1
|
Cai C, Ma Y, Zhang L, An Z, Zhou E, Liu X, Li H, Li W, Li Z, Li G, Liu X, Zhang Y, Han R. Genome-wide methylation and transcriptome differential analysis of skeletal muscle in broilers with valgus-varus deformity. Br Poult Sci 2024:1-12. [PMID: 39504239 DOI: 10.1080/00071668.2024.2410368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024]
Abstract
1. Valgus-varus deformity (VVD) is a disease that severely affects leg function in broilers and for which there is no effective control method current available. Although DNA methylation has an important impact on most physiological and pathological processes, its involvement in skeletal muscle growth and development in VVD broilers is unknown. In this study, genome-wide DNA methylation was analysed in VVD-affected and normal broilers using whole genome resulphite sequencing.2. The results showed that in the cytosine-phosphoric acid-guanine (CG) sequence environment there was a methylation rate of about 55% and 4,265 differentially methylated regions (DMRs) were found in the CG. Of these, 550 were located in the promoter, 547 in the exon region, and 1,718 in the intron region.3. All differentially methylated genes (DMGs) were analysed for enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The GO was enriched in pathways related to protein degradation such as proteasome complex, endopeptidase complex and extracellular region. The KEGG pathways were enriched in signalling pathways related to protein degradation and catabolism such as proteasome, nitrogen metabolism, adherens junction and alanine.4. Protein interactions analysis revealed that FOS, MYL9, and FRAS1 had a high degree of interactions, in which the DNA methylation level of the MYL9 promoter region was negatively correlated with mRNA expression level. Further studies showed that 5-azacytidine (5-AzaC) inhibited DNMT1 and DNMT3A gene expression and promoted MYL9 expression.5. This study systematically investigated overall DNA methylation patterns in the leg muscle of VVD and normal broilers. It screened common differential genes in conjunction with transcriptomic data to further identify genes associated with muscle growth and development. This study provides new insights to better understand the pathogenesis of VVD from an epigenetic perspective.
Collapse
Affiliation(s)
- C Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Y Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - L Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Z An
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - E Zhou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - X Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - H Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - W Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Z Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - G Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - X Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Y Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - R Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
2
|
Beckett LJ, Williams PM, Toh LS, Hessel V, Gerstweiler L, Fisk I, Toronjo-Urquiza L, Chauhan VM. Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism. NPJ Microgravity 2024; 10:79. [PMID: 39060303 PMCID: PMC11282318 DOI: 10.1038/s41526-024-00418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Spaceflight presents significant challenges to the physiological state of living organisms. This can be due to the microgravity environment experienced during long-term space missions, resulting in alterations in muscle structure and function, such as atrophy. However, a comprehensive understanding of the adaptive mechanisms of biological systems is required to devise potential solutions and therapeutic approaches for adapting to spaceflight conditions. This review examines the current understanding of the challenges posed by spaceflight on physiological changes, alterations in metabolism, dysregulation of pathways and the suitability and advantages of using the model organism Caenorhabditis elegans nematodes to study the effects of spaceflight. Research has shown that changes in the gene and protein composition of nematodes significantly occur across various larval stages and rearing environments, including both microgravity and Earth gravity settings, often mirroring changes observed in astronauts. Additionally, the review explores significant insights into the fundamental metabolic changes associated with muscle atrophy and growth, which could lead to the development of diagnostic biomarkers and innovative techniques to prevent and counteract muscle atrophy. These insights not only advance our understanding of microgravity-induced muscle atrophy but also lay the groundwork for the development of targeted interventions to mitigate its effects in the future.
Collapse
Affiliation(s)
- Laura J Beckett
- School of Pharmacy, University of Nottingham, Nottingham, UK
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | | | - Li Shean Toh
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Volker Hessel
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | - Lukas Gerstweiler
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | - Ian Fisk
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Luis Toronjo-Urquiza
- School of Chemical Engineering, North Terrace Campus, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
3
|
Nejad FM, Mohammadabadi M, Roudbari Z, Gorji AE, Sadkowski T. Network visualization of genes involved in skeletal muscle myogenesis in livestock animals. BMC Genomics 2024; 25:294. [PMID: 38504177 PMCID: PMC10953195 DOI: 10.1186/s12864-024-10196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Muscle growth post-birth relies on muscle fiber number and size. Myofibre number, metabolic and contractile capacities are established pre-birth during prenatal myogenesis. The aim of this study was to identify genes involved in skeletal muscle development in cattle, sheep, and pigs - livestock. RESULTS The cattle analysis showed significant differences in 5043 genes during the 135-280 dpc period. In sheep, 444 genes differed significantly during the 70-120 dpc period. Pigs had 905 significantly different genes for the 63-91 dpc period.The biological processes and KEGG pathway enrichment results in each species individually indicated that DEGs in cattle were significantly enriched in regulation of cell proliferation, cell division, focal adhesion, ECM-receptor interaction, and signaling pathways (PI3K-Akt, PPAR, MAPK, AMPK, Ras, Rap1); in sheep - positive regulation of fibroblast proliferation, negative regulation of endothelial cell proliferation, focal adhesion, ECM-receptor interaction, insulin resistance, and signaling pathways (PI3K-Akt, HIF-1, prolactin, Rap1, PPAR); in pigs - regulation of striated muscle tissue development, collagen fibril organization, positive regulation of insulin secretion, focal adhesion, ECM-receptor interaction, and signaling pathways (PPAR, FoxO, HIF-1, AMPK). Among the DEGs common for studied animal species, 45 common genes were identified. Based on these, a protein-protein interaction network was created and three significant modules critical for skeletal muscle myogenesis were found, with the most significant module A containing four recognized hub genes - EGFR, VEGFA, CDH1, and CAV1. Using the miRWALK and TF2DNA databases, miRNAs (bta-miR-2374 and bta-miR-744) and transcription factors (CEBPB, KLF15, RELA, ZNF143, ZBTB48, and REST) associated with hub genes were detected. Analysis of GO term and KEGG pathways showed that such processes are related to myogenesis and associated with module A: positive regulation of MAP kinase activity, vascular endothelial growth factor receptor, insulin-like growth factor binding, focal adhesion, and signaling pathways (PI3K-Akt, HIF-1, Rap1, Ras, MAPK). CONCLUSIONS The identified genes, common to the prenatal developmental period of skeletal muscle in livestock, are critical for later muscle development, including its growth by hypertrophy. They regulate valuable economic characteristics. Enhancing and breeding animals according to the recognized genes seems essential for breeders to achieve superior gains in high-quality muscle mass.
Collapse
Affiliation(s)
- Fatemeh Mohammadi Nejad
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammadreza Mohammadabadi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Ribeiro DM, Coelho D, Costa M, Carvalho DFP, Leclercq CC, Renaut J, Freire JPB, Almeida AM, Mestre Prates JA. Integrated transcriptomics and proteomics analysis reveals muscle metabolism effects of dietary Ulva lactuca and ulvan lyase supplementation in weaned piglets. Sci Rep 2024; 14:4589. [PMID: 38409238 DOI: 10.1038/s41598-024-55462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation may have contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects of cell wall degradation during digestion.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Diogo Coelho
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mónica Costa
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Céline C Leclercq
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - André Martinho Almeida
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José António Mestre Prates
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
5
|
Zhao X, Jia W, Wang J, Wang S, Zheng Q, Shan T. Identification of a Candidate Gene Regulating Intramuscular Fat Content in Pigs through the Integrative Analysis of Transcriptomics and Proteomics Data. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19154-19164. [PMID: 37987700 DOI: 10.1021/acs.jafc.3c05806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Pork is a widely consumed source of animal protein worldwide, and the intramuscular fat (IMF) content in pork plays a crucial role in determining its quality. In this study, we sought to identify candidate genes that regulate IMF deposition in pigs. We performed tandem mass tags (TMT)-based quantitative proteomics analysis using Longissimus dorsi (LD) muscle samples obtained from eight pigs with extremely high and low IMF content among a group of 28 Duroc pigs and identified 50 differentially abundant proteins (DAPs). Additionally, we compared the proteomics data with RNA-sequencing data obtained in our previous study and identified TUSC5 as a differentially expressed gene corresponding to the relevant DAP. To investigate the potential role of TUSC5 in adipogenesis, we suppressed TUSC5 expression in mouse 3T3-L1 preadipocytes using short hairpin RNA (shRNA) and observed a significant reduction in the differentiation of 3T3-L1 cells into adipocytes, as indicated by Oil Red O staining and triglyceride content. Moreover, we observed a reduction in the expression of genes associated with adipogenesis (PPARG, CEBPA, FABP4, and FASN) following TUSC5 suppression. Through an integrative analysis of transcriptomics and proteomics data, our study identified TUSC5 as a crucial candidate gene associated with the regulation of IMF content in pigs.
Collapse
Affiliation(s)
- Xueyan Zhao
- Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- DELISI GROUP Co. Ltd., Weifang, Shandong 262200, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Wanli Jia
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Shouwei Wang
- DELISI GROUP Co. Ltd., Weifang, Shandong 262200, China
| | - Qiankun Zheng
- DELISI GROUP Co. Ltd., Weifang, Shandong 262200, China
| | - Tizhong Shan
- Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
6
|
Cao C, Cai Y, Li Y, Li T, Zhang J, Hu Z, Zhang J. Characterization and comparative transcriptomic analysis of skeletal muscle in female Pekin duck and Hanzhong Ma duck during different growth stages using RNA-seq. Poult Sci 2023; 102:103122. [PMID: 37832186 PMCID: PMC10568565 DOI: 10.1016/j.psj.2023.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Duck is an economically important poultry, and there is currently a major focus on improving its meat quality through breeding. There are wide variations in the growth regulation mechanisms of different duck breeds, that fundamental research on skeletal muscle growth is essential for understanding the regulation of unknown genes. The study aimed to broaden the understanding the duck skeletal muscle development and thereby to improve the performance of domestic ducks. In this study, RNA-seq data from skeletal muscles (breast muscle and leg muscle) of Pekin duck and Hanzhong Ma duck sampled at d 17, 21, and 27 of embryo (E17d, E21d, and E27d), as well as at 6-mo-old following birth (M6), to investigate and compare the mRNA temporal expression profiles and associated pathways that regulate skeletal myogenesis of different duck breeds. There were 331 to 1,440 annotated differentially expressed genes (DEGs) in breast muscle and 380 to 1,790 annotated DEGs in leg muscle from different databases between 2 duck breeds. Gene ontology (GO) enrichment in skeletal muscles indicated that these DEGs were mainly involved in biosynthetic process, developmental process, regulation of protein metabolic process and regulation of gene expression. KEGG analysis in skeletal muscles showed that a total of 41 DEGs were mapped to 7 KEGG pathways, including ECM-receptor interaction, focal adhesion, carbon metabolism, regulation of actin cytoskeleton, calcium signaling pathway, biosynthesis of amino acids and PPAR signaling pathway. The differential expression of 8 selected DEGs was verified by qRT-PCR, and the results were consistent with RNA-seq data. The identified DEGs, such as SDC, SPP1, PAK1, MYL9, PGK1, NOS1, PHGDH, TNNT2, FN1, and AQP4, were specially highlighted, indicating their associations with muscle development in the Pekin duck and Hanzhong Ma duck. This study provides a basis for revealing the differences in skeletal muscle development between Pekin duck and Hanzhong Ma duck.
Collapse
Affiliation(s)
- Chang Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yingjie Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yuxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Tao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
7
|
Yang Y, Wang X, Wang S, Chen Q, Li M, Lu S. Identification of Potential Sex-Specific Biomarkers in Pigs with Low and High Intramuscular Fat Content Using Integrated Bioinformatics and Machine Learning. Genes (Basel) 2023; 14:1695. [PMID: 37761835 PMCID: PMC10531182 DOI: 10.3390/genes14091695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Intramuscular fat (IMF) content is a key determinant of pork quality. Controlling the genetic and physiological factors of IMF and the expression patterns of various genes is important for regulating the IMF content and improving meat quality in pig breeding. Growing evidence has suggested the role of genetic factors and breeds in IMF deposition; however, research on the sex factors of IMF deposition is still lacking. The present study aimed to identify potential sex-specific biomarkers strongly associated with IMF deposition in low- and high-IMF pig populations. The GSE144780 expression dataset of IMF deposition-related genes were obtained from the Gene Expression Omnibus. Initially, differentially expressed genes (DEGs) were detected in male and female low-IMF (162 DEGs, including 64 up- and 98 down-regulated genes) and high-IMF pigs (202 DEGs, including 147 up- and 55 down-regulated genes). Moreover, hub genes were screened via PPI network construction. Furthermore, hub genes were screened for potential sex-specific biomarkers using the least absolute shrinkage and selection operator machine learning algorithm, and sex-specific biomarkers in low-IMF (troponin I (TNNI1), myosin light chain 9(MYL9), and serpin family C member 1(SERPINC1)) and high-IMF pigs (CD4 molecule (CD4), CD2 molecule (CD2), and amine oxidase copper-containing 2(AOC2)) were identified, and then verified by quantitative real-time PCR (qRT-PCR) in semimembranosus muscles. Additionally, the gene set enrichment analysis and single-sample gene set enrichment analysis of hallmark gene sets were collectively performed on the identified biomarkers. Finally, the transcription factor-biomarker and lncRNA-miRNA-mRNA (biomarker) networks were predicted. The identified potential sex-specific biomarkers may provide new insights into the molecular mechanisms of IMF deposition and the beneficial foundation for improving meat quality in pig breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (X.W.); (S.W.); (Q.C.); (M.L.)
| |
Collapse
|
8
|
Cao X, Cui H, Ji X, Li B, Lu R, Zhang Y, Chen J. Determining the Potential Roles of Branched-Chain Amino Acids in the Regulation of Muscle Growth in Common Carp ( Cyprinus carpio) Based on Transcriptome and MicroRNA Sequencing. AQUACULTURE NUTRITION 2023; 2023:7965735. [PMID: 37303609 PMCID: PMC10257547 DOI: 10.1155/2023/7965735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Branched-chain amino acids (BCAAs) can be critically involved in skeletal muscle growth and body energy homeostasis. Skeletal muscle growth is a complex process; some muscle-specific microRNAs (miRNAs) are involved in the regulation of muscle thickening and muscle mass. Additionally, the regulatory network between miRNA and messenger RNA (mRNA) in the modulation of the role of BCAAs on skeletal muscle growth in fish has not been studied. In this study, common carp was starved for 14 days, followed by a 14-day gavage therapy with BCAAs, to investigate some of the miRNAs and genes that contribute to the regulation of normal growth and maintenance of skeletal muscle in response to short-term BCAA starvation stress. Subsequently, the transcriptome and small RNAome sequencing of carp skeletal muscle were performed. A total of 43,414 known and 1,112 novel genes were identified, in addition to 142 known and 654 novel miRNAs targeting 22,008 and 33,824 targets, respectively. Based on their expression profiles, 2,146 differentially expressed genes (DEGs) and 84 differentially expressed miRNA (DEMs) were evaluated. Kyoto Encyclopedia of Genes and Genome pathways, including the proteasome, phagosome, autophagy in animals, proteasome activator complex, and ubiquitin-dependent protein catabolic process, were enriched for these DEGs and DEMs. Our findings revealed the role of atg5, map1lc3c, ctsl, cdc53, psma6, psme2, myl9, and mylk in skeletal muscle growth, protein synthesis, and catabolic metabolism. Furthermore, miR-135c, miR-192, miR-194, and miR-203a may play key roles in maintaining the normal activities of the organism by regulating genes related to muscle growth, protein synthesis, and catabolism. This study on transcriptome and miRNA reveals the potential molecular mechanisms underlying the regulation of muscle protein deposition and provides new insights into genetic engineering techniques to improve common carp muscle development.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Ji
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Baohua Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Kalds P, Zhou S, Huang S, Gao Y, Wang X, Chen Y. When Less Is More: Targeting the Myostatin Gene in Livestock for Augmenting Meat Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4216-4227. [PMID: 36862946 DOI: 10.1021/acs.jafc.2c08583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How to increase meat production is one of the main questions in animal breeding. Selection for improved body weight has been made and, due to recent genomic advances, naturally occurring variants that are responsible for controlling economically relevant phenotypes have been revealed. The myostatin (MSTN) gene, a superstar gene in animal breeding, was discovered as a negative controller of muscle mass. In some livestock species, natural mutations in the MSTN gene could generate the agriculturally desirable double-muscling phenotype. However, some other livestock species or breeds lack these desirable variants. Genetic modification, particularly gene editing, offers an unprecedented opportunity to induce or mimic naturally occurring mutations in livestock genomes. To date, various MSTN-edited livestock species have been generated using different gene modification tools. These MSTN gene-edited models have higher growth rates and increased muscle mass, suggesting the high potential of utilizing MSTN gene editing in animal breeding. Additionally, post-editing investigations in most livestock species support the favorable influence of targeting the MSTN gene on meat quantity and quality. In this Review, we provide a collective discussion on targeting the MSTN gene in livestock to further encourage its utilization opportunities. It is expected that, shortly, MSTN gene-edited livestock will be commercialized, and MSTN-edited meat will be on the tables of ordinary customers.
Collapse
Affiliation(s)
- Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yawei Gao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Zhang T, Wang T, Niu Q, Zheng X, Li H, Gao X, Chen Y, Gao H, Zhang L, Liu GE, Li J, Xu L. Comparative transcriptomic analysis reveals region-specific expression patterns in different beef cuts. BMC Genomics 2022; 23:387. [PMID: 35596128 PMCID: PMC9123670 DOI: 10.1186/s12864-022-08527-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Beef cuts in different regions of the carcass have different meat quality due to their distinct physiological function. The objective of this study was to characterize the region-specific expression differences using comparative transcriptomics analysis among five representative beef cuts (tenderloin, longissimus lumborum, rump, neck, chuck). RESULTS We obtained 15,701 expressed genes in 30 muscle samples across five regions from carcass meat. We identified a total of 80 region-specific genes (RSGs), ranging from three (identified in the rump cut) to thirty (identified in the longissimus lumborum cut), and detected 25 transcription factors (TFs) for RSGs. Using a co-expression network analysis, we detected seven region-specific modules, including three positively correlated modules and four negatively correlated modules. We finally obtained 91 candidate genes related to meat quality, and the functional enrichment analyses showed that these genes were mainly involved in muscle fiber structure (e.g., TNNI1, TNNT1), fatty acids (e.g., SCD, LPL), amino acids (ALDH2, IVD, ACADS), ion channel binding (PHPT1, SNTA1, SUMO1, CNBP), protein processing (e.g., CDC37, GAPDH, NRBP1), as well as energy production and conversion (e.g., ATP8, COX8B, NDUFB6). Moreover, four candidate genes (ALDH2, CANX, IVD, PHPT1) were validated using RT-qPCR analyses which further supported our RNA-seq results. CONCLUSIONS Our results provide valuable insights into understanding the transcriptome regulation of meat quality in different beef cuts, and these findings may further help to improve the selection for health-beneficial meat in beef cattle.
Collapse
Affiliation(s)
- Tianliu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Tianzhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Qunhao Niu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Xu Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Haipeng Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Services, Beltsville, MD, 20705, USA
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China.
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China.
| |
Collapse
|
11
|
Li X, Bi H, Xie S, Cui W. MiR-208b Regulates the Conversion of Skeletal Muscle Fiber Types by Inhibiting Mettl8 Expression. Front Genet 2022; 13:820464. [PMID: 35281804 PMCID: PMC8905228 DOI: 10.3389/fgene.2022.820464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle, the main source of animal meat products, contains muscle fiber as a key unit. It is well known that transformation takes place between different types of muscle fibers, however, the conversion mechanism is not clear. In a previous study, our lab has demonstrated that there is a decrease in type I muscle fibers and an increase in type IIB muscle fibers in skeletal muscle of myostatin gene-edited Meishan pigs. Very interestingly, we observed the down regulation of miR-208b expression and an increase in expression the predicted target gene Mettl8 (Methyltransferase like 8) in skeletal muscle of MSTN gene-edited Meishan pigs. These results reveal that there is a potential connection between the conversion of skeletal muscle fiber types and miR-208b and Mettl8 expression. In this study, we first explored the expression patterns of miR-208b and Mettl8 in skeletal muscle in Meishan pigs; and then C2C12 cells were used to simulate the development and maturation of muscle fibers. Our results indicated that Myh4 expression level decreased and Myh7 expression level increased following overexpression of miR-208b in C2C12 cells. We therefore speculate that miR-208b can promote the conversion of fast-twitch fibers to slow-twitch fibers. The targeting relationship between Mettl8 and miR-208b was confirmed by results obtained using dual luciferase assay, RT-qPCR, and WB analysis. Following the transfection of Mettl8 siRNA into C2C12 cells, we observed that Mettl8 expression decreased significantly while Myh7 expression increased and Myh4 expression decreased, indicating that Mettl8 promotes the conversion of slow muscle fibers to fast muscle fibers. Additionally, changes in skeletal muscle fiber types are observed in those mice where miR-208b and Mettl8 genes are knocked out. The miR-208b knockout inhibits the formation of slow muscle fibers, and the Mettl8 knockout inhibits the formation of fast muscle fibers. In conclusion, our research results show that miR-208b regulates the conversion of different muscle fiber types by inhibiting Mettl8 expression.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hanfang Bi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Yang X, Zhang Z, Zhang W, Qiao H, Wen P, Zhang Y. Proteomic analysis, purification and characterization of a new milk-clotting protease from Tenebrio molitor larvae. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Hao W, Yang Z, Sun Y, Li J, Zhang D, Liu D, Yang X. Characterization of Alternative Splicing Events in Porcine Skeletal Muscles with Different Intramuscular Fat Contents. Biomolecules 2022; 12:biom12020154. [PMID: 35204660 PMCID: PMC8961525 DOI: 10.3390/biom12020154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Meat quality is one of the most important economic traits in pig breeding and production. Intramuscular fat (IMF) is a major factor that improves meat quality. To better understand the alternative splicing (AS) events underlying meat quality, long-read isoform sequencing (Iso-seq) was used to identify differential (D)AS events between the longissimus thoracis (LT) and semitendinosus (ST), which differ in IMF content, together with short-read RNA-seq. Through Iso-seq analysis, we identified a total of 56,789 novel transcripts covering protein-coding genes, lncRNA, and fusion transcripts that were not previously annotated in pigs. We also identified 456,965 AS events, among which 3930 were DAS events, corresponding to 2364 unique genes. Through integrative analysis of Iso-seq and RNA-seq, we identified 1174 differentially expressed genes (DEGs), among which 122 were DAS genes, i.e., DE-DAS genes. There are 12 overlapped pathways between the top 20 DEGs and DE-DAS genes, as revealed by KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, indicating that DE-DAS genes play important roles in the differential phenotype of LT and ST. Further analysis showed that upregulated DE-DAS genes are more important than downregulated ones in IMF deposition. Fatty acid degradation and the PPAR (peroxisome proliferator-activated receptor) signaling pathway were found to be the most important pathways regulating the differential fat deposition of the two muscles. The results update the existing porcine genome annotations and provide data for the in-depth exploration of the mechanisms underlying meat quality and IMF deposition.
Collapse
Affiliation(s)
- Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Zewei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Jiaxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
- Correspondence: (D.L.); (X.Y.); Tel.: +86-451-8667-7458 (D.L.); +86-451-5519-1738 (X.Y.)
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
- Correspondence: (D.L.); (X.Y.); Tel.: +86-451-8667-7458 (D.L.); +86-451-5519-1738 (X.Y.)
| |
Collapse
|
15
|
Xu K, Zhou H, Han C, Xu Z, Ding J, Zhu J, Qin C, Luo H, Chen K, Jiang S, Liu J, Zhu W, Meng H. Transcriptomic Analysis of MSTN Knockout in the Early Differentiation of Chicken Fetal Myoblasts. Genes (Basel) 2021; 13:genes13010058. [PMID: 35052399 PMCID: PMC8774668 DOI: 10.3390/genes13010058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, Myostatin (MSTN) is a known negative regulator of muscle growth and development, but its role in birds is poorly understood. To investigate the molecular mechanism of MSTN on muscle growth and development in chickens, we knocked out MSTN in chicken fetal myoblasts (CFMs) and sequenced the mRNA transcriptomes. The amplicon sequencing results show that the editing efficiency of the cells was 76%. The transcriptomic results showed that 296 differentially expressed genes were generated after down-regulation of MSTN, including angiotensin I converting enzyme (ACE), extracellular fatty acid-binding protein (EXFABP) and troponin T1, slow skeletal type (TNNT1). These genes are closely associated with myoblast differentiation, muscle growth and energy metabolism. Subsequent enrichment analysis showed that DEGs of CFMs were related to MAPK, Pl3K/Akt, and STAT3 signaling pathways. The MAPK and Pl3K/Akt signaling pathways are two of the three known signaling pathways involved in the biological effects of MSTN in mammals, and the STAT3 pathway is also significantly enriched in MSTN knock out chicken leg muscles. The results of this study will help to understand the possible molecular mechanism of MSTN regulating the early differentiation of CFMs and lay a foundation for further research on the molecular mechanism of MSTN involvement in muscle growth and development.
Collapse
Affiliation(s)
- Ke Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Hao Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Chengxiao Han
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430072, China;
| | - Jinmei Ding
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Jianshen Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Chao Qin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Huaixi Luo
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Kangchun Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Shengyao Jiang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Jiajia Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Wenqi Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - He Meng
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
- Correspondence:
| |
Collapse
|
16
|
Goswami MV, Tawalbeh SM, Canessa EH, Hathout Y. Temporal Proteomic Profiling During Differentiation of Normal and Dystrophin-Deficient Human Muscle Cells. J Neuromuscul Dis 2021; 8:S205-S222. [PMID: 34602497 DOI: 10.3233/jnd-210713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Myogenesis is a dynamic process involving temporal changes in the expression of many genes. Lack of dystrophin protein such as in Duchenne muscular dystrophy might alter the natural course of gene expression dynamics during myogenesis. OBJECTIVE To gain insight into the dynamic temporal changes in protein expression during differentiation of normal and dystrophin deficient myoblasts to myotubes. METHOD A super SILAC spike-in strategy in combination and LC-MS/MS was used for temporal proteome profiling of normal and dystrophin deficient myoblasts during differentiation. The acquired data was analyzed using Proteome Discoverer 2.2. and data clustering using R to define significant temporal changes in protein expression. RESULTS sFour major temporal protein clusters that showed sequential dynamic expression profiles during myogenesis of normal myoblasts were identified. Clusters 1 and 2, consisting mainly of proteins involved mRNA splicing and processing expression, were elevated at days 0 and 0.5 of differentiation then gradually decreased by day 7 of differentiation, then remained lower thereafter. Cluster 3 consisted of proteins involved contractile muscle and actomyosin organization. They increased in their expression reaching maximum at day 7 of differentiation then stabilized thereafter. Cluster 4 consisting of proteins involved in skeletal muscle development glucogenesis and extracellular remodeling had a lower expression during myoblast stage then gradually increased in their expression to reach a maximum at days 11-15 of differentiation. Lack of dystrophin expression in DMD muscle myoblast caused major alteration in temporal expression of proteins involved in cell adhesion, cytoskeleton, and organelle organization as well as the ubiquitination machinery. CONCLUSION Time series proteome profiling using super SILAC strategy is a powerful method to assess temporal changes in protein expression during myogenesis and to define the downstream consequences of lack of dystrophin on these temporal protein expressions. Key alterations were identified in dystrophin deficient myoblast differentiation compared to normal myoblasts. These alterations could be an attractive therapeutic target.
Collapse
Affiliation(s)
- Mansi V Goswami
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA
| | - Shefa M Tawalbeh
- Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineerig Technology, Yarmouk University, Irbid, Jordan
| | - Emily H Canessa
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA.,Department of Biomedical Engineering, Binghamton University, SUNY. Binghamton, NY, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY, USA
| |
Collapse
|
17
|
Zhou R, Li ST, Yao WY, Xie CD, Chen Z, Zeng ZJ, Wang D, Xu K, Shen ZJ, Mu Y, Bao W, Jiang W, Li R, Liang Q, Li K. The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication. Mol Ecol Resour 2021; 21:2077-2092. [PMID: 33825319 DOI: 10.1111/1755-0998.13396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 01/27/2023]
Abstract
There are wide genomic and phenotypic differences between Asian and European pig breeds, yet the current reference genome is the European Duroc pig genome. A high-quality pig genome is lacking for genetic analysis of agricultural traits in Asian pigs. Here, using a hybrid approach, a high-quality reference genome (MSCAAS v1) for the Asian Meishan breed is assembled with a contig N50 size of 48.05 Mb. MSCAAS v1 outperforms the Duroc genome as a reference genome for Asian breeds. Genomic comparison reveals 49,103 structural variations (SVs) between Meishan and Duroc, 4.02% of which are Asian-specific SVs (AP-SVs). Notably, a 30-Mb hotspot for AP-SVs on chromosome X enriched for genes associated with Asian-pig-specific phenotypes is present in Asian domestic pig breeds, but absent in Asian wild boars, suggesting that Asian domestic breeds share a common ancestor. Interbreed transcriptomics reveals transcriptional suppression roles of AP-SVs in multiple tissues. Finally, transcriptional regulation in the intron of IGF2R is reported, as genomic SV (274-bp deletion) in Tibetan pig limits its growth compared to domestic pig breeds. In summary, this study provides insights regarding the genetic changes underlying pig domestication and presents a benchmark-setting resource for the utilization of agricultural valuable loci in Asian pigs.
Collapse
Affiliation(s)
- Rong Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shang-Tong Li
- National Institute of Biological Sciences (NIBS, Beijing, China
| | - Wen-Ye Yao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Di Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Zhi-Jie Zeng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Di Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Kui Xu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhao-Ji Shen
- Guangdong Provincial key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China.,Fulcrum gene science and technology (Beijing) Ltd, Beijing, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Yang Z, He T, Chen Q. The Roles of CircRNAs in Regulating Muscle Development of Livestock Animals. Front Cell Dev Biol 2021; 9:619329. [PMID: 33748107 PMCID: PMC7973088 DOI: 10.3389/fcell.2021.619329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
The muscle growth and development of livestock animals is a complex, multistage process, which is regulated by many factors, especially the genes related to muscle development. In recent years, it has been reported frequently that circular RNAs (circRNAs) are involved widely in cell proliferation, cell differentiation, and body development (including muscle development). However, the research on circRNAs in muscle growth and development of livestock animals is still in its infancy. In this paper, we briefly introduce the discovery, classification, biogenesis, biological function, and degradation of circRNAs and focus on the molecular mechanism and mode of action of circRNAs as competitive endogenous RNAs in the muscle development of livestock and poultry. In addition, we also discuss the regulatory mechanism of circRNAs on muscle development in livestock in terms of transcription, translation, and mRNAs. The purpose of this article is to discuss the multiple regulatory roles of circRNAs in the process of muscle development in livestock, to provide new ideas for the development of a new co-expression regulation network, and to lay a foundation for enriching livestock breeding and improving livestock economic traits.
Collapse
Affiliation(s)
- Zhenguo Yang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tianle He
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingyun Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Yang N, Wang H, Zhang W, Sun H, Li M, Xu Y, Huang L, Geng D. Integrated analysis of transcriptome and proteome to explore the genes related to steroid-induced femoral head necrosis. Exp Cell Res 2021; 401:112513. [PMID: 33567325 DOI: 10.1016/j.yexcr.2021.112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Femoral head necrosis (FHN) is a common disease of hip. However, the pathogenesis of FHN is not well understood. This study attempted to explore the potentially important genes and proteins involved in FHN. METHODS We integrated the transcriptomic and proteomic methods to quantitatively screen the differentially expressed genes (DEGs) and proteins (DEPs) between Control and FHN groups. Gene ontology (GO) terms and KEGG pathway enrichment analysis were used to assess the roles of DEGs and DEPs. qRT-PCR and western blot were performed to verify the key genes/proteins in FHN. CCK-8 assay was performed to measure cell viability. The protein expression of Bax and Bcl-2 were used to evaluate cell apoptosis. RESULTS Transcriptome and proteome studies indicated 758 DEGs and 1097 DEPs between Control and FHN groups, respectively. Cell division, extracellular exosome, and serine-type endopeptidase activity were the most common terms in biological process (BP), cellular component (CC), and molecular function (MF) enrichment, respectively. DEPs were mainly enriched in cellular process, cell, and binding for BP, CC, and MF categories, respectively. DEGs were mainly involved in PI3K-Akt pathway and DEPs were mainly focused in glycolysis/gluconeogenesis pathway. Notably, 14 down-regulated and 22 up-regulated genes/proteins were detected at both the transcript and protein level. LRG1, SERPINE2, STMN1, COL14A1, SLC37A2, and MMP2 were determined as the key genes/proteins in FHN. SERPINE2/STMN1 overexpression increased viability and decreased apoptosis of dexamethasone-treated MC3T3-E1 cells. CONCLUSIONS Our study investigated some pivotal regulatory genes/proteins in the pathogenesis of FHN, providing novel insight into the genes/proteins involved in FHN.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Hongzhi Wang
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Weicheng Zhang
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Houyi Sun
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Meng Li
- Department of Orthopaedic, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei City, Anhui Province, 230001, China
| | - Yaozeng Xu
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Lixin Huang
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China.
| | - Dechun Geng
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| |
Collapse
|
20
|
Akhremko A, Fedulova L. Comparative study of weaning pigs' muscle proteins using two-dimensional electrophoresis. POTRAVINARSTVO 2021. [DOI: 10.5219/1449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteostasis system of animals, including various types of protein modification during the growth stage, leads to an almost incomprehensible number of possible forms of protein, and each can regulate numerous functions. In the presented work, the composition of muscle tissue protein from different portions of piglets was studied to understand the main muscle protein formation. Comparative analysis of weaned piglets' main muscle protein from l. dorsi, biceps femoris, and brachiocephalicus were analyzed using two-dimensional electrophoresis. Changes in the staining intensity of protein fractions inherent in different muscles were revealed. As part of this work, candidate groups of pig muscle proteins have been selected. Eleven protein spots were revealed for the longest muscle of the back, and seven for the biceps; the muscles of the neck are characterized by indicators of low protein fraction volume. Among the proteins found, myosin light chains, phosphoglycerate mutase, troponins, and adenylate kinase is most likely present. The obtained results of protein identification in muscle tissues, obtained during the intensive growth period, will allow a more detailed understanding of protein regulation, function, and interactions in complex biological systems, which will subsequently be significantly important for biomonitoring health and predicting farm animals productivity.
Collapse
|
21
|
Age and Sex-Dependent ADNP Regulation of Muscle Gene Expression Is Correlated with Motor Behavior: Possible Feedback Mechanism with PACAP. Int J Mol Sci 2020; 21:ijms21186715. [PMID: 32937737 PMCID: PMC7555576 DOI: 10.3390/ijms21186715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
The activity-dependent neuroprotective protein (ADNP), a double-edged sword, sex-dependently regulates multiple genes and was previously associated with the control of early muscle development and aging. Here we aimed to decipher the involvement of ADNP in versatile muscle gene expression patterns in correlation with motor function throughout life. Using quantitative RT-PCR we showed that Adnp+/− heterozygous deficiency in mice resulted in aberrant gastrocnemius (GC) muscle, tongue and bladder gene expression, which was corrected by the Adnp snippet, drug candidate, NAP (CP201). A significant sexual dichotomy was discovered, coupled to muscle and age-specific gene regulation. As such, Adnp was shown to regulate myosin light chain (Myl) in the gastrocnemius (GC) muscle, the language acquisition gene forkhead box protein P2 (Foxp2) in the tongue and the pituitary-adenylate cyclase activating polypeptide (PACAP) receptor PAC1 mRNA (Adcyap1r1) in the bladder, with PACAP linked to bladder function. A tight age regulation was observed, coupled to an extensive correlation to muscle function (gait analysis), placing ADNP as a muscle-regulating gene/protein.
Collapse
|
22
|
Weigand M, Degroote RL, Amann B, Renner S, Wolf E, Hauck SM, Deeg CA. Proteome profile of neutrophils from a transgenic diabetic pig model shows distinct changes. J Proteomics 2020; 224:103843. [PMID: 32470542 DOI: 10.1016/j.jprot.2020.103843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
INSC94Y transgenic pigs develop a stable diabetic phenotype early after birth and therefore allow studying the influence of hyperglycemia on primary immune cells in an early stage of diabetes mellitus in vivo. Since immune response is altered in diabetes mellitus, with deviant neutrophil function discussed as one of the possible causes in humans and mouse models, we investigated these immune cells in INSC94Y transgenic pigs and wild type controls at protein level. A total of 2371 proteins were quantified by label-free LC-MS/MS. Subsequent differential proteome analysis of transgenic animals and controls revealed clear differences in protein abundances, indicating a deviant behavior of granulocytes in the diabetic state. Interestingly, abundance of myosin regulatory light chain 9 (MLC-2C) was increased 5-fold in cells of diabetic pigs. MLC-2C directly affects cell contractility by regulating myosin ATPase activity, can act as transcription factor and was also associated with inflammation. It might contribute to impaired neutrophil cell adhesion, migration and phagocytosis. Our study provides novel insights into proteome changes in neutrophils from a large animal model for permanent neonatal diabetes mellitus and points to dysregulation of neutrophil function even in an early stage of this disease. Data are available via ProteomeXchange with identifier PXD017274. SIGNIFICANCE: Our studies provide novel basic information about the neutrophil proteome of pigs and contribute to a better understanding of molecular mechanisms involved in altered immune cell function in an early stage diabetes. We demonstrate proteins that are dysregulated in neutrophils from a transgenic diabetic pig and have not been described in this context so far. The data presented here are highly relevant for veterinary medicine and have translational quality for diabetes in humans.
Collapse
Affiliation(s)
- Maria Weigand
- Department of Veterinary Sciences, LMU, Munich, Germany
| | | | - Barbara Amann
- Department of Veterinary Sciences, LMU, Munich, Germany
| | - Simone Renner
- Gene Center and Department of Veterinary Sciences, LMU, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Germany
| | | |
Collapse
|