other than being involved in both the emulsification and solubilization of fats during intestinal absorption, can also affect the metabolism of glucose and lipids, both directly or indirectly by affecting the gut microbiota. Thus, we used untargeted and targeted metabolomics and 16S rRNA gene sequencing approaches to investigate the concentration of plasma metabolites and BA, the composition of the rectum microbial community, and assess their interaction in transition dairy cows. In Experiment 1, we investigated BA and other blood parameters and gut microbiota in dairy cows without clinical diseases during the transition period, which can be seen as well adapted to the challenge of changed glucose and lipid metabolism. As expected, we detected an increased plasma concentrations of BHB and nonesterified fatty acids (NEFA) but decreased concentrations of glucose, cholesterol, and triglycerides (TG). Untargeted metabolomic analysis of the plasma revealed primary BA biosynthesis was one of the affected pathways, and was consistent with the increased concentration of BA in the plasma. A correlation approach revealed a complex association between BA and microbiota with the host plasma concentration of glucose and lipid metabolites. Among BA, chenodeoxycholic acid derivates such as glycolithocholic acid, taurolithocholic acid, lithocholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites (such as glucose, TG, and NEFA). In Experiment 2, we investigated early postpartum dairy cows with or without hyperketonemia (HPK). As expected, HPK cows had increased concentration of NEFA and decreased concentrations of glucose and triglycerides. The untargeted metabolomic analysis of the plasma revealed that primary BA biosynthesis was also one of the affected pathways. Even though the BA concentration was similar among the 2 groups, the profiles of taurine-conjugated BA changed significantly. A correlation analysis also revealed an association between BA and microbiota with the concentration in plasma of glucose and lipid metabolites (such as BHB). Among BA, cholic acid and its derivates such as taurocholic acid, tauro α-muricholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites. Our results indicated an association between BA, intestinal microbe, and glucose and lipid metabolism in transition dairy cows. These findings provide new insight into the adaptation mechanisms of dairy cows during the transition period.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peiyue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Chen J, Wang S, Yin X, Duan C, Li J, Liu YQ, Zhang Y. Relationship between rumen microbiota and pregnancy toxemia in ewes. Front Vet Sci 2024; 11:1472334. [PMID: 39397808 PMCID: PMC11466943 DOI: 10.3389/fvets.2024.1472334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Pregnancy toxemia (PT) is a nutritional metabolic disease of ewes in late pregnancy. This study aimed to reveal the relationship between rumen microbiota and PT. Methods We selected 10 healthy ewes (CON) and 10 pregnancy toxemia ewes (PT) at 135 days of gestation according to the blood β-hydroxybutyrate (BHBA), glucose (Glu) concentrations and clinical symptoms. Blood and rumen fluid were collected before morning feeding to determine serum biochemical indices and rumen fermentation parameters. Total DNA of rumen fluid was extracted and the V3-V4 regions of 16S rRNA were amplified by PCR for high-throughput sequencing. Results The results showed that the serum concentrations of Glu, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), uric acid (UA), creatinine (Cr), acetate, propionate, butyrate, and microbial crude protein (MCP) were decreased (p < 0.05) and the concentrations of BHBA, aspartate aminotransferase (AST), acetate to propionate ratio (A/P), and ammonia nitrogen (NH3-N)were higher (p < 0.05) in PT ewes than those in CON ewes. 16S rRNA analysis showed the differences of β-diversity were observed in rumen microbiota between CON and PT ewes. At the phylum level, the relative abundance of Bacteroidota and Proteobacteria were higher (p < 0.01), while Firmicutes was lower (p < 0.01) in PT ewes. At the genus level, the relative Prevotella, Butyrivibrio, Ruminococcus, Lachnospiraceae_AC2044_group, Lachnospiraceae_XPB1014_group, Lachnospiraceae_ND3007_group, and Oribacterium were lower (p < 0.01) in PT ewes. Meanwhile, the relative abundance of Oribacterium, Butyrivibrio, Ruminococcus, and Lachnospiraceae_AC2044_group were positively correlated (p < 0.01) with Glu, INS, acetate, propionate, and butyrate, and negatively correlated (p < 0.01) with BHBA, P, GC, AST, and A/P. Discussion In conclusion, the decrease of Oribacterium, Butyrivibrio, Ruminococcus, and Lachnospiraceae_AC2044_group in the rumen of PT ewes reduced the concentrations of volatile fatty acids (acetate, propionate, and butyrate) and serum Glu, and increased BHBA concentration, indicating that the differences in rumen bacteria genera were related to pregnancy toxemia of ewes.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Siwei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinhui Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yue-qin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Zhao HY, Tan J, Li LX, Wang Y, Liu M, Jiang LS, Zhao YC. Longitudinal characterization of serum metabolome and lipidome reveals that the ceramide profile is associated with metabolic health in early postpartum cows experiencing different lipolysis. J Dairy Sci 2024; 107:7446-7468. [PMID: 38788838 DOI: 10.3168/jds.2023-24510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
Reduced feed intake in early lactation prompts increased fat mobilization to meet dairy cow energy needs for milk production. The increased lipolysis in cows presents significant health risks with unclear mechanisms. The objectives of our study were to compare the longitudinal profiles of metabolites and lipids of serum from high- and low-lipolysis cows. Forty multiparous Holstein dairy cows were enrolled in the retrospective study. Serum samples were collected on d 7 before expected calving, as well as on d 5, 7, 14, and 21 postpartum. Dairy cows were grouped according to mean serum nonesterified fatty acids on d 5 and 7 after parturition as low (<0.600 mmol/L; n = 8; LFM) and high (>0.750 mmol/L; n = 8; HFM), indicating fat mobilization during early lactation. Lactational performance and serum metabolic parameters related to glucose and lipid metabolism, liver functions, oxidative status, and inflammatory responses were determined. Serum samples were subjected to liquid chromatography-MS-based metabolomics and lipidomics. Despite differences in postpartum BW change, there were no observed variations in milk yield and composition between the 2 groups. Serum β-hydroxybutyric acid, glucose, leptin, aspartate aminotransferase, IL-6, and tumor necrosis factor alpha were greater in cows with HFM than in cows with LFM. Serum adiponectin, revised quantitative insulin sensitivity check index, and albumin were lower in cows with HFM than in cows with LFM. Intensified fat mobilization in the HFM cows came along with reduced estimated insulin sensitivity, impaired liver functions, and increased oxidative stress and inflammatory responses. Differences in metabolic patterns were observed across the transition period when comparing serum blood matrixes (e.g., in different amino acids, acylcarnitines, and sphingolipids). The serum metabolome of the HFM cows was characterized by higher concentrations of glycine, acylcarnitines, carnosine, Cer(d20:0/18:0), Cer(d18:1/16:0), and Cer(t18:0/24:0) compared with LFM cows. The differential serum metabolites and lipids at different sampling times during the peripartum period were enriched in the sphingolipid metabolism. Differences in serum metabolic status parameters suggest that cows adopt varied metabolic adaptation strategies to cope with energy deficits postpartum. Our investigation found a comprehensive remodeling of the serum metabolic profiles in transition dairy cattle, highlighting the significance of alterations in sphingolipid species, as they play a crucial role in insulin resistance and metabolic disorders.
Collapse
Affiliation(s)
- H Y Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - J Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - L X Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Y Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - M Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - L S Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.
| | - Y C Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.
| |
Collapse
|
10
|
Chen J, Wang S, Yin X, Duan C, Li J, Liu Y, Zhang Y. Dynamic Changes in the Nutrient Digestibility, Rumen Fermentation, Serum Parameters of Perinatal Ewes and Their Relationship with Rumen Microbiota. Animals (Basel) 2024; 14:2344. [PMID: 39199877 PMCID: PMC11350810 DOI: 10.3390/ani14162344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Changes in physiological and biochemical parameters are crucial for the reproductive performance and health of perinatal ewes. This study investigated the temporal variations in feed intake, nutrient digestibility, serum parameters, and ruminal fermentation on days 21, 14, and 7 before lambing (Q21, Q14, and Q7) and days 3, 7, and 14 after lambing (H3, H7, and H14). The results showed that dry matter intake (DMI) and glucose (Glu) gradually decreased (p < 0.05) before lambing and increased (p < 0.05) after lambing. The digestibility of dry matter (DMD), crude protein (CPD), and acid detergent fiber (ADFD) increased (p < 0.05) before lambing, then decreased (p < 0.05) on day H3, and then increased (p < 0.05) on day H14. The rumen pH, NH3-N, and triglycerides (TG) gradually increased (p < 0.05) before lambing and were higher (p < 0.05) on day Q7 than after lambing. The concentrations of acetate, butyrate, and total volatile fatty acids (T-VFA) were lower (p < 0.05) on day Q7 than those on days Q21 and Q14, then increased (p < 0.05) after lambing. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) concentrations gradually decreased (p < 0.05) in perinatal ewes. BHBA and NEFA concentrations were lower (p < 0.05) on day Q21 than those from days Q14 to H14. The rumen microbiota compositions were different (p < 0.05) in perinatal ewes, and g_Anaerovibrio, g_Lachnobacterium, and g_Schwartzia were positively correlated (p < 0.05) with DMI, Glu, acetate, propionate, and T-VFA, and negatively correlated (p < 0.05) with LDL-C. g_Bacillus was negatively correlated (p < 0.05) with DMI, Glu, acetate, propionate, butyrate, and T-VFA, but positively correlated (p < 0.05) with rumen pH and LDL-C. In summary, the DMI, nutrient digestibility, rumen fermentation, and serum parameters changed during the perinatal period of ewes, and the changes in DMI, serum glucose, acetate, propionate, and T-VFA were related to the rumen bacteria.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| | - Siwei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
- Institute of Cereal and Oil Crops, Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| | - Jinhui Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| |
Collapse
|
11
|
Huang Y, Zhang B, Mauck J, Loor JJ, Wei B, Shen B, Wang Y, Zhao C, Zhu X, Wang J. Plasma and milk metabolomics profiles in dairy cows with subclinical and clinical ketosis. J Dairy Sci 2024; 107:6340-6357. [PMID: 38608939 DOI: 10.3168/jds.2023-24496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Ketosis, a commonly observed energy metabolism disorder in dairy cows during the peripartal period, is distinguished by increased concentrations of BHB in the blood. This condition has a negative impact on milk production and quality, causing financial losses. An untargeted metabolomics approach was performed on plasma samples from cows between 5 and 7 DIM diagnosed as controls (CON; BHB <1.2 mM, n = 30), subclinically ketotic (SCK; 1.2 < BHB <3.0 mM, n = 30), or clinically ketotic (CK; BHB >3.0 mM, n = 30). Cows were selected from a commercial farm of 214 Holstein cows (average 305-d yield in the previous lactation of 35.42 ± 7.23 kg/d; parity, 2.41 ± 1.12; BCS, 3.1 ± 0.45). All plasma and milk samples (n = 90) were subjected to liquid chromatography-MS-based metabolomic analysis. Statistical analyses were performed using GraphPad Prism 8.0, MetaboAnalyst 4.0, and R version 4.1.3. Compared with the CON group, both SCK and CK groups had greater milk fat, freezing point, and fat-to-protein ratio, as well as lower milk protein, lactose, solids-not-fat, and milk density. Within 21 d after calving, compared with CON, the SCK group experienced a reduction of 2.65 kg/d in milk yield, while the CK group experienced a decrease of 7.7 kg/d. Untargeted metabolomics analysis facilitated the annotation of a total of 5,259 and 8,423 metabolites in plasma and milk. Differentially affected metabolites were screened in CON versus SCK, CON versus CK, and SCK versus CK (unpaired t-test, false discovery rate <0.05; and absolute value of log(2)-fold change >1.5). A total of 1,544 and 1,888 differentially affected metabolites were detected in plasma and milk. In plasma, glycerophospholipid metabolism, pyrimidine metabolism, tryptophan metabolism, sphingolipid metabolism, amino sugar and nucleotide sugar metabolism, phenylalanine metabolism, and steroid hormone biosynthesis were identified as important pathways. Weighted gene co-expression network analysis (WGCNA) indicated that tryptophan metabolism is a key pathway associated with the occurrence and development of ketosis. Increases in 5-hydroxytryptophan and decreases in kynurenine and 3-indoleacetic acid in SCK and CK were suggestive of an impact at the gut level. The decrease of most glycerophospholipids indicated that ketosis is associated with disordered lipid metabolism. For milk, pyrimidine metabolism, purine metabolism, pantothenate and CoA biosynthesis, amino sugar and nucleotide sugar metabolism, nicotinate and nicotinamide metabolism, sphingolipid metabolism, and fatty acid degradation were identified as important pathways. The WGCNA indicated that purine and pyrimidine metabolism in plasma was highly correlated with milk yield during the peripartal period. Alterations in purine and pyrimidine metabolism characterized ketosis, with lower levels of these metabolites in both milk and blood underscoring reduced efficiency in nitrogen metabolism. Our results may help to establish a foundation for future research investigating mechanisms responsible for the occurrence and development of ketosis in peripartal cows.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bihong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Zhong Ken Mu Dairy (Group) Co. Ltd., Chongqing 401120, China
| | - John Mauck
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Bo Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Siachos N, Tsiamadis V, Oikonomou G, Panousis N, Banos G, Sampsonidis I, Kalogiannis S, Arsenos G, Valergakis GE. Variation in protein metabolism biomarkers during the transition period and associations with health, colostrum quality, reproduction, and milk production traits in Holstein cows. J Dairy Sci 2024; 107:4056-4074. [PMID: 38246542 DOI: 10.3168/jds.2023-24168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
The aims of this study were to assess (1) the variation of protein metabolism biomarkers and factors affecting them during the transition period, (2) the association of each biomarker with skeletal muscle reserves and their changes, and (3) the association of these biomarkers with postpartum health, colostrum quality, reproduction, and milk production. For this purpose, 238 multiparous Holstein cows from 6 herds were used in a prospective cohort study. Plasma concentrations of 3-methylhistidine (3-MH) and 1-methylhistidine (1-MH) and serum concentrations of total protein (TP), albumin (ALB), urea nitrogen (BUN), and creatinine (SCR) were determined for each cow at -21, -7, 7, 21, and 28 d relative to calving. Clinical diseases were recorded during the first 28 d postcalving, and presence of subclinical ketosis (scKET) was investigated at 7 and 21 d. Colostrum quality was estimated by Brix refractometry. Reproduction data by 150 d in milk (DIM) and milk production records were also available. Linear mixed models including the fixed effects of time point, herd, parity, body condition score (-21 d), duration of dry period and postparturient diseases were fitted to assess the variation in each biomarker's concentration. The association between the biomarkers' concentration during the prepartum period with the odds for each postparturient disease and for a combined trait (CD_1-28), defined as the presence of at least one clinical condition during the first 28 d after calving, were assessed with separate binary logistic models for time points -21 d and -7 d. The relationship of each biomarker's concentration with longissimus dorsi thickness (LDT) and the changes in LDT (ΔLDT) was assessed with pairwise correlations. Separate general linear models were used to assess the association of each biomarker with colostrum Brix values and milk production traits. Finally, the associated hazard for first artificial insemination (AI) and for pregnancy by 150 DIM (PREG_150DIM) was assessed with Cox proportional hazard models, whereas odds for pregnancy to the first AI (PREG_1stAI) were assessed with binary logistic models. The level of 3-MH was affected mainly by herd, time points, and their interaction. Higher 3-MH was associated with increased odds for metritis and CD_1-28, increased hazard for PREG_150 DIM and with increased milk production. 1-Methylhistidine was affected mainly by herd, scKET and occurrence of displaced abomasum. Higher 1-MH was associated with better colostrum quality, increased odds for scKET, increased hazard for first AI by 150 DIM and with decreased milk production. Both 3-MH and 1-MH were weakly to moderately negatively correlated with LDT and moderately to strongly negatively correlated with ΔLDT at the corresponding time periods. Additionally, higher TP was associated with increased odds for metritis and CD_1-28 and increased milk production, while higher ALB was associated with increased odds for scKET and increased milk production. Moreover, higher BUN was associated with decreased odds for scKET, increased odds for PREG_1stAI and increased milk production. Higher SCR was associated with decreased odds for retained fetal membranes, metritis, and CD_1-28. Periparturient protein metabolism is significantly associated with postpartum health, colostrum quality, reproduction, and milk production; mechanisms involved require further investigation.
Collapse
Affiliation(s)
- N Siachos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Neston CH64 7TE, United Kingdom.
| | - V Tsiamadis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - G Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Neston CH64 7TE, United Kingdom
| | - N Panousis
- Clinic of Farm Animals, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - G Banos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Scotland's Rural College, Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - I Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, GR-57400 Thessaloniki, Greece
| | - S Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, GR-57400 Thessaloniki, Greece
| | - G Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - G E Valergakis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Kuru M, Makav M, Boğa Kuru B, Bektaşoğlu F, Demir MC, Bulut M, Alwazeer D. Hydrogen-rich water supplementation improves metabolic profile during peripartum period in Gurcu goats and enhances the health and survival of kids. Res Vet Sci 2024; 171:105208. [PMID: 38458045 DOI: 10.1016/j.rvsc.2024.105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
In this study, the effect of intaking hydrogen-rich water (HRW) on the metabolic profile of Gurcu goats during the peripartum period and the survival/growth performance of kids were evaluated. Twenty-three pregnant goats were divided into two groups 21-23 days before the due date. Group 1 (G1, n = 10) was given HRW from day 21 before delivery until day 21 after delivery. Group 2 (G2, n = 13) served as the control. Blood samples were weekly taken from 21 days before delivery until 21 days after delivery. Hydrogen-rich water increased serum glucose concentration on the delivery day more than in G2 (P = 0.016). Hydrogen-rich water decreased serum total cholesterol (P = 0.02) and creatinine (P = 0.05) concentration at delivery. Group effect and time effect were significant in triglyceride (P < 0.001, P = 0.001, respectively) and albumin (P < 0.001, P = 0.002, respectively) concentration. Aspartate transaminase decreased towards the delivery day in G1 (P < 0.05). Serum non-esterified fatty acids concentration was lower in G1 than in G2, but there was no significant differences (P > 0.05). Beta-hydroxybutyric acid concentration an increased in both groups during the prepartum period, although there was no significance (P > 0.05). Hydrogen-rich water did not affect the birth weight and growth performance of the kids (P > 0.05), but it increased their survival rates and overall health, although there was no significance (P > 0.05). In conclusion, HRW may have an impact on the metabolic profiles during the peripartum period and have a positive effect on lipid profiles. Additionally, intaking HRW to goats during the peripartum period may improve the health and survival of kids and reduce their mortality.
Collapse
Affiliation(s)
- Mushap Kuru
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye.
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Buket Boğa Kuru
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Fikret Bektaşoğlu
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Murat Can Demir
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Menekşe Bulut
- Research Center for Redox Applications in Foods, Iğdır University, Iğdır, Türkiye; Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Türkiye; Department of Food Engineering, Iğdır University, Iğdır, Türkiye
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods, Iğdır University, Iğdır, Türkiye; Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Türkiye; Department of Nutrition and Dietetic, Faculty of Health Sciences, Iğdır University, Iğdır, Türkiye
| |
Collapse
|
14
|
Zhang Z, Yang J, Yao Y, Wang D, Lu X, Yang Z. Body conformation traits in early-lactation associated with clinical mastitis and lameness in lactating Chinese holstein cows. BMC Vet Res 2024; 20:85. [PMID: 38459506 PMCID: PMC10921625 DOI: 10.1186/s12917-024-03931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/11/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Comprehending the correlation between body conformation traits of cows at the early stages of lactation and prevalent lactation diseases might facilitate the execution of selection and feeding strategies that prioritize cow health. This study aimed to evaluate the impact of body conformation traits on the incidence of clinical mastitis and lameness in Chinese Holstein cows. From a pasture herd of 1472 early lactating Chinese Holstein cows, we evaluated 20 body conformation traits. During lactation, this pasture herd was visited weekly to gather clinical mastitis and lameness data. A nine-point scale was used to determine the conformation traits of cows to clarify their linear characters, including frame capacity, rump (RU), feet and leg (FL), mammary system (MS), and dairy character. A longitudinal binary disease (0 = healthy; 1 = diseased) data structure was created by allocating disease records to adjacent official test dates. The impact of body conformation traits on the risk of developing diseases (clinical mastitis and lameness) was analyzed using the logistic regression models. RESULTS Compared to cows with low total scores (75-79 points), those with high total scores (80-85 points) of body conformation traits had a significantly lower risk of mastitis (P < 0.001). The disease status (0 or 1: binary variable) of clinical mastitis in lactating cows was significantly impacted negatively by age (P < 0.05). The fore udder attachment (FUA), angularity, rear attachment height (RAH), and rear teat placement (RTP) were all significantly associated with clinical mastitis during lactation (P < 0.05). The rear leg-rear view (RLRV) was significantly correlated with correlated considerably (P < 0.05) with lameness during lactation. An ideal score of four points on the lameness risk dimension of the RLRV may indicate a low risk of lameness. Since the risk of mastitis decreased as this trait score increased, the RTP may be an ideal marker for mastitis risk. CONCLUSIONS According to the study, clinical mastitis and lameness risks in cows can be estimated using their body conformation traits. Cows with more centrally located rear teats have a lower risk of mastitis. These results may help dairy farmers identify cows at high risk of disease early in lactation and aid in breeding for disease resistance in cows.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jiayu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Dasheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
| |
Collapse
|
15
|
Wang DD, Tang GF, Li YY, Yu JJ, Lei XJ, Cao YC, Yao JH. Differences in serum metabolome profile explain individual variation in growth performance of young goats. J Proteomics 2023; 288:104982. [PMID: 37532014 DOI: 10.1016/j.jprot.2023.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
High growth rates and body weight are important traits of young dairy goats that can shorten generation intervals, improve animal performance, and increase economic benefits. In the present study, ninety-nine, 6-month-old, female goats were fed with the same diet and kept under the same management condition. The ten goats with highest average daily gain (ADG, HADG, 135.27 ± 4.59 g/d) and ten goats with lowest ADG (LADG, 87.74 ± 3.13 g/d) were selected to identify the key serum metabolites associated with ADG, and to investigate the relationships of serum metabolome profiles with digestive tract microbiota. The results showed that a total of 125 serum metabolites were significantly different between HADG and LADG. Of these, 43 serum metabolites were significantly higher levels in HADG, including D-ornithine, l-glutamine, L-histidine, carnosine, LysoPC (16:1(9Z)/0:0), DCTP and hydroxylysine, while, 82 serum metabolites were significantly higher levels in LADG, including P-salicylic acid and deoxycholic acid 3-glucuronide. Pathway analysis indicated that these different metabolites were mainly involved in amino acid and lipid metabolism. Furthermore, Spearman's rank correlation analysis revealed that these differential serum metabolites were correlated with ADG and ADG-related bacteria. Notably, serum hydroxylysine and L-histidine could be used as biomarkers for distinguishing HADG and LADG goats, with an accuracy of >92.0%. SIGNIFICANCE: Our study confirms that individual microbiota and metabolic differences contribute to the variations of growth rate in young goats. Some serum metabolites may be useful in improving the growth performance of young goats, which provides directions for developing further nutritional regulation in the goat industry to achieve healthy feeding and efficiency enhancement.
Collapse
Affiliation(s)
- Dang Dang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guang Fu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Yuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Jian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Jian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Chun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Zhai Y, Xia F, Shi L, Ma W, Lv X, Sun W, Ji P, Gao S, Machaty Z, Liu G, Zhang L. Early Pregnancy Markers in the Serum of Ewes Identified via Proteomic and Metabolomic Analyses. Int J Mol Sci 2023; 24:14054. [PMID: 37762358 PMCID: PMC10530974 DOI: 10.3390/ijms241814054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The diagnosis of ewes' pregnancy status at an early stage is an efficient way to enhance the reproductive output of sheep and allow producers to optimize production and management. The techniques of proteomics and metabolomics have been widely used to detect regulatory factors in various physiological processes of animals. The aim of this study is to explore the differential metabolites and proteins in the serum of pregnant and non-pregnant ewes by proteomics and metabolomics. The serum of ewes at 21, 28 and 33 days after artificial insemination (AI) were collected. The pregnancy stratus of the ewes was finally determined through ultrasound examination and then the ewes were grouped as Pregnant (n = 21) or N on-pregnant (n = 9). First, the serum samples from pregnant or non-pregnant ewes at 21 days after AI were selected for metabolomic analysis. It was found that the level of nine metabolites were upregulated and 20 metabolites were downregulated in the pregnant animals (p < 0.05). None of these differential metabolomes are suitable as markers of pregnancy due to their small foldchange. Next, the proteomes of serum from pregnant or non-pregnant ewes were evaluated. At 21 days after AI, the presence of 321 proteins were detected, and we found that the level of three proteins were upregulated and 11 proteins were downregulated in the serum of pregnant ewes (p < 0.05). The levels of serum amyloid A (SAA), afamin (AFM), serpin family A member 6 (SERPINA6) and immunoglobulin-like domain-containing protein between pregnant and non-pregnant ewes at 21-, 28- and 33-days post-AI were also analyzed via enzyme-linked immunosorbent assay (ELISA). The levels of SAA and AFM were significantly higher in pregnant ewes than in non-pregnant ewes, and could be used as markers for early pregnancy detection. Overall, our results show that SAA and AFM are potential biomarkers to determine the early pregnancy status of ewes.
Collapse
Affiliation(s)
- Yaying Zhai
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (F.X.); (L.S.); (W.M.); (P.J.); (S.G.); (G.L.)
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Fan Xia
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (F.X.); (L.S.); (W.M.); (P.J.); (S.G.); (G.L.)
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Luting Shi
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (F.X.); (L.S.); (W.M.); (P.J.); (S.G.); (G.L.)
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Wenkui Ma
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (F.X.); (L.S.); (W.M.); (P.J.); (S.G.); (G.L.)
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Pengyun Ji
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (F.X.); (L.S.); (W.M.); (P.J.); (S.G.); (G.L.)
| | - Shuai Gao
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (F.X.); (L.S.); (W.M.); (P.J.); (S.G.); (G.L.)
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Guoshi Liu
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (F.X.); (L.S.); (W.M.); (P.J.); (S.G.); (G.L.)
| | - Lu Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (F.X.); (L.S.); (W.M.); (P.J.); (S.G.); (G.L.)
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Breda JCDS, Facury Filho EJ, Flaiban KKDC, Lisboa JAN. Effect of Parity, Body Condition Score at Calving, and Milk Yield on the Metabolic Profile of Gyr Cows in the Transition Period. Animals (Basel) 2023; 13:2509. [PMID: 37570316 PMCID: PMC10417048 DOI: 10.3390/ani13152509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to evaluate the effects of parity, body condition score (BCS) at calving, and milk yield on the metabolic profile of Gyr (Zebu) cows. Healthy cows in late pregnancy were grouped according to parity (primiparous, biparous, and multiparous); to BCS scale at calving (high-HBCS and normal-NBCS); and to milk yield (high-HP and moderate-MP production). BCS was assessed, and blood samples were collected on -21, -7, 0, 7, 21, and 42 days relative to parturition. The concentrations of non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), cholesterol, glucose, total protein (TP), albumin, total calcium (Ca), phosphorus (P), and magnesium (Mg); and activities of aspartate aminotransferase and gamma-glutamyltransferase were measured. Data were analyzed by two-way repeated measures ANOVA. The frequencies of high lipomobilization, subclinical ketosis, subclinical hypocalcemia (SCH), and the occurrence of diseases during early lactation were established. Regardless of grouping, NEFA, BHB, and cholesterol increased during early lactation; glucose showed higher values at calving; TP and albumin were higher at 21 and 42 DIM; and Ca, P, and Mg were lower at calving. Parity had little effect on the metabolic profile, HBCS did not differ from NBCS cows, and HP did not differ from MP cows in most metabolites. High lipomobilization in early lactation and SCH at calving were the most common imbalances but were not related to postpartum diseases. High-yielding Gyr cows have a balanced metabolic profile during the transition period, with few biologically relevant effects of parity, BCS at parturition, or milk yielded.
Collapse
Affiliation(s)
- José Carlos dos Santos Breda
- Department of Veterinary Clinic, Veterinary School, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| | - Elias Jorge Facury Filho
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| | | | - Julio Augusto Naylor Lisboa
- Department of Veterinary Clinic, Veterinary School, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
18
|
Zhang MQ, Heirbaut S, Jing XP, Stefańska B, Vandaele L, De Neve N, Fievez V. Transition cow clusters with distinctive antioxidant ability and their relation to performance and metabolic status in early lactation. J Dairy Sci 2023; 106:5723-5739. [PMID: 37331874 DOI: 10.3168/jds.2022-22865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/17/2023] [Indexed: 06/20/2023]
Abstract
Metabolic and oxidative stress have been characterized as risk factors during the transition period from pregnancy to lactation. Although mutual relations between both types of stress have been suggested, they rarely have been studied concomitantly. For this, a total of 99 individual transition dairy cows (117 cases, 18 cows sampled during 2 consecutive lactations) were included in this experiment. Blood samples were taken at -7, 3, 6, 9, and 21 d relative to calving and concentrations of metabolic parameters (glucose, β-hydroxybutyric acid (BHBA), nonesterified fatty acids, insulin, insulin-like growth factor 1, and fructosamine) were determined. In the blood samples of d 21, biochemical profiles related to liver function and parameters related to oxidative status were determined. First, cases were allocated to 2 different BHBA groups (ketotic vs. nonketotic, N:n = 20:33) consisting of animals with an average postpartum BHBA concentration and at least 2 out of 4 postpartum sampling points exceeding 1.2 mmol/L or remaining below 0.8 mmol/L, respectively. Second, oxidative parameters [proportion of oxidized glutathione to total glutathione in red blood cells (%)], activity of glutathione peroxidase, and of superoxide dismutase, concentrations of malondialdehyde and oxygen radical absorbance capacity were used to perform a fuzzy C-means clustering. From this, 2 groups were obtained [i.e., lower antioxidant ability (LAA80%, n = 31) and higher antioxidant ability (HAA80%, n = 19)], with 80% referring to the cutoff value for cluster membership. Increased concentrations of malondialdehyde, decreased superoxide dismutase activity, and impaired oxygen radical absorbance capacity were observed in the ketotic group compared with the nonketotic group, and inversely, the LAA80% group showed increased concentrations of BHBA. In addition, the concentration of aspartate transaminase was higher in the LAA80% group compared with the HAA80% group. Both the ketotic and LAA80% groups showed lower dry matter intake. However, a lower milk yield was observed in the LAA80% group but not in the ketotic group. Only 1 out of 19 (5.3%) and 3 out of 31 (9.7%) cases from the HAA80% and LAA80% clusters belong to the ketotic and nonketotic group, respectively. These findings suggested that dairy cows vary in oxidative status at the beginning of the lactation, and fuzzy C-means clustering allows to classify observations with distinctive oxidative status. Dairy cows with higher antioxidant capacity in early lactation rarely develop ketosis.
Collapse
Affiliation(s)
- M Q Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - S Heirbaut
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - X P Jing
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium; State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - B Stefańska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - L Vandaele
- Animal Sciences Unit, ILVO, 9090 Melle, Belgium
| | - N De Neve
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|
19
|
Tan P, Zhao C, Dong Y, Zhang Z, Mei L, Kong Y, Zeng F, Wen Y, Zhao B, Wang J. A Network Pharmacology and Multi-Omics Combination Approach to Reveal the Effect of Strontium on Ca 2+ Metabolism in Bovine Rumen Epithelial Cells. Int J Mol Sci 2023; 24:ijms24119383. [PMID: 37298335 DOI: 10.3390/ijms24119383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Strontium (Sr) belongs to the same group in the periodic table as calcium (Ca). Sr level can serve as an index of rumen Ca absorption capacity; however, the effects of Sr on Ca2+ metabolism are unclear. This study aims to investigate the effect of Sr on Ca2+ metabolism in bovine rumen epithelial cells. The bovine rumen epithelial cells were isolated from the rumen of newborn Holstein male calves (n = 3, 1 day old, 38.0 ± 2.8 kg, fasting). The half maximal inhibitory concentration (IC50) of Sr-treated bovine rumen epithelial cells and cell cycle were used to establish the Sr treatment model. Transcriptomics, proteomics, and network pharmacology were conducted to investigate the core targets of Sr-mediated regulation of Ca2+ metabolism in bovine rumen epithelial cells. The data of transcriptomics and proteomics were analyzed using bioinformatic analysis (Gene Ontology and Kyoto Encyclopedia of genes/protein). Quantitative data were analyzed using one-way ANOVA in GraphPad Prism 8.4.3 and the Shapiro-Wilk test was used for the normality test. Results presented that the IC50 of Sr treatment bovine rumen epithelial cells for 24 h was 43.21 mmol/L, and Sr increased intracellular Ca2+ levels. Multi-omics results demonstrated the differential expression of 770 mRNAs and 2436 proteins after Sr treatment; network pharmacology and reverse transcriptase polymerase chain reaction (RT-PCR) revealed Adenosylhomocysteine hydrolase-like protein 2 (AHCYL2), Semaphoring 3A (SEMA3A), Parathyroid hormone-related protein (PTHLH), Transforming growth factor β2 (TGF-β2), and Cholesterol side-chain cleavage enzyme (CYP11A1) as potential targets for Sr-mediated Ca2+ metabolism regulation. Together these results will improve the current comprehension of the regulatory effect of Sr on Ca2+ metabolism and pave a theoretical basis for Sr application in bovine hypocalcemia.
Collapse
Affiliation(s)
- Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yong Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zixin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Linshan Mei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
20
|
Huang Y, Kong Y, Li B, Zhao C, Loor JJ, Tan P, Yuan Y, Zeng F, Zhu X, Qi S, Zhao B, Wang J. Effects of perinatal stress on the metabolites and lipids in plasma of dairy goats. STRESS BIOLOGY 2023; 3:11. [PMID: 37676623 PMCID: PMC10441998 DOI: 10.1007/s44154-023-00088-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/13/2023] [Indexed: 09/08/2023]
Abstract
Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lactation is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of comprehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy goats (BCS, 2.75 ± 0.15). Blood samples were collected at seven time points around parturition (d 21, 14, 7 before parturition, the day of kidding, and d 7, 14, 21 postpartum), were analyzed using untargeted metabolomics and targeted lipidomics. The orthogonal partial least squares discriminant analysis model revealed a total of 31 differential metabolites including p-cresol sulfate, pyruvic acid, cholic acid, and oxoglutaric acid. The pathway enrichment analysis identified phenylalanine metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle as the top three significantly-altered pathways. The Limma package identified a total of 123 differentially expressed lipids. Phosphatidylserine (PS), free fatty acids (FFA), and acylcarnitines (ACs) were significantly increased on the day of kidding, while diacylglycerols (DAG) and triacylglycerols (TAG) decreased. Ceramides (Cer) and lyso-phosphatidylinositols (LPI) were significantly increased during postpartum period, while PS, FFA, and ACs decreased postpartum and gradually returned to antepartum levels. Individual species of FFA and phosphatidylcholines (PC) were segregated based on the differences in the saturation and length of the carbon chain. Overall, this work generated the largest repository of the plasma lipidome and metabolome in dairy goats across the peripartal period, which contributed to our understanding of the multifaceted adaptations of transition dairy goats.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Wang Y, Li Q, Wang L, Liu Y, Yan T. Effects of a High-Concentrate Diet on the Blood Parameters and Liver Transcriptome of Goats. Animals (Basel) 2023; 13:ani13091559. [PMID: 37174596 PMCID: PMC10177143 DOI: 10.3390/ani13091559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The objective of this study was to determine the effect of high-concentrate diets on the blood parameters and liver transcriptome of goats. Eighteen goats were allocated into three dietary treatments: the high level of concentrate (HC) group, the medium level of concentrate (MC) group, and the low level of concentrate (LC) group. The blood parameters and pathological damage of the gastrointestinal tract and liver tissues were measured. In hepatic portal vein blood, HC showed higher LPS, VFAs, and LA; in jugular vein blood, no significant differences in LPS, VFAs, and LA were recorded among groups (p > 0.05). Compared to the LC and MC groups, the HC group showed significantly increased interleukin (IL)-1β, IL-10, TNF-α, and diamine oxidase in jugular vein blood (p < 0.05). Liver transcriptome analysis discovered a total of 1269 differentially expressed genes (DEGs) among the three groups and most of them came from the HC vs. LC group. There were 333 DEGs up-regulated and 608 down-regulated in the HC group compared to the LC group. The gene ontology enrichment analysis showed that these DEGs were mainly focused on the regulation of triacylglycerol catabolism, lipoprotein particle remodeling, and cholesterol transport. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the liver of the HC group enhanced the metabolism of nutrients such as VFAs through the activation of AMPK and other signaling pathways and enhanced the clearance and detoxification of LPS by activating the toll-like receptor signaling pathway. A high-concentrate diet (HCD) can significantly promote the digestion of nutrients; the liver enhances the adaptability of goats to an HCD by regulating the expression of genes involved in nutrient metabolism and toxin clearance.
Collapse
Affiliation(s)
- Yusu Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuehui Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianhai Yan
- Livestock Production Sciences Branch, Agri-Food and Biosciences Institute, Large Park, Hillsborough BT26 6DR, UK
| |
Collapse
|
22
|
Huang Y, Kong Y, Shen B, Li B, Loor JJ, Tan P, Wei B, Mei L, Zhang Z, Zhao C, Zhu X, Qi S, Wang J. Untargeted metabolomics and lipidomics to assess plasma metabolite changes in dairy goats with subclinical hyperketonemia. J Dairy Sci 2023; 106:3692-3705. [PMID: 37028962 DOI: 10.3168/jds.2022-22812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 04/08/2023]
Abstract
Subclinical hyperketonemia (SCHK) is the major metabolic disease observed during the transition period in dairy goats, and is characterized by high plasma levels of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). However, no prior study has comprehensively assessed metabolomic profiles of dairy goats with SCHK. Plasma samples were collected within 1 h after kidding from SCHK goats (BHB concentration >0.8 mM, n = 7) and clinically healthy goats (BHB concentration <0.8 mM, n = 7) with similar body condition score (2.75 ± 0.15, mean ± standard error of the mean) and parity (primiparous). A combination of targeted and untargeted mass spectrometric approaches was employed for analyzing the various changes in the plasma lipidome and metabolome. Statistical analyses were performed using the GraphPad Prism 8.0, SIMCA-P software (version 14.1), and R packages (version 4.1.3). Plasma aminotransferase, nonesterified fatty acids, and BHB concentrations were greater in the SCHK group, but plasma glucose concentrations were lower. A total of 156 metabolites and 466 lipids were identified. The analysis of untargeted metabolomics data by principal component analysis and orthogonal partial least squares discriminant analysis revealed a separation between SCHK and clinically healthy goats. According to the screening criteria (unpaired t-test, P < 0.05), 30 differentially altered metabolites and 115 differentially altered lipids were detected. Pathway enrichment analysis identified citrate cycle, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine metabolism as significantly altered pathways. A greater concentration of plasma isocitric acid and cis-aconitic acid levels was observed in SCHK goats. In addition, AA such as lysine and isoleucine were greater, whereas alanine and phenylacetylglycine were lower in SCHK dairy goats. Dairy goats with SCHK also exhibited greater oleic acid, acylcarnitine, and phosphatidylcholine and lower choline and sphingomyelins. Acylcarnitines, oleic acid, and tridecanoic acid displayed positive correlations with several lipid species. Alanine, hippuric acid, and histidinyl-phenylalanine were negatively correlated with several lipids. Overall, altered metabolites in SCHK dairy goats indicated a more severe degree of negative energy balance. Data also indicated an imbalance in the tricarboxylic acid (TCA) cycle, lipid metabolism, and AA metabolism. The findings provide a more comprehensive understanding of the pathogenesis of SCHK in dairy goats.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linshan Mei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zixin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
23
|
Cattaneo L, Rocchetti G, Piccioli-Cappelli F, Zini S, Trevisi E, Minuti A. Impact of dry-off and lyophilized Aloe arborescens supplementation on plasma metabolome of dairy cows. Sci Rep 2023; 13:5256. [PMID: 37002349 PMCID: PMC10066363 DOI: 10.1038/s41598-023-31922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Positive effects have been observed as a result of Aloe arborescens supplementation in the dry-off phase in dairy cows. Metabolomic approaches can provide additional information about animal physiology. Thus, we characterized plasma metabolome around dry-off in 12 cows supplemented (AL) or not (CTR) with 10 g/d of lyophilized A. arborescens with an untargeted metabolomic approach. Overall, 1658 mass features were annotated. Regardless of treatment, multivariate statistics discriminated samples taken before and after dry-off. Overall, 490 metabolites were different between late lactation and early dry period, of which 237 were shared between AL and CTR. The most discriminant compounds (pentosidine and luteolin 7-O-glucoside) were related to the more fibrous diet. Pathway analysis indicated that pyrimidine and glycerophospholipid metabolisms were down-accumulated, suggesting reduced rumen microbial activity and liver load. Samples from AL were discriminated from CTR either the day of dry-off or 7 days after. At dry-off, aloin and emodin were the most discriminant metabolites, indicating that Aloe's bioactive compounds were absorbed. Seven days later, 534 compounds were different between groups, and emodin was among the most impacted. Pathway analysis highlighted that glycerophospholipid, pyrimidine, and folate metabolisms were affected. These results might indicate that Aloe has positive effects on liver function and a modulatory effect on rumen fermentation.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - G Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - S Zini
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, 25121, Brescia, Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
- Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122, Piacenza, Italy.
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| |
Collapse
|
24
|
Fiore E, Lisuzzo A, Laghi L, Harvatine KJ, Mazzotta E, Alterisio MC, Ciaramella P, Zhu C, Contiero B, Faillace V, Guccione J. Serum metabolomics assessment of etiological processes predisposing ketosis in water buffalo during early lactation. J Dairy Sci 2023; 106:3465-3476. [PMID: 36935234 DOI: 10.3168/jds.2022-22209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/23/2022] [Indexed: 03/19/2023]
Abstract
Metabolic disorders as ketosis are manifestations of the animal's inability to manage the increase in energy requirement during early lactation. Generally, buffaloes show a different response to higher metabolic demands than other ruminants with a lower incidence of metabolic problems, although ketosis is one of the major diseases that may decrease the productivity in buffaloes. The aim of this study was to characterize the metabolic profile of Mediterranean buffaloes (MB) associated with 2 different levels of β-hydroxybutyrate (BHB). Sixty-two MB within 50 days in milk (DIM) were enrolled and divided into 2 groups according to serum BHB concentration: healthy group (37 MB; BHB <0.70 mmol/L; body condition score: 5.00; parity: 3.78; and DIM: 30.70) and group at risk of hyperketonemia (25 MB; BHB ≥0.70 mmol/L; body condition score: 4.50; parity: 3.76; and DIM: 33.20). The statistical analysis was conducted by one-way ANOVA and unpaired 2-sample Wilcoxon tests. Fifty-seven metabolites were identified and among them, 12 were significant or tended to be significant. These metabolites were related to different metabolic changes such as mobilization of body resources, ruminal fermentations, urea cycle, thyroid hormone synthesis, inflammation, and oxidative stress status. These findings are suggestive of metabolic changes related to subclinical ketosis status that should be further investigated to better characterize this disease in the MB.
Collapse
Affiliation(s)
- E Fiore
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - A Lisuzzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - L Laghi
- Department of Agro-Food Science and Technology, University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | - K J Harvatine
- Department of Animal Science, Pennsylvania State University, State College 16801
| | - E Mazzotta
- Istituto Zooprofilattico delle Venezie, Viale dell'Università 10, Legnaro 35020, Italy
| | - M C Alterisio
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy.
| | - P Ciaramella
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy
| | - C Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041 Sichuan, China
| | - B Contiero
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - V Faillace
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - J Guccione
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy
| |
Collapse
|
25
|
Abstract
A herd-based approach and interpretative perspective is necessary in using metabolic profile testing in contrast to individual animal disease diagnostics. Metabolic profile testing requires formulating a question to be answered, followed by the appropriate selection of animals for testing. A range of blood analytes and nutrients can be determined with newer biomarkers being developed. Sample collection and handling and herd-based reference criteria adjusted to time relative to parturition are critical for interpretation. The objective of this article is to review the concepts and practical applications of metabolic profile testing in ruminants.
Collapse
Affiliation(s)
- Robert J Van Saun
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, Pennsylvania State University, 108 C Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16802-3500, USA.
| |
Collapse
|
26
|
Zhang J, Gaowa N, Wang Y, Li H, Cao Z, Yang H, Zhang X, Li S. Complementary hepatic metabolomics and proteomics reveal the adaptive mechanisms of dairy cows to the transition period. J Dairy Sci 2023; 106:2071-2088. [PMID: 36567250 DOI: 10.3168/jds.2022-22224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
The transition period from late pregnancy to early lactation is a vital time of the lifecycle of dairy cows due to the marked metabolic challenges. Besides, the liver is the pivot point of metabolism in cattle. Nevertheless, the hepatic physiological molecular adaptation during the transition period has not been elucidated, especially from the metabolomics and proteomics view. Therefore, the present study aims to investigate the hepatic metabolic alterations in transition cows by using integrative metabolomics and proteomics methods. Gas chromatography quadrupole-time-of-flight mass spectrometry-based metabolomics and data-independent acquisition-based quantitative proteomics methods were used to analyze liver tissues collected from 8 healthy multiparous Holstein dairy cows 21 d before and after calving. In total, 44 metabolites and 250 proteins were identified as differentially expressed from 233 metabolites and 3,539 proteins detected from the liver biopsies during the transition period. Complementary functional analysis of different metabolites and proteins indicated the upregulated gluconeogenesis, tricarboxylic acid cycles, AA degradation, fatty acid oxidation, AMP-activated protein kinase signaling pathway, peroxisome proliferator-activated receptor signaling pathway, and ribosome proteins in postpartum dairy cows. In terms of the metabolites and proteins, glucose-6-phosphate, fructose-6-phosphate, carnitine palmitoyltransferase 1A, and phosphoenolpyruvate carboxykinase played a significant role in these pathways. The upregulated oxidative status may be accompanied by the pathways mentioned above. In addition, the upregulated glucagon and insulin signaling pathways also indicated the significant requirement for glucose in postpartum dairy cows. These outcomes, from the view of global metabolites and proteins, may present a better comprehension of the biology of the transition period, which can be helpful in further developing nutritional regulation strategies targeting the liver to help cows overcome this metabolically challenging time.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 China; State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Naren Gaowa
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Huanxu Li
- Beijing Oriental Kingherd Biotechnology Company, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Xiaoming Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China.
| |
Collapse
|
27
|
Ghaffari MH, Sadri H, Sauerwein H. Invited review: Assessment of body condition score and body fat reserves in relation to insulin sensitivity and metabolic phenotyping in dairy cows. J Dairy Sci 2023; 106:807-821. [PMID: 36460514 DOI: 10.3168/jds.2022-22549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this article is to review body condition scoring and the role of body fat reserves in relation to insulin sensitivity and metabolic phenotyping. This article summarizes body condition scoring assessment methods and the differences between subcutaneous and visceral fat depots in dairy cows. The mass of subcutaneous and visceral adipose tissue (AT) changes significantly during the transition period; however, metabolism and intensity of lipolysis differ between subcutaneous and visceral AT depots of dairy cows. The majority of studies on AT have focused on subcutaneous AT, and few have explored visceral AT using noninvasive methods. In this systematic review, we summarize the relationship between body fat reserves and insulin sensitivity and integrate omics research (e.g., metabolomics, proteomics, lipidomics) for metabolic phenotyping of cows, particularly overconditioned cows. Several studies have shown that AT insulin resistance develops during the prepartum period, especially in overconditioned cows. We discuss the role of AT lipolysis, fatty acid oxidation, mitochondrial function, acylcarnitines, and lipid insulin antagonists, including ceramide and glycerophospholipids, in cows with different body condition scoring. Nonoptimal body conditions (under- or overconditioned cows) exhibit marked abnormalities in metabolic and endocrine function. Overall, reducing the number of cows with nonoptimal body conditions in herds seems to be the most practical solution to improve profitability, and dairy farmers should adjust their management practices accordingly.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany.
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
28
|
Bassols A, Robles-Guirado JA, Arroyo L, Soler L, García N, Pato R, Peña R, Saco Y, Armengol R, Lampreave F, Alava MA, Canalias F, Piñeiro M. Validation of new automated turbidimetric immunoassays for the measurement of haptoglobin and inter-α-trypsin inhibitor heavy chain H4 specific for the bovine species. Vet Clin Pathol 2023; 52 Suppl 1:64-74. [PMID: 36328958 DOI: 10.1111/vcp.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Good strategical programs are required for the early detection of disease even in the absence of evident clinical signs, which is crucial in satisfying animal welfare. Haptoglobin (Hp) and inter-α-trypsin inhibitor heavy chain H4 (ITIH4) are acute phase proteins and good biomarkers of early inflammation in cattle, with plasma levels that significantly increase after injury or infection. OBJECTIVES We aimed to develop and validate two new immunoturbidimetric methods for Hp and ITIH4. METHODS Species-specific antibodies were obtained and used to develop the immunoassays. For the Hp assay, antibodies were fixed to latex microparticles to enhance detection. The immunoassays were set up in an automated analyzer to carry out validation studies. Reference intervals were calculated using Reference Value Advisor. RESULTS The Hp immunoturbidimetric method had a linear analytical range up to 0.40 mg/mL. The limit of detection (LoD) was 0.005 mg/mL, and the limit of quantification (LoQ) was 0.007 mg/mL. Total imprecision was less than 7%. Comparison with ELISA and single radial immunodiffusion (SRID) showed good correlation, whereas the comparison with the colorimetric method showed constant and proportional differences. The ITIH4 immunoassay showed linearity up to 5 mg/mL, and the LoD was 0.002 mg/mL. Total imprecision was less than 6%. Method comparison showed a good correlation with single radial immunodiffusion, both methods being equivalent. Bilirubin, triglycerides, and hemoglobin presented no interference in any of the assays. Reference intervals were 0.007-0.017 mg/mL for Hp and 0.2-0.7 mg/mL for ITIH4 in dairy cows 10 days before parturition. CONCLUSIONS Immunoturbidimetric methods developed for Hp and ITIH4 can measure basal and increased levels of these proteins, showing adequate precision, accuracy, and robustness.
Collapse
Affiliation(s)
- Anna Bassols
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Angel Robles-Guirado
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Arroyo
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Natalia García
- Departamento de Bioquímica y Biología molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Pato
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Peña
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yolanda Saco
- Servei de Bioquímica Clínica Veterinària (SBCV), Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Armengol
- Departament de Ciència Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Fermín Lampreave
- Departament de Ciència Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - María A Alava
- Departament de Ciència Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Francesca Canalias
- Laboratori de Referència d'Enzimologia Clínica (LREC), Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
29
|
Wang Z, Wang Q, Tang C, Yuan J, Luo C, Li D, Xie T, Sun X, Zhang Y, Yang Z, Guo C, Cao Z, Li S, Wang W. Medium chain fatty acid supplementation improves animal metabolic and immune status during the transition period: A study on dairy cattle. Front Immunol 2023; 14:1018867. [PMID: 36776875 PMCID: PMC9911908 DOI: 10.3389/fimmu.2023.1018867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
The transition period is the stage of the high incidence of metabolic and infectious diseases in dairy cows. Improving transition dairy cows' health is crucial for the industry. This study aimed to determine the effects of dietary supplementation medium-chain fatty acids (MCFAs) on immune function, metabolic status, performance of transition dairy cows. Twenty multiparous Holstein cows randomly assigned to two treatments at 35 d before calving. 1) CON (fed the basal 2) MCFA treatment (basal diet was supplemented at an additional 20 g MCFAs mixture every day) until 70 d after calving. The results showed that the serum amyloid A myeloperoxidase concentrations in the blood of cows in MCFA treatment significantly decreased during the early lactation (from 1 d to 28 d after calving) 0.03, 0.04, respectively) compared with the CON, while the tumor necrosis factor concentration was significantly decreased at 56 d after calving (P = 0.02). In addition, the concentration of insulin in the pre-calving (from 21 d before calving to calving) blood of cows in MCFA treatment was significantly decreased (P = 0.04), and concentration of triglyceride also showed a downward trend at 28 d after calving 0.07). Meanwhile, MCFAs supplementation significantly decreased the concentrations of lithocholic acid, hyodeoxycholic acid, and hyocholic acid in the blood at 1 d calving (P = 0.02, < 0.01, < 0.01, respectively), and the level of hyocholic acid taurocholic acid concentrations (P < 0.01, = 0.01, respectively) decreased dramatically at 14 d after calving. However, compared with the CON, the pre-calving dry matter intake and the early lactation milk yield in MCFA treatment were significantly decreased (P = 0.05, 0.02, respectively). In conclusion, MCFAs supplementation transition diet could improve the immune function and metabolic status of dairy cows, and the health of transition cows might be beneficial from the endocrine status.
Collapse
Affiliation(s)
- Zhonghan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuanlan Tang
- Animal Production Systems Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jing Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenglong Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tian Xie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhantao Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Vatnikov Y, Rudenko A, Gnezdilova L, Sotnikova E, Byakhova V, Piven E, Kulikov E, Petrov A, Drukovskiy S, Petrukhina O. Clinical and diagnostic characteristics of the development of hepatocardial syndrome in black and white cows in the early lactation period. Vet World 2022; 15:2259-2268. [PMID: 36341078 PMCID: PMC9631371 DOI: 10.14202/vetworld.2022.2259-2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Aim: It is known that during the early postpartum and lactation periods in dairy cows, metabolic disorders develop, that is, ketosis, which can lead to secondary damage to internal organs. Therefore, it is important to address the issues of changing the lactating cows’ clinical, laboratory, and physiological parameters regarding the development of hepatocardial syndrome. This study aimed to provide clinical and diagnostic justification for developing hepatocardial syndrome in highly productive dairy cows. Materials and Methods: The study was conducted on 20 black and white cows in the early postpartum period (7–10 days after birth), with a milk production level of >4500 kg of milk during the previous lactation period, a positive result in the formol colloid sedimentary test, the presence of deafness and splitting of heart sounds, changes in the size, or increased pain sensitivity of the percussion field of the liver. Clinically healthy dairy cows in the early postpartum period were used as controls (n = 24). Clinical, electrocardiographic, echocardiographic, and biochemical parameters were also evaluated. Results: Dairy cows with hepatocardial syndrome developed arterial hypertension and sinus tachycardia, which led to a significant decrease in PQ and QT intervals at ECG. A significant increase in the diastolic size of the interventricular septum, systolic size of the free wall of the left ventricle, and diastolic and systolic sizes of the left ventricle and a significant decrease in the shortening fraction of the left ventricular myocardium were observed in the cows due to the development of hepatocardial syndrome. The affected cows demonstrated a significant increase in serum activity of gamma-glutamyl transferase, alanine aminotransferase, lactate dehydrogenase, creatine phosphokinase, alkaline phosphatase, troponin, malondialdehyde, diene conjugates, and ceruloplasmin and a decrease in glucose concentration. In addition, they demonstrated decreased activity of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Conclusion: Hepatocardial syndrome in dairy cows occurs due to ketosis, characterized by arterial hypertension, sinus tachycardia, a moderate decrease in myocardial contractility, oxidative stress, and cytolysis of cardiomyocytes and hepatocytes. Therefore, the control and prevention of the development of hepatocardial syndrome will make it possible to maintain the productive health and longevity of dairy cows.
Collapse
Affiliation(s)
- Yury Vatnikov
- Department of Veterinary Medicine, Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Andrey Rudenko
- Department of Veterinary Medicine, State University of Food Production, Moscow, Russia
| | - Larisa Gnezdilova
- Department of Diseases, Diagnostics, Therapy, Obstetrics and Reproduction of Animals, Moscow State Academy of Veterinary Medicine and Biotechnology - MVA Named after K.I. Skryabin, Moscow, Russia
| | - Elena Sotnikova
- Department of Veterinary Medicine, Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Varvara Byakhova
- Department of Veterinary Medicine, Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Elena Piven
- Department of Public Health, Healthcare, and Hygiene, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Evgeny Kulikov
- Department of Veterinary Medicine, Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Aleksandr Petrov
- Department of Veterinary Medicine, Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Stanislav Drukovskiy
- Department of Veterinary Medicine, Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Olesya Petrukhina
- Department of Veterinary Medicine, Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
31
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
32
|
Veshkini A, Hammon HM, Lazzari B, Vogel L, Gnott M, Tröscher A, Vendramin V, Sadri H, Sauerwein H, Ceciliani F. Investigating circulating miRNA in transition dairy cows: What miRNAomics tells about metabolic adaptation. Front Genet 2022; 13:946211. [PMID: 36082001 PMCID: PMC9445238 DOI: 10.3389/fgene.2022.946211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the current study, we investigated dairy cows’ circulating microRNA (miRNA) expression signature during several key time points around calving, to get insights into different aspects of metabolic adaptation. In a trial with 32 dairy cows, plasma samples were collected on days −21, 1, 28, and 63 relative to calving. Individually extracted total RNA was subjected to RNA sequencing using NovaSeq 6,000 (Illumina, CA) on the respective platform of IGA Technology Services, Udine, Italy. MiRDeep2 was used to identify known and novel miRNA according to the miRbase collection. Differentially expressed miRNA (DEM) were assessed at a threshold of fold-change > 1.5 and false discovery rate < 0.05 using the edgeR package. The MiRWalk database was used to predict DEM targets and their associated KEGG pathways. Among a total of 1,692 identified miRNA, 445 known miRNA were included for statistical analysis, of which 84, 59, and 61 DEM were found between days −21 to 1, 1 to 28, and 28 to 63, respectively. These miRNA were annotated to KEGG pathways targeting the insulin, MAPK, Ras, Wnt, Hippo, sphingolipid, T cell receptor, and mTOR signaling pathways. MiRNA-mRNA network analysis identified miRNA as master regulators of the biological process including miR-138, miR-149-5p, miR-2466-3p, miR-214, miR-504, and miR-6523a. This study provided new insights into the miRNA signatures of transition to the lactation period. Calving emerged as a critical time point when miRNA were most affected, while the following period appeared to be recovering from massive parturition changes. The primarily affected pathways were key signaling pathways related to establishing metabolic and immune adaptations.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | | | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology of the CNR, Milan, Italy
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Gnott
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | | | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
- *Correspondence: Fabrizio Ceciliani,
| |
Collapse
|
33
|
Zhang F, Zhao Y, Wang Y, Wang H, Nan X, Guo Y, Xiong B. Dietary supplementation with calcium propionate could beneficially alter rectal microbial composition of early lactation dairy cows. Front Vet Sci 2022; 9:940216. [PMID: 35958310 PMCID: PMC9360568 DOI: 10.3389/fvets.2022.940216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary supplementation with calcium propionate can effectively alleviate negative energy balance and hypocalcemia of dairy cows in early lactation. The objective of this study was to investigate the effects of calcium propionate feeding levels on the immune function, liver function, and fecal microbial composition of dairy cows in early lactation. Thirty-two multiparous Holstein cows were randomly assigned to four treatments after calving. Treatments were a basal diet plus 0, 200, 350, and 500 g calcium propionate per cow per day throughout a 5-week trial period. Cows were milked three times a day, and blood was sampled to measure immune function and liver function on d 7, 21, and 35. The rectal contents were sampled and collected on d 35 to analyze the microbial composition using 16S rRNA gene sequencing. The results indicated that increasing amounts of calcium propionate did not affected the serum concentrations of total protein, IgG, IgM, and calcium, but the concentrations of albumin and IgA changed quadratically. With the increase of calcium propionate, the activity of serum alanine transaminase and aspartate aminotransferase increased linearly, in contrast, the activity of alkaline phosphatase decreased linearly. Moreover, dietary supplementation with increasing levels of calcium propionate tended to quadratically decrease the relative abundance of Firmicutes while quadratically increased the abundance of Bacteroidetes, and consequently linearly decreased the Firmicutes/Bacteroidetes ratio in the rectal microbiota. Additionally, the supplementation of calcium propionate increased the relative abundances of Ruminococcaceae_UCG-005 and Prevotellaceae_UCG-004 linearly, and Ruminococcaceae_UCG-014 quadratically, but decreased the relative abundances of Lachnospiraceae_NK3A20_group and Family_XIII_AD3011_group quadratically. Compared with the CON group, the calcium propionate supplementation significantly decreased the relative abundance of Acetitomaculum but increased the abundances of Rikenellaceae_RC9_gut_group and Alistipes. In summary, these results suggested that the supplementation of calcium propionate to dairy cows in early lactation could beneficially alter the rectal microbiota.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Yuming Guo
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Benhai Xiong
| |
Collapse
|
34
|
Lu W, Sun H, Xu ZM, Du Z, Si L, Yuan S, Jin J, Jin CH. Diagnostic and therapeutic strategy for Clostridium perfringens infection in postpartum dairy cows: a report of 14 cases. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2078329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wengeng Lu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Hongliang Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Zheng-Mei Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Zhenzhen Du
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Linqing Si
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Siqi Yuan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Jidong Jin
- Cofeed Feedmill (Changchun) Co., Ltd., Changchun, People’s Republic of China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- National Coarse Cereals Engineering Research Center, Daqing, People’s Republic of China
| |
Collapse
|
35
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
36
|
Medeiros I, Fernandez-Novo A, Astiz S, Simões J. Historical Evolution of Cattle Management and Herd Health of Dairy Farms in OECD Countries. Vet Sci 2022; 9:125. [PMID: 35324853 PMCID: PMC8954633 DOI: 10.3390/vetsci9030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
This work aimed to review the important aspects of the dairy industry evolution at herd level, interrelating production with health management systems. Since the beginning of the industrialization of the dairy cattle sector (1950s), driven by the need to feed the rapidly growing urban areas, this industry has experienced several improvements, evolving in management and technology. These changes have been felt above all in the terms of milking, rearing, nutrition, reproductive management, and design of facilities. Shortage of labor, emphasis on increasing farm efficiency, and quality of life of the farmers were the driving factors for these changes. To achieve it, in many areas of the world, pasture production has been abandoned, moving to indoor production, which allows for greater nutritional and reproductive control of the animals. To keep pace with this paradigm in milk production, animal health management has also been improved. Prevention and biosecurity have become essential to control and prevent pathologies that cause great economic losses. As such, veterinary herd health management programs were created, allowing the management of health of the herd as a whole, through the common work of veterinarians and farmers. These programs address the farms holistically, from breeding to nutrition, from prevention to consultancy. In addition, farmers are now faced with a consumer more concerned on animal production, valuing certified products that respect animal health and welfare, as well as environmental sustainability.
Collapse
Affiliation(s)
- Ivo Medeiros
- Veterinary and Animal Research Centre (CECAV), Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Aitor Fernandez-Novo
- Department of Veterinary Medicine, School of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa De Odón, 28670 Madrid, Spain;
| | - Susana Astiz
- Animal Reproduction Department, National Institute of Agronomic Research (INIA), Puerta De Hierro Avenue s/n, CP, 28040 Madrid, Spain;
| | - João Simões
- Veterinary and Animal Research Centre (CECAV), Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| |
Collapse
|
37
|
Ma Z, Fang L, Ungerfeld E, Li X, Zhou C, Tan Z, Jiang L, Han X. Supplementation of Rumen-Protected Glucose Increased the Risk of Disturbance of Hepatic Metabolism in Early Postpartum Holstein Cows. Antioxidants (Basel) 2022; 11:469. [PMID: 35326119 PMCID: PMC8944473 DOI: 10.3390/antiox11030469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/11/2023] Open
Abstract
The dual stress of reduced feed intake and increased milk yield in dairy cows early postpartum results in a negative energy balance. Rumen-protected glucose (RPG) has been reported to replenish energy, increase milk yield, and improve gut health. However, early postpartum cows often develop an insulin resistance, implying that RPG may not be well utilized and increased milk production may increase the liver's fat oxidization burden. This study aimed to investigate the effects of RPG on the hepatic oxidative/antioxidative status and protein profile. Starting 7 d before expected calving, six pairs of cows were supplemented with rumen-protected glucose (RPG, n = 6) or with an equal amount of rumen-protecting coating fat (CON, n = 6). Liver samples were obtained from 10 cows 14 d after calving (d 14). Concentration of malondialdehyde and activity of glutathione peroxidase were increased and the activities of catalase and superoxide dismutase tended to increase in the livers of the RPG cows compared to the CON cows. The revised quantitative insulin sensitivity check index (RQUICKI) was decreased by RPG, but triacylglycerol concentration in liver was increased by RPG supplementation. The overall profiles of hepatic proteins were similar between CON and RPG. A partial least square regression was conducted to identify the proteins associated with liver lipidosis, oxidative stress, and antioxidative capacity. The top twenty proteins, according to their variable importance value, were selected for metabolic pathway enrichment analysis. Eighteen enriched KEGG pathways were identified, including metabolism, the citrate cycle, propanoate metabolism, the peroxisome, and type II diabetes mellitus. Our study showed that RPG supplementation reduced insulin sensitivity but increased the liver triglyceride concentration and the oxidative stress in early postpartum cows. Liver proteins related to lipidosis, oxidative stress, and antioxidative capacity, were positively associated with the glutamine metabolism, citric acid cycle, peroxisome, and type II diabetes pathways, which may indicate an increased risk of liver metabolic disorders caused by RPG supplementation in early postpartum cows.
Collapse
Affiliation(s)
- ZhiYuan Ma
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - LuoYun Fang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China;
| | - Emilio Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, Chile;
| | - XiaoPeng Li
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
| | - ChuanShe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
| | - ZhiLiang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
| | - LinShu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China;
| | - XueFeng Han
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.M.); (X.L.); (C.Z.); (Z.T.)
| |
Collapse
|
38
|
Tian M, Li N, Liu R, Li K, Du J, Zou D, Ma Y. The protective effect of licochalcone A against inflammation injury of primary dairy cow claw dermal cells induced by lipopolysaccharide. Sci Rep 2022; 12:1593. [PMID: 35102233 PMCID: PMC8803976 DOI: 10.1038/s41598-022-05653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Laminitis is one of the most important and intractable diseases in dairy cows, which can lead to enormous economic losses. Although many scholars have conducted a large number of studies on laminitis, the therapeutic test of medicinal plants in vitro is really rare. Licochalcone A is proved to possess anti-inflammatory and anti-oxidant properties. But the effect of licochalcone A on LPS-induced inflammatory claw dermal cells has not been discovered yet. In this study, the primary dairy cow claw dermal cells were treated with gradient concentrations of licochalcone A (1, 5, 10 µg/mL) in the presence of 10 µg/mL lipopolysaccharides (LPS). The results indicated that licochalcone A reduced the concentrations of inflammation mediators (TNF-α, IL-1β and IL-6), increased the activity of SOD, reduced the levels of MDA and ROS, downregulated the mRNA expressions of TLR4 and MyD88, suppressed the protein levels of p-IκBα and p-p65, and upregulated the protein expression of PPARγ. In summary, licochalcone A protected dairy cow claw dermal cells against LPS-induced inflammatory response and oxidative stress through the regulation of TLR4/MyD88/NF-κB and PPARγ signaling pathways.
Collapse
Affiliation(s)
- Mengyue Tian
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China
| | - Nan Li
- Hebei Agricultural University College of Animal Science and Technology, Baoding, 071001, Hebei, China
| | - Ruonan Liu
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China
| | - Ke Li
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China
| | - Jinliang Du
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - Dongmin Zou
- Shanxi Agricultural University College of Veterinary Medicine, Taigu, 030801, Shanxi, China
| | - Yuzhong Ma
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China.
| |
Collapse
|
39
|
Cui Y, Shan Z, Hou L, Wang Q, Loor JJ, Xu C. Effect of Natural Chinese Herbal Supplements (TCMF4) on Lactation Performance and Serum Biomarkers in Peripartal Dairy Cows. Front Vet Sci 2022; 8:801418. [PMID: 35083308 PMCID: PMC8784967 DOI: 10.3389/fvets.2021.801418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
This study examined the effect of mixed medicinal herbs from China in the ground form on milk yield and various blood metabolites before and after parturition in Holstein cows. Crushed Agastache rugosus, Scutellaria barbata, Pericarpium citri reticulate, and Radix glycyrrhizae were used to develop TCMF4. Thirty-two Chinese Holstein cows were randomly divided into a control group or groups receiving 0.1, 0.3, or 0.5 kg TCMF4/cow/d from −7 through 21 d relative to parturition. Blood samples for serum isolation were collected at −7, −1, 1, 7, 14, and 21 d relative to parturition and used to measure glucose, β-hydroxybutyric acid (BHBA), total protein, albumin, globulin, and alkaline phosphatase. Milk production was recorded daily for the first 21 d postpartum, and composition was analyzed at 7, 14, and 21 d. Data were analyzed using a one-way analysis of variance (ANOVA) for multiple comparisons. The average milk production during the first 21-d postpartum was 28.7 ± 6.9, 27.2 ± 7.1, 31.2 ± 6.8, and 38.5 ± 6.1 kg/d for control group and groups receiving 0.1, 0.3, or 0.5 kg TCMF4. Thus, average daily milk production increased between 9 to 34% by supplementation with TCMF4 compared with the control group. Compared with the control group, in the middle dose group, milk concentrations of lactose and total protein decreased by 21 and 19%, respectively, at d 7 around parturition, while total solids increased by 23% at d 21 in the high-dose group. Furthermore, compared with the control group, serum BHBA decreased by 50 and 20% at d −1 and 21 around parturition in the high-dose group. Overall, TCMF4 supplementation improved dry matter intake (DMI) and milk production of dairy cows during the periparturient period without adverse effects on liver function, and plasma BHBA concentrations of dairy cows tended to decrease when dietary TCMF4 increased, which suggested that TCMF4 might be used as potential additives in dairy cows to improve production performance.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuorui Shan
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lintong Hou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiuju Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Chuang Xu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
40
|
Major Nutritional Metabolic Alterations Influencing the Reproductive System of Postpartum Dairy Cows. Metabolites 2022; 12:metabo12010060. [PMID: 35050182 PMCID: PMC8781654 DOI: 10.3390/metabo12010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/25/2022] Open
Abstract
Early successful conception of postpartum dairy cows is crucial in determining the optimum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high production potential of modern dairy cows, the extra stress burden of peri-parturient events, and associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis, and high protein metabolism in postpartum cows presents further consequences for health and reproductive performance of postpartum dairy cows. This review intends to comprehend these major nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and relevant mitigation strategies.
Collapse
|
41
|
Zhang F, Zhao Y, Wang Y, Wang H, Guo Y, Xiong B. Effects of calcium propionate on milk performance and serum metabolome of dairy cows in early lactation. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Cavani L, Poindexter MB, Nelson CD, Santos JEP, Peñagaricano F. Gene mapping, gene-set analysis, and genomic prediction of postpartum blood calcium in Holstein cows. J Dairy Sci 2021; 105:525-534. [PMID: 34756434 DOI: 10.3168/jds.2021-20872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
The onset of lactation results in a sudden irreversible loss of Ca for colostrum and milk synthesis. Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, whereas a larger proportion of cows develop subclinical hypocalcemia that predisposes them to other peripartum diseases. The objective of this study was to perform a comprehensive genomic analysis of blood total Ca concentration in periparturient Holstein cows. We first performed a genomic scan and a subsequent gene-set analysis to identify candidate genes, biological pathways, and molecular mechanisms affecting postpartum Ca concentration. Then, we assessed the prediction of postpartum Ca concentration using genomic information. Data consisted of 7,691 records of plasma or serum concentrations of Ca measured in the first, second, and third day after parturition of 959 primiparous and 1,615 multiparous cows that calved between December 2015 and June 2020 in 2 dairy herds. All cows were genotyped with 80k SNPs. The statistical model included lactation (1 to 5+), calf category (male, females, twins), and day as fixed effects, and season-treatment-experiment, animal, and permanent environmental as random effects. Model predictive ability was evaluated using 10-fold cross-validation. Heritability and repeatability estimates were 0.083 (standard error = 0.017) and 0.444 (standard error = 0.028). The association mapping identified 2 major regions located on Bos taurus autosome (BTA)6 and BTA16 that explained 1.2% and 0.7% of additive genetic variance of Ca concentration, respectively. Interestingly, the region on BTA6 harbors the GC gene, which encodes the vitamin D binding protein, and the region on BTA16 harbors LRRC38, which is actively involved in K transport. Other sizable peaks were identified on BTA5, BTA2, BTA7, BTA14, and BTA9. These regions harbor genes associated with Ca channels (CACNA1S, CRACR2A), K channels (KCNK9), bone remodeling (LRP6), and milk production (SOCS2). The gene-set analysis revealed terms related to vitamin transport, calcium ion transport, calcium ion binding, and calcium signaling. Genomic predictions of phenotypic and genomic estimated breeding values of Ca concentration yielded predictive correlations up to 0.50 and 0.15, respectively. Overall, the present study contributes to a better understanding of the genetic basis of postpartum blood Ca concentration in Holstein cows. In addition, the findings may contribute to the development of novel selection and management strategies for reducing periparturient hypocalcemia in dairy cattle.
Collapse
Affiliation(s)
- Ligia Cavani
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | | | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - José E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | | |
Collapse
|
43
|
Fu S, Shen X, Wang X, Zhou Y, Zhang J, Miao J. RNA-seq and nuclear proteomics provide insights into the lactation regulation mechanism of goat transfected IGF-I and GH recombinant vectors. Growth Horm IGF Res 2021; 60-61:101428. [PMID: 34507252 DOI: 10.1016/j.ghir.2021.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022]
Abstract
There exists little available information on the mechanisms of lactation regulation until now. In order to explore the underlying mechanism, we injected IGF-I and GH recombinant vectors into the mammary gland, then RNA-seq analysis and nuclear proteomics were used for rapid high-throughput screening of DEGs and DEPs in the two groups linked to lactation regulation. KEGG analysis of 206 DEGs showed that the same 4 of top 10 enrichment pathways (ECM receptor interaction, protein digestion and absorption, focal adhesion and phagosome) involved in 4 co-expressed genes (IDO, BTG1, ITGB6 and keratin 83), the two groups enriched different metabolic pathways yet. Nuclear proteomics analysis showed 75 and 36 DEPs in the IGF-I and GH group respectively; Sixteen common proteins were identified between the IGF-I group and GH group, four of which (ALB, TPT1, CXXC-5 and ACTR2) significantly decreased and three of which (PRP1, PAG-9 and Hsp70) significantly increased. Similarly, DEPs in the two groups were enriched in same one of top 10 enrichment pathways (PI3K-Akt signaling pathway). Protein-protein interaction networks highlighted the contribution of glycosphingolipid biosynthesis, porphyrin and chlorophyll metabolism and the Jak-STAT signaling pathway to lactation regulation of GH and IGFI. GH and IGF-I improve milk yield, which may be linked to important nodal proteins (ALB and ACTB). Our research advances the understanding of the mammary gland transcriptome and nuclear proteomics during GH and IGF-I overexpression. Individual genes, proteins and pathways in this study point towards potential targets for lactation regulation.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Hefei 230001, China
| | - Xudong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences,Nanjing 210014, China.
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
44
|
Abstract
The metabolic alterations associated with the increase in milk production make the transition period critical to the health of dairy cows, usually leading to a higher incidence of disease in periparturient animals. In this manuscript, we describe the use of NMR-based untargeted metabolomics to follow how these changes impact the serum metabolome in a group of 28 transition dairy cows with no initial clinical diseases. Principal component analysis (PCA) of serum 1H NMR data from four weeks before calving to 8 weeks after parturition allowed us to clearly identify four stages during the transition period. Pairwise comparisons using orthogonal partial least square discriminant analysis (OPLS-DA) and univariate data analysis led to the identification of 18 metabolites that varied significantly through these stages. Species such as acetate, betaine, and creatine are observed early after calving, while other markers of metabolic stress, including acetone, β-hydroxybutyrate (BHB), and choline, accumulate significantly at the height of milk production. Furthermore, marked variations in the levels of lactate, allantoin, alanine, and other amino acids reveal the activation of different gluconeogenic pathways following parturition. Concomitant with a return to homeostasis, a gradual normalization of the serum metabolome occurs 8 weeks after calving. Correlations of metabolite levels with dietary and metabolic adaptations based on animal parity could also be identified. Overall, these results show that NMR-based chemometric methods are ideally suited to monitor manifestations of metabolic diseases throughout the transition period and to assess the impact of nutritional management schemes on the metabolism of dairy cows.
Collapse
|
45
|
Schären M, Snedec T, Riefke B, Slopianka M, Keck M, Gruendemann S, Wichard J, Brunner N, Klein S, Theinert KB, Pietsch F, Leonhardt A, Theile S, Rachidi F, Kaiser A, Köller G, Bannert E, Spilke J, Starke A. Aspects of transition cow metabolomics-Part I: Effects of a metaphylactic butaphosphan and cyanocobalamin treatment on the metabolome in liver, blood, and urine in cows with different liver metabotypes. J Dairy Sci 2021; 104:9205-9226. [PMID: 34024600 DOI: 10.3168/jds.2020-19055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Dairy cows in modern production systems are at risk to develop metabolic disorders during the transition period. Reasons for individual differences in susceptibility, as well as the underlying pathomechanisms, are still only partially understood. The development of metaphylactic treatment protocols is needed. In this context, an on-farm prospective 3-fold blinded randomized study involving 80 German Holstein cows was performed throughout 1 yr. The trial involved a thorough recording of the production and clinical traits, clinical chemistry, and liver biopsies and blood and urine sampling at d 14 (mean: 12 d, range: 1-26 d) antepartum (AP), and d 7 (7, 4-13) and 28 (28, 23-34) postpartum (PP) for metabolomics analyses. Two groups received a treatment with butaphosphan and cyanocobalamin (BCC) at either the dosage recommended by the manufacturer or the double dosage (5 or 10 mL/100 kg of body weight 10% butaphosphan and 0.005% cyanocobalamin (Catosal, Bayer Animal Health), n = 20 in each group, parity: 4.2 ± 2.0 and 3.4 ± 1.3, respectively (mean ± SD)] and one group a placebo treatment (NaCl 0.9%, n = 40, parity: 4.0 ± 1.9). The animals were treated at 6 time points (7, 6, and 5 d AP, and 1, 2, and 3 d PP) via intravenous injection. Mass spectroscopy-based targeted metabolomics analysis of blood plasma and liver samples were performed using the AbsoluteIDQ p180 kit (Biocrates Life Sciences), whereas the urine samples were analyzed by nuclear magnetic resonance spectroscopy. Statistical analysis was performed using multivariate [partial least squares discriminant analysis (PLS-DA)] and univariate methods (linear mixed model). Multivariate data analysis (PLS-DA plots) of the liver metabolome revealed 3 different metabotypes (A = medium, B = minor, C = large alterations in liver metabolome profile between AP and PP status). Metabotype B animals were characterized by higher PP lipomobilization (stronger PP body condition decrease and higher blood bilirubin, fatty acids, gamma-glutamyltransferase, and triglyceride levels) and a higher occurrence of transition cow diseases, compared with the animals in metabotype C. Analysis of the feeding data showed that the period of metabotype B animals (calving in a distinct time frame) was characterized by a decreased grass silage quality. The PP liver metabolome of the metabotype C animals was characterized by higher concentrations of AA, acylcarnitines, lysoPC and sphingomyelins compared with metabotype B. For the metaphylactic treatment with BCC a dose-dependent effect was confirmed, differing between the metabotypes. In all matrices and metabotypes at various time points significant treatment effects were observed, with different profiles in clinical chemistry and as well in metabolomics data. The most clear-cut treatment effect was observed in metabotype B in the liver at 7 d PP, characterized by an increase in several acylcarnitines and phosphatidylcholines, indicating a more efficient influx and oxidation of fatty acids in mitochondria and thereby an increase in energy supply and more efficient triglyceride export in the liver. The results from the liver metabolomics analysis support the application of an indication-based metaphylactic treatment with BCC.
Collapse
Affiliation(s)
- M Schären
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
| | - T Snedec
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - B Riefke
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Slopianka
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Keck
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - S Gruendemann
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - J Wichard
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - N Brunner
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - S Klein
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - K B Theinert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Pietsch
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - A Leonhardt
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - S Theile
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Rachidi
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - A Kaiser
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - G Köller
- Laboratory of Large Animal Clinics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - E Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - J Spilke
- Biometrics and Informatics in Agriculture Group, Institute of Agricultural and Nutritional Sciences, Martin-Luther University, Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06108 Halle (Saale), Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| |
Collapse
|
46
|
Schären M, Riefke B, Slopianka M, Keck M, Gruendemann S, Wichard J, Brunner N, Klein S, Snedec T, Theinert KB, Pietsch F, Rachidi F, Köller G, Bannert E, Spilke J, Starke A. Aspects of transition cow metabolomics-Part III: Alterations in the metabolome of liver and blood throughout the transition period in cows with different liver metabotypes. J Dairy Sci 2021; 104:9245-9262. [PMID: 34024605 DOI: 10.3168/jds.2020-19056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
The liver plays a central role in the postpartum (PP) energy metabolism of the transition dairy cow; however, studies describing the liver metabolome during this period were lacking. The aim of the presented study was therefore to compare the alterations in the liver and blood metabolome of transition dairy cows. For this purpose, an on-farm trial with 80 German Holstein cows (mean lactation number: 3.9; range: 2-9) was performed, with thorough documentation of clinical traits and clinical chemistry, as well as production data. Liver biopsies and blood samples were collected at d 14 (mean: 12 d, range: 1-26 d) antepartum (AP), d 7 (7, 4-13) and 28 (28, 23-34; mean, earliest-latest) PP for targeted mass spectroscopy-based metabolomics analysis using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Statistical analysis was performed using multivariate (partial least squares discriminant analysis) as well as univariate methods (linear mixed model). Multivariate data analysis of the liver metabolome revealed 3 different metabotypes (A = medium, B = minor, C = large alterations in the liver metabolome profile between AP and PP). In metabotype C, an increase of almost all acylcarnitines, lysophosphatidylcholines (lysoPC), sphingomyelins, and some phosphatidylcholines (PC, mainly at 7 d PP) was observed after calving. In contrast to metabotype C, the clinical data of the metabotype B animals indicated a higher PP lipomobilization and occurrence of transition cow diseases. The liver metabolome profile of these animals most likely mirrors a failure of adaptation to the PP state. This strong occurrence of metabotypes was much less pronounced in the blood metabolome. Additionally, differences in metabolic patterns were observed across the transition period when comparing liver and blood matrices (e.g., in different biogenic amines, acylcarnitines and sphingolipids). In summary, the blood samples at 7 d PP showed lower acylcarnitines and PC, with minor alterations and a heterogeneous pattern in AA, biogenic amines, and sphingomyelins compared with 14 d AP. In contrast to 7 d PP, the blood samples at 28 PP revealed an increase in several AA, lysoPC, PC, and sphingomyelins in comparison to the AP state, irrespective of the metabotype. In the liver biopsies metabotype B differed from metabotype C animals ante partum by following metabolites: higher α aminoadipic acid, lower AA, serotonin, taurine, and symmetric dimethylarginine levels, lower or higher concentrations of certain acylcarnitines (higher: C2, C3, C5, C4:1; lower: C12:1, C14:1-OH, C16:2), and lower lysoPC (a C16:0, C18:0, C20:3, C20:4) and hexose levels. In blood samples, fewer differences were observed, with lower serotonin, acylcarnitine C16:2, lysoPC (a C16:0, C17:0, C18:0 and C18:1), PC aa C38:0, and PC ae C42:2. The results show that the use of only the blood metabolome to assess liver metabolism may be hampered by the fact that blood profiles are influenced by the metabolism of many organs, and metabolomics analysis from liver biopsies is a more suitable method to identify distinct metabotypes. Future studies should investigate the stability and reproducibility of the metabotype and phenotypes observed, and the possible predictive value of the metabolites already differing AP between metabotype B and C.
Collapse
Affiliation(s)
- M Schären
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
| | - B Riefke
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Slopianka
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Keck
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - S Gruendemann
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - J Wichard
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - N Brunner
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - S Klein
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - T Snedec
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - K B Theinert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Pietsch
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Rachidi
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - G Köller
- Laboratory of Large Animal Clinics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - E Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - J Spilke
- Biometrics and Informatics in Agriculture Group, Institute of Agricultural and Nutritional Sciences, Martin-Luther University, Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06108 Halle (Saale), Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Yan X, Wang J, Li H, Gao L, Geng J, Ma Z, Liu J, Zhang J, Xie P, Chen L. Combined transcriptome and proteome analyses reveal differences in the longissimus dorsi muscle between Kazakh cattle and Xinjiang brown cattle. Anim Biosci 2021; 34:1439-1450. [PMID: 33677919 PMCID: PMC8495333 DOI: 10.5713/ab.20.0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
Objective With the rapid development of proteomics sequencing and RNA sequencing technology, multi-omics analysis has become a current research hotspot. Our previous study indicated that Xinjiang brown cattle have better meat quality than Kazakh cattle. In this study, Xinjiang brown cattle and Kazakh cattle were used as the research objects. Methods Proteome sequencing and RNA sequencing technology were used to analyze the proteome and transcriptome of the longissimus dorsi muscle of the two breeds of adult steers (n = 3). Results In this project, 22,677 transcripts and 1,874 proteins were identified through quantitative analysis of the transcriptome and proteome. By comparing the identified transcriptome and proteome, we found that 1,737 genes were identified at both the transcriptome and proteome levels. The results of the study revealed 12 differentially expressed genes and proteins: troponin I1, crystallin alpha B, cysteine, and glycine rich protein 3, phosphotriesterase-related, myosin-binding protein H, glutathione s-transferase mu 3, myosin light chain 3, nidogen 2, dihydropyrimidinase like 2, glutamate-oxaloacetic transaminase 1, receptor accessory protein 5, and aspartoacylase. We performed functional enrichment of these differentially expressed genes and proteins. The Kyoto encyclopedia of genes and genomes results showed that these differentially expressed genes and proteins are enriched in the fatty acid degradation and histidine metabolism signaling pathways. We performed parallel reaction monitoring (PRM) verification of the differentially expressed proteins, and the PRM results were consistent with the sequencing results. Conclusion Our study provided and identified the differentially expressed genes and proteins. In addition, identifying functional genes and proteins with important breeding value will provide genetic resources and technical support for the breeding and industrialization of new genetically modified beef cattle breeds.
Collapse
Affiliation(s)
- XiangMin Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Jia Wang
- College of Geographic Science, Shanxi Normal University, Linfen 041000, China
| | - Hongbo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, 835000, China
| | - Juan Geng
- Xinjiang Animal Husbandry General Station, Urumqi 830057, China
| | - Zhen Ma
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Jianming Liu
- Yili Animal Husbandry General Station, Yili 835000, China
| | - Jinshan Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Penggui Xie
- Yili Vocational and Technical College, Yili, 835000, China
| | - Lei Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
48
|
LC-MS/MS Based Metabolomics Reveal Candidate Biomarkers and Metabolic Changes in Different Buffalo Species. Animals (Basel) 2021; 11:ani11020560. [PMID: 33672725 PMCID: PMC7924386 DOI: 10.3390/ani11020560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Consumers have shown more and more interest in high-quality and healthy dairy products and buffalo milk is commercially more viable than other milks in producing superior dairy products due to its higher contents of fat, crude protein, and total solids. Metabolomics is one of the most powerful strategies in molecular mechanism research however, little study has been focused on the milk metabolites in different buffalo species. Therefore, the aim of this study was to explore the underlying molecular mechanism of the fatty synthesis and candidate biomarkers by analyzing the metabolomic profiles. Milk of three groups of buffaloes, including 10 Mediterranean, 12 Murrah, and 10 crossbred buffaloes (Murrah × local swamp buffalo), were collected and UPLC-Q-Orbitrap HRMS was used to obtain the metabolomic profiles. Results showed that milk fatty acid in Mediterranean buffalo was significantly higher than Murrah buffalo and crossbred buffalo. A total of 1837/726 metabolites was identified in both positive and negative electrospray ionization (ESI±) mode, including 19 significantly different metabolites between Mediterranean and Murrah buffalo, and 18 different metabolites between Mediterranean and crossbred buffalo. We found 11 of the different metabolites were both significantly different between Mediterranean vs. Murrah group and Mediterranean vs crossbred group, indicating that they can be used as candidate biomarkers of Mediterranean buffalo milk. Further analysis found that the different metabolites were mainly enriched in fat synthesis related pathways such as fatty acid biosynthesis, unsaturated fatty acid biosynthesis, and linoleic acid metabolism, indicating that the priority of different pathways affected the milk fat content in different buffalo species. These specific metabolites may be used as biomarkers in the identification of milk quality and molecular breeding of high milk fat buffalo.
Collapse
|
49
|
Czopowicz M, Moroz A, Szaluś-Jordanow O, Mickiewicz M, Witkowski L, Nalbert T, Markowska-Daniel I, Puchała R, Bagnicka E, Kaba J. Profile of serum lipid metabolites of one-week-old goat kids depending on the type of rearing. BMC Vet Res 2020; 16:346. [PMID: 32957980 PMCID: PMC7507259 DOI: 10.1186/s12917-020-02575-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
Background Weaning of goat kids immediately after birth and feeding them on bovine or heat-treated caprine colostrum, referred to as snatching, is considered an effective control measure in some infectious diseases. The study was carried out in one-week-old goat kids to gain insight into the profile of lipid metabolites and to investigate the influence of snatching on kids’ metabolism. Fifty-two goat kids born to 23 female goats were included in the study – 22 kids were weaned immediately after birth and kept isolated from their mothers; 30 remaining kids were left with their mothers for next 3 weeks so that they could nurse on dams’ milk at will. Blood was collected at the age of 1 week and serum was obtained by centrifugation. The concentration of lipid metabolites was determined with mass spectrometry using a commercial MxP® Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, Austria). Results Concentration of 240 lipid metabolites belonging to 10 lipid classes was above the limit of detection of the assay. These lipid metabolites were quantified and included in the analysis. Concentration of 2 lipid classes (acyl-alkyl-phosphatidylcholines and ceramides) and 31 lipid metabolites (14 triacylglycerols, 5 acyl-alkyl-phosphatidylcholines, 2 diacylphosphatidylcholines, 1 lyso-phosphatidylcholine, 5 ceramides, 2 sphingomyelins, and 2 cholesterol esters) differed significantly between the two groups of kids. Conclusion Snatching of kids results in reduction of serum concentration of lipid metabolites, however, the magnitude of this phenomenon does not seem to be sufficient to negatively affect kids’ health condition. This study is the first in which the broad set of lipid metabolites of young ruminants was quantified using the novel metabolomic assay MxP® Quant 500 kit.
Collapse
Affiliation(s)
- Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Agata Moroz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Olga Szaluś-Jordanow
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Lucjan Witkowski
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Tomasz Nalbert
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Iwona Markowska-Daniel
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Ryszard Puchała
- Applied Physiology Unit, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Emilia Bagnicka
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
50
|
Tran H, McConville M, Loukopoulos P. Metabolomics in the study of spontaneous animal diseases. J Vet Diagn Invest 2020; 32:635-647. [PMID: 32807042 PMCID: PMC7488963 DOI: 10.1177/1040638720948505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using analytical chemistry techniques such as nuclear magnetic resonance (NMR) spectroscopy and liquid or gas chromatography-mass spectrometry (LC/GC-MS), metabolomics allows detection of most endogenous and exogenous metabolites in a biological sample. Metabolomics has a wide range of applications, and has been employed in nutrition science, toxicology, environmental studies, and systems biology. Metabolomics is particularly useful in biomedical science, and has been used for diagnostic laboratory testing, identifying targets for drug development, and monitoring drug metabolism, mode of action, and toxicity. Despite its immense potential, metabolomics remains underutilized in the study of spontaneous animal diseases. Our aim was to comprehensively review the existing literature on the use of metabolomics in spontaneous veterinary diseases. Three databases were used to find journal articles that applied metabolomics in veterinary medicine. A screening process was then conducted to eliminate references that did not meet the eligibility criteria; only primary research studies investigating spontaneous animal disease were included; 38 studies met the inclusion criteria. The main techniques used were NMR and MS. All studies detected metabolite alterations in diseased animals compared with non-diseased animals. Metabolomics was mainly used to study diseases of the digestive, reproductive, and musculoskeletal systems. Inflammatory conditions made up the largest proportion of studies when articles were categorized by disease process. Following a comprehensive analysis of the literature on metabolomics in spontaneous veterinary diseases, we concluded that metabolomics, although in its early stages in veterinary research, is a promising tool regarding diagnosis, biomarker discovery, and in uncovering new insights into disease pathophysiology.
Collapse
Affiliation(s)
- Helena Tran
- Melbourne Veterinary School, Faculty of
Veterinary and Agricultural Sciences, University of Melbourne, Melbourne,
Victoria, Australia
| | - Malcolm McConville
- Bio21 Institute, Metabolomics Australia,
University of Melbourne, Melbourne, Victoria, Australia
| | - Panayiotis Loukopoulos
- Melbourne Veterinary School, Faculty of
Veterinary and Agricultural Sciences, University of Melbourne, Melbourne,
Victoria, Australia
| |
Collapse
|