1
|
Mayattu K, Ghormade V. Controlled delivery of nikkomycin by PEG coated PLGA nanoparticles inhibits chitin synthase to prevent growth of Aspergillus flavus and Aspergillus fumigatus. Z NATURFORSCH C 2024; 79:155-162. [PMID: 38842117 DOI: 10.1515/znc-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Aspergillosis is one of the most common fungal infections that can threaten individuals with immune compromised condition. Due to the increasing resistance of pathogens to the existing antifungal drugs, it is difficult to tackle such disease conditions. Whereas, nikkomycin is an emerging safe and effective antifungal drug which causes fungal cell wall disruption by inhibiting chitin synthase. Hence, the study aims at the development of nikkomycin loaded PEG coated PLGA nanoparticles for its increased antifungal efficiency and inhibiting Aspergillus infections. The P-PLGA-Nik NPs were synthesized by w/o/w double emulsification method which resulted in a particle size of 208.3 ± 15 nm with a drug loading of 52.97 %. The NPs showed first order diffusion-controlled drug release which was sustained for 24 h. These nanoparticle's antifungal efficacy was tested using the CLSI - M61 guidelines and the MIC50 defined against Aspergillus flavus and Aspergillus fumigatus was found to be >32 μg/ml which was similar to the nikkomycin MIC. The hyphal tip bursting showed the fungal cell wall disruption. The non-cytotoxic and non-haemolytic nature highlights the drug safety profile.
Collapse
Affiliation(s)
- Kamal Mayattu
- Nanobioscience Group, 72467 Agharkar Research Institute , GG Agarkar Road, Pune 411004, Maharashtra, India
| | - Vandana Ghormade
- Nanobioscience Group, 72467 Agharkar Research Institute , GG Agarkar Road, Pune 411004, Maharashtra, India
| |
Collapse
|
2
|
Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, Shankar J. Accelerating the understanding of Aspergillus terreus: Epidemiology, physiology, immunology and advances. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100220. [PMID: 38303967 PMCID: PMC10831165 DOI: 10.1016/j.crmicr.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Ananya Sharma
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| |
Collapse
|
3
|
Zhang B, Yan G, Li F, Tang Y, Xu G, Zhang Y, Ze K. Qingxiong Ointment and its Active Ingredient, Shikonin Treat Psoriasis through HIF-1 Signaling Pathway. Curr Pharm Des 2024; 30:1927-1938. [PMID: 38835124 DOI: 10.2174/0113816128287142240529120346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Psoriasis is a common chronic inflammatory skin disorder. Qingxiong ointment (QX) is a natural medicinal combination frequently employed in clinical treatment of psoriasis. However, the active ingredients of QX and its precise mechanisms of improving psoriasis remain unclear. This study elucidated the effects of QX on an Imiquimod (IMQ)-induced mouse model of psoriasis while also exploring the regulation of the active ingredient of QX, shikonin, on the HIF-1 signaling pathway in HaCaT cells. METHODS A mouse model of psoriasis was established through topical application of IMQ, and the local therapeutic effect of QX was evaluated using dorsal skin tissue with mouse psoriatic lesion and Psoriasis Area Severity Index (PASI) scores, hematoxylin-eosin (HE) staining, and immunohistochemical staining. Elisa and qPCR were employed to identify changes in the expression of inflammation-related factors in the mouse dorsal skin. Immunofluorescence was used to assess changes in the expression of T cell subsets before and after treatment with various doses of QX. HPLC was used to analyze the content of shikonin, and network pharmacology was employed to analyze the main targets of shikonin. Immunofluorescence was used to identify the effects of shikonin on the HIF-1 signaling pathway in IL6-induced psoriasis HaCaT cells. Finally, qPCR was used to identify the differential expression of the HIF-1 signaling pathway in skin tissues. RESULTS QX significantly reduces PASI scores on the backs of IMQ-induced psoriasis mice. HE staining reveals alleviated epidermal thickness in the QX group. Immunohistochemical analysis shows a significant reduction in ICAM, KI67, and IL17 expression levels in the QX group. Immunofluorescence results indicate that QX can notably decrease the proportions of CD4+ T cells, γδ T cells, and CD8+ T cells while increasing the proportion of Treg cells. Network pharmacology analysis demonstrates that the main targets of shikonin are concentrated in the HIF-1 signaling pathway. Molecular docking results show favorable binding affinity between shikonin and key genes of the HIF-1 signaling pathway. Immunofluorescence results reveal that shikonin significantly reduces p-STAT3, SLC2A1, HIF1α, and NOS2 expression levels. qPCR results show significant downregulation of the HIF-1 signaling pathway at cellular and tissue levels. CONCLUSION Our study revealed that QX can significantly reduce the dorsal inflammatory response in the IMQ-induced psoriasis mouse model. Furthermore, we discovered that its main component, shikonin, exerts its therapeutic effect by diminishing the HIF-1 signaling pathway in HaCaT cells.
Collapse
Affiliation(s)
- Bin Zhang
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ge Yan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Fei Li
- Bozhou City Food and Drug Inspection Center, Bozhou 236800, China
| | - Ye Tang
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Guangyao Xu
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yanan Zhang
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Kan Ze
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
4
|
Malik S, Brudzyńska P, Khan MR, Sytar O, Makhzoum A, Sionkowska A. Natural Plant-Derived Compounds in Food and Cosmetics: A Paradigm of Shikonin and Its Derivatives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4377. [PMID: 37374560 DOI: 10.3390/ma16124377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Shikonin and its derivatives are the natural naphthoquinone compounds produced in the roots of the Boraginaceae family. These red pigments have been used for a long time in coloring silk, as food colorants, and in the Chinese traditional system of medicines The resurgence of public interest in natural and plant-based products has led to this category of compounds being in high demand due to their wide range of biological activities including antioxidant, antitumor, antifungal, anti-inflammatory ones. Different researchers worldwide have reported various applications of shikonin derivatives in the area of pharmacology. Nevertheless, the use of these compounds in the food and cosmetics fields needs to be explored more in order to make them available for commercial utilization in various food industries as a packaging material and to enhance their shelf life without any side effects. Similarly, the antioxidant properties and skin whitening effects of these bioactive molecules may be used successfully in various cosmetic formulations. The present review delves into the updated knowledge on the various properties of shikonin derivatives in relation to food and cosmetics. The pharmacological effects of these bioactive compounds are also highlighted. Based on various studies, it can be concluded that these natural bioactive molecules have potential to be used in different sectors, including functional food, food additives, skin, health care, and to cure various diseases. Further research is required for the sustainable production of these compounds with minimum disturbances to the environment and in order to make them available in the market at an economic price. Simultaneous studies utilizing recent techniques in computational biology, bioinformatics, molecular docking, and artificial intelligence in laboratory and clinical trials would further help in making these potential candidates promising alternative natural bioactive therapeutics with multiple uses.
Collapse
Affiliation(s)
- Sonia Malik
- Laboratory of Woody Plants and Crops Biology (LBLGC), University of Orleans, 45067 Orléans, France
| | - Patrycja Brudzyńska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| | - Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Oksana Sytar
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Sciences and Technology, Palapye 10071, Botswana
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Ngashangva N, Mukherjee PK, Sharma C, Kalita MC, Sarangthem I. Integrated genomics and proteomics analysis of Paenibacillus peoriae IBSD35 and insights into its antimicrobial characteristics. Sci Rep 2022; 12:18861. [PMID: 36344671 PMCID: PMC9640621 DOI: 10.1038/s41598-022-23613-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance has been developing fast and incurring a loss of human life, and there is a need for new antimicrobial agents. Naturally occurring antimicrobial peptides offer the characteristics to counter AMR because the resistance development is low or no resistance. Antimicrobial peptides from Paenibacillus peoriae IBSD35 cell-free supernatant were salted out and purified using chromatography and characterized with liquid chromatography-tandem-mass spectrometry. The extract has shown a high and broad spectrum of antimicrobial activity. Combining the strain IBSD35 genome sequence with its proteomic data enabled the prediction of biosynthetic gene clusters by connecting the peptide from LC-MS/MS data to the gene that encode. Antimicrobial peptide databases offered a platform for the effective search, prediction, and design of AMPs and expanded the studies on their isolation, structure elucidation, biological evaluation, and pathway engineering. The genome-based taxonomy and comparisons have shown that P. peoriae IBSD35 is closely related to Paenibacillus peoriae FSL J3-0120. P. peoriae IBSD35 harbored endophytic trait genes and nonribosomal peptide synthases biosynthetic gene clusters. The comparative genomics revealed evolutionary insights and facilitated the discovery of novel SMs using proteomics from the extract of P. peoriae IBSD35. It will increase the potential to find novel bio-molecules to counter AMR.
Collapse
Affiliation(s)
- Ng Ngashangva
- grid.464584.f0000 0004 0640 0101A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Takyelpat, Imphal, Manipur 795001 India
| | - Pulok K. Mukherjee
- grid.464584.f0000 0004 0640 0101A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Takyelpat, Imphal, Manipur 795001 India
| | - Chandradev Sharma
- grid.464584.f0000 0004 0640 0101A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Takyelpat, Imphal, Manipur 795001 India
| | - Mohan C. Kalita
- grid.411779.d0000 0001 2109 4622Department of Biotechnology, Gauhati University, Jalukbari, Guwahati, Assam 781014 India
| | - Indira Sarangthem
- grid.464584.f0000 0004 0640 0101A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Takyelpat, Imphal, Manipur 795001 India
| |
Collapse
|
6
|
Wang W, Ma M, Li L, Huang Y, Zhao G, Zhou Y, Yang Y, Yang Y, Wang B, Ye L. MTA1-TJP1 interaction and its involvement in non-small cell lung cancer metastasis. Transl Oncol 2022; 25:101500. [PMID: 35944414 PMCID: PMC9365954 DOI: 10.1016/j.tranon.2022.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
MTA1 was highly expressed in NSCLC tissues and was associated with tumor progression. MTA1 promoted NSCLC cell invasion and migration in vitro and in vivo. TJP1 was found to be an interacting protein of MTA1 involved in cell adhesion. MTA1 promoted NSCLC invasion and metastasis by inhibiting TJP1 protein expression and attenuating intercellular tight junctions. Targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.
Distant metastasis is the main cause of death in non-small cell lung cancer (NSCLC) patients. The mechanism of metastasis-associated protein 1(MTA1) in NSCLC has not been fully elucidated. This study aimed to reveal the mechanism of MTA1 in the invasion and metastasis of NSCLC. Bioinformatics analysis and our previous results showed that MTA1 was highly expressed in NSCLC tissues and correlated with tumor progression. Knockout of MTA1 by CRISPR/Cas9 significantly inhibited the migration and invasion of H1299 cells, but enhanced cell adhesion. Stable overexpression of MTA1 by lentivirus transfection had opposite effects on migration, invasion and adhesion of A549 cells. The results of in vivo experiments in nude mouse lung metastases model confirmed the promotion of MTA1 on invasion and migration. Tight junction protein 1 (TJP1) was identified by immunoprecipitation and mass spectrometry as an interacting protein of MTA1 involved in cell adhesion. MTA1 inhibited the expression level of TJP1 protein and weakened the tight junctions between cells. More importantly, the rescue assays confirmed that the regulation of MTA1 on cell adhesion, migration and invasion was partially attenuated by TJP1. In Conclusion, MTA1 inhibits the expression level of TJP1 protein co-localized in the cytoplasm and membrane of NSCLC cells, weakens the tight junctions between cells, and changes the adhesion, migration and invasion capabilities of cells, which may be the mechanism of MTA1 promoting the invasion and metastasis of NSCLC. Thus, targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China; Department of Thoracic Surgery, Taihe Hospital (Hubei University of Medicine), Shiyan, China
| | - Mingsheng Ma
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Li Li
- Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Yongchun Zhou
- Molecular Diagnosis Center, Yunnan Cancer Hospital, Kunming, China
| | - Yantao Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Yichen Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Biying Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Lianhua Ye
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
8
|
Li Q, Zhao Y, Zuo X, Guo F, Li Y, Xie Y. Paeonol inhibits Aspergillus flavus via disrupting ergosterol biosynthesis, redox metabolism, and aflatoxin biosynthesis on rice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Shankar J. Insight into the metabolic changes during germination of Aspergillus niger conidia using nLC-qTOF. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Buitimea-Cantúa GV, Leija Gutiérrez HM, Buitimea-Cantúa NE, Del Refugio Rocha-Pizaña M, García-Triana A, Hernández-Morales A, Magaña-Barajas E, Molina-Torres J. The aflatoxin inhibitors capsaicin and piperine from Capsicum chinense and Piper nigrum fruits modulate the antioxidant system in Aspergillus parasiticus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:358-368. [PMID: 35392762 DOI: 10.1080/03601234.2022.2060029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several aflatoxin inhibitors can modulate the antioxidant system in fungi. In this work, the effect of the ethanolic extract of Capsicum chinense and Piper nigrum fruits, capsaicin, and piperine on the expression of the aflE, aflG, aflH, aflI, aflK, aflL, aflO, aflP, and aflQ genes involved in the aflatoxin biosynthetic pathway in Aspergillus parasiticus were studied by qRT-PCR analysis. As well as, the effect on the expression of fungal antioxidant genes (sod1, catA, and cat2) and enzymatic activity of catalase (CAT) and superoxide dismutase (SOD). Results reveal that the highest (p < 0.05) radial growth inhibition (68 and 86%) and aflatoxins production inhibition (73 and 80%) was observed with capsaicin and piperine respectively, at 300 µg/mL, instead of the ethanolic extract at the same concentration. The qRT-PCR analysis showed that compounds and extracts at 300 µg/mL induced a down-regulation of aflatoxin genes and an up-regulation on the fungal antioxidant genes. CAT activity increased by 23.15, 36.65, 51.40, and 65.50%, in the presence of C. chinense and P. nigrum extract, capsaicin, and piperine exposure, respectively. While SOD activity was not significantly impacted (p > 0.05). In conclusion, the capsaicin and piperine, two antifungal and anti-aflatoxigenic compounds produce an up-regulation of antioxidant defense genes accompanied by an enhancement of catalase enzymatic activity in A. parasiticus.
Collapse
Affiliation(s)
- Génesis V Buitimea-Cantúa
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, NL, México
- CINVESTAV, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, México
| | - Héctor Manuel Leija Gutiérrez
- Universidad Autónoma de Nuevo León, Centro de Investigación Facultad de Ciencias Físico Matemáticas, San Nicolás de los Garza, Nuevo León, México
| | - Nydia E Buitimea-Cantúa
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, NL, México
| | | | | | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles, San Luis Potosí, México
| | - Elisa Magaña-Barajas
- Programa de Ingeniería en Tecnologías de Alimentos, Universidad Estatal de Sonora, Perimetral y Ley, Hermosillo, SO, México
| | - Jorge Molina-Torres
- CINVESTAV, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, México
| |
Collapse
|
11
|
Proteomic analysis of Aspergillus flavus reveals the antifungal action of Perilla frutescens essential oil by interfering with energy metabolism and defense function. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Ngashangva N, Mukherjee P, Sharma KC, Kalita MC, Indira S. Analysis of Antimicrobial Peptide Metabolome of Bacterial Endophyte Isolated From Traditionally Used Medicinal Plant Millettia pachycarpa Benth. Front Microbiol 2021; 12:656896. [PMID: 34149644 PMCID: PMC8208310 DOI: 10.3389/fmicb.2021.656896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing prevalence of antimicrobial resistance (AMR) has posed a major health concern worldwide, and the addition of new antimicrobial agents is diminishing due to overexploitation of plants and microbial resources. Inevitably, alternative sources and new strategies are needed to find novel biomolecules to counter AMR and pandemic circumstances. The association of plants with microorganisms is one basic natural interaction that involves the exchange of biomolecules. Such a symbiotic relationship might affect the respective bio-chemical properties and production of secondary metabolites in the host and microbes. Furthermore, the discovery of taxol and taxane from an endophytic fungus, Taxomyces andreanae from Taxus wallachiana, has stimulated much research on endophytes from medicinal plants. A gram-positive endophytic bacterium, Paenibacillus peoriae IBSD35, was isolated from the stem of Millettia pachycarpa Benth. It is a rod-shaped, motile, gram-positive, and endospore-forming bacteria. It is neutralophilic as per Joint Genome Institute’s (JGI) IMG system analysis. The plant was selected based on its ethnobotany history of traditional uses and highly insecticidal properties. Bioactive molecules were purified from P. peoriae IBSD35 culture broth using 70% ammonium sulfate and column chromatography techniques. The biomolecule was enriched to 151.72-fold and the yield percentage was 0.05. Peoriaerin II, a highly potent and broad-spectrum antimicrobial peptide against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 was isolated. LC-MS sequencing revealed that its N-terminal is methionine. It has four negatively charged residues (Asp + Glu) and a total number of two positively charged residues (Arg + Lys). Its molecular weight is 4,685.13 Da. It is linked to an LC-MS/MS inferred biosynthetic gene cluster with accession number A0A2S6P0H9, and blastp has shown it is 82.4% similar to fusaricidin synthetase of Paenibacillus polymyxa SC2. The 3D structure conformation of the BGC and AMP were predicted using SWISS MODEL homology modeling. Therefore, combining both genomic and proteomic results obtained from P. peoriae IBSD35, associated with M. pachycarpa Benth., will substantially increase the understanding of antimicrobial peptides and assist to uncover novel biological agents.
Collapse
Affiliation(s)
- Ng Ngashangva
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - Pulok Mukherjee
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - K Chandradev Sharma
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - M C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Sarangthem Indira
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| |
Collapse
|
14
|
Gil-de-la-Fuente A, Mamani-Huanca M, Stroe MC, Saugar S, Garcia-Alvarez A, Brakhage AA, Barbas C, Otero A. Aspergillus Metabolome Database for Mass Spectrometry Metabolomics. J Fungi (Basel) 2021; 7:jof7050387. [PMID: 34063531 PMCID: PMC8156648 DOI: 10.3390/jof7050387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023] Open
Abstract
The Aspergillus Metabolome Database is a free online resource to perform metabolite annotation in mass spectrometry studies devoted to the genus Aspergillus. The database was created by retrieving and curating information on 2811 compounds present in 601 different species and subspecies of the genus Aspergillus. A total of 1514 scientific journals where these metabolites are mentioned were added as meta-information linked to their respective compounds in the database. A web service to query the database based on m/z (mass/charge ratio) searches was added to CEU Mass Mediator; these queries can be performed over the Aspergillus database only, or they can also include a user-selectable set of other general metabolomic databases. This functionality is offered via web applications and via RESTful services. Furthermore, the complete content of the database has been made available in .csv files and as a MySQL database to facilitate its integration into third-party tools. To the best of our knowledge, this is the first database and the first service specifically devoted to Aspergillus metabolite annotation based on m/z searches.
Collapse
Affiliation(s)
- Alberto Gil-de-la-Fuente
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (M.M.-H.); (C.B.); (A.O.)
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (S.S.); (A.G.-A.)
- Correspondence:
| | - Maricruz Mamani-Huanca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (M.M.-H.); (C.B.); (A.O.)
| | - María C. Stroe
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Institute of Microbiology, Friedrich Schiller University Jena, 07745 Jena, Germany; (M.C.S.); (A.A.B.)
| | - Sergio Saugar
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (S.S.); (A.G.-A.)
| | - Alejandra Garcia-Alvarez
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (S.S.); (A.G.-A.)
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Institute of Microbiology, Friedrich Schiller University Jena, 07745 Jena, Germany; (M.C.S.); (A.A.B.)
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (M.M.-H.); (C.B.); (A.O.)
| | - Abraham Otero
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (M.M.-H.); (C.B.); (A.O.)
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (S.S.); (A.G.-A.)
| |
Collapse
|
15
|
Owens RA, Doyle S. Effects of antifungal agents on the fungal proteome: informing on mechanisms of sensitivity and resistance. Expert Rev Proteomics 2021; 18:185-199. [PMID: 33797307 DOI: 10.1080/14789450.2021.1912601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Antifungal agents are essential in the fight against serious fungal disease, however emerging resistance is threatening an already limited collection of therapeutics. Proteomic analyses of effects of antifungal agents can expand our understanding of multifactorial mechanisms of action and have also proven valuable to elucidate proteomic changes associated with antifungal resistance. AREAS COVERED This review covers the application of proteomic techniques to examine sensitivity and resistance to antifungals including commonly used therapeutics, amphotericin B, echinocandins and the azoles, based predominantly on studies involving Aspergillus fumigatus, Candida albicans and Candida glabrata from the last 10 years. In addition, non-clinical antimicrobial agents are also discussed, which highlight the potential of proteomics to identify new antifungal targets. EXPERT COMMENTARY Fungal proteomics has evolved in the last decade with increased genome availability and developments in mass spectrometry. Collectively, these have led to the advancement of proteomic techniques, allowing increased coverage of the proteome. Gel-based proteomics laid the foundation for these types of studies, which has now shifted to the more powerful gel-free proteomics. This has resulted in the identification of key mediators and potential biomarkers of antifungal resistance, as well as elucidating the mechanisms of action of novel and established antifungal agents.
Collapse
Affiliation(s)
- Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
16
|
Zhang M, Wang X, Ahmed T, Liu M, Wu Z, Luo J, Tian Y, Jiang H, Wang Y, Sun G, Li B. Identification of Genes Involved in Antifungal Activity of Burkholderia seminalis Against Rhizoctonia solani Using Tn5 Transposon Mutation Method. Pathogens 2020; 9:pathogens9100797. [PMID: 32992669 PMCID: PMC7600168 DOI: 10.3390/pathogens9100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Rhizoctonia solani is the causative agent of rice sheath blight disease. In a previous study, we found that the growth of R. solani was inhibited by Burkholderia seminalis strain R456. Therefore, the present study was conducted to identify the genes involved in the antifungal activity of B. seminalis strain R456 by using a Tn5 transposon mutation method. Firstly, we constructed a random insertion transposon library of 997 mutants, out of which 11 mutants showed the defective antifungal activity against R. solani. Furthermore, the 10 antagonism-related genes were successfully identified based on analysis of the Tn5 transposon insertion site. Indeed, this result indicated that three mutants were inserted on an indigenous plasmid in which the same insertion site was observed in two mutants. In addition, the remaining eight mutants were inserted on different genes encoding glycosyl transferase, histone H1, nonribosomal peptide synthetase, methyltransferase, MnmG, sulfate export transporter, catalase/peroxidase HPI and CysD, respectively. Compared to the wild type, the 11 mutants showed a differential effect in bacteriological characteristics such as cell growth, biofilm formation and response to H2O2 stress, revealing the complexity of action mode of these antagonism-related genes. However, a significant reduction of cell motility was observed in the 11 mutants compared to the wild type. Therefore, it can be inferred that the antifungal mechanism of the 10 above-mentioned genes may be, at least partially, due to the weakness of cell motility. Overall, the result of this study will be helpful for us to understand the biocontrol mechanism of this bacterium.
Collapse
Affiliation(s)
- Muchen Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Xiaoxuan Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Mengju Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Zhifeng Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Hubiao Jiang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (Y.W.); (B.L.); Tel.: +86-0571-88982412 (Y.W. & B.L.)
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
- Correspondence: (Y.W.); (B.L.); Tel.: +86-0571-88982412 (Y.W. & B.L.)
| |
Collapse
|