1
|
Ambrozová L, Zeman T, Janout V, Janoutová J, Lochman J, Šerý O. Association between polymorphism rs2421943 of the insulin-degrading enzyme and schizophrenia: Preliminary report. J Clin Lab Anal 2023; 37:e24949. [PMID: 37515308 PMCID: PMC10492455 DOI: 10.1002/jcla.24949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Insulin-degrading enzyme (IDE) is an important gene in studies of the pathophysiology of type 2 diabetes mellitus (T2DM). Recent studies have suggested a possible link between type 2 diabetes mellitus (T2DM) and the pathophysiology of schizophrenia (SZ). At the same time, significant changes in insulin-degrading enzyme (IDE) gene expression have been found in the brains of people with schizophrenia. These findings highlight the need to further investigate the role of IDE in schizophrenia pathogenesis. METHODS We enrolled 733 participants from the Czech Republic, including 383 patients with schizophrenia and 350 healthy controls. Our study focused on the single nucleotide polymorphism (SNP) rs2421943 in the IDE gene, which has previously been associated with the pathogenesis of Alzheimer's disease. The SNP was analyzed using the PCR-RFLP method. RESULTS The G allele of the rs2421943 polymorphism was found to significantly increase the risk of developing SZ (p < 0.01) when a gender-based analysis showed that both AG and GG genotypes were associated with a more than 1.55 times increased risk of SZ in females (p < 0.03) but not in males. Besides, we identified a potential binding site at the G allele locus for has-miR-7110-5p, providing a potential mechanism for the observed association. CONCLUSION Our results confirm the role of the IDE gene in schizophrenia pathogenesis and suggest that future research should investigate the relationship between miRNA and estrogen influence on IDE expression in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Laura Ambrozová
- Laboratory of Neurobiology and Molecular PsychiatryDepartment of BiochemistryFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Tomáš Zeman
- Laboratory of Neurobiology and Molecular PsychiatryDepartment of BiochemistryFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Laboratory of Neurobiology and Pathological PhysiologyInstitute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Vladimír Janout
- Department of Public HealthFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| | - Jana Janoutová
- Department of Public HealthFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Molecular PsychiatryDepartment of BiochemistryFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Laboratory of Neurobiology and Pathological PhysiologyInstitute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Molecular PsychiatryDepartment of BiochemistryFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Laboratory of Neurobiology and Pathological PhysiologyInstitute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
2
|
Bernstein HG, Keilhoff G, Steiner J. The implications of hypothalamic abnormalities for schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:107-120. [PMID: 34266587 DOI: 10.1016/b978-0-12-819973-2.00008-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Until a few years ago, the hypothalamus was believed to play only a marginal role in schizophrenia pathophysiology. However, recent findings show that this rather small brain region involved in many pathways found disrupted-in schizophrenia. Gross anatomic abnormalities (volume changes of the third ventricle, the hypothalamus, and its individual nuclei) as well as alterations at the cellular level (circumscribed loss of neurons) can be observed. Further, increased or decreased expression of hypothalamic peptides such as oxytocin, vasopressin, several factors involved in the regulation of appetite and satiety, endogenous opiates, products of schizophrenia susceptibility genes as well as of enzymes involved in neurotransmitter and neuropeptide metabolism have been reported in schizophrenia and/or animal models of the disease. Remarkably, although profound disturbances of the hypothalamus-pituitary-adrenal axis, hypothalamus-pituitary-thyroid axis, and the hypothalamus-pituitary-gonadal axis are typical signs of schizophrenia, there is currently no evidence for alterations in the expression of hypothalamic-releasing and inhibiting factors that control these hormonal axes. Finally, the implications of hypothalamus for disease-related disturbances of the sleep-wakefulness cycle and neuroimmune dysfunctions in schizophrenia are outlined.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany.
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Lis M, Stańczykiewicz B, Liśkiewicz P, Misiak B. Impaired hormonal regulation of appetite in schizophrenia: A narrative review dissecting intrinsic mechanisms and the effects of antipsychotics. Psychoneuroendocrinology 2020; 119:104744. [PMID: 32534330 DOI: 10.1016/j.psyneuen.2020.104744] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
Cardiometabolic diseases are the main contributor of reduced life expectancy in patients with schizophrenia. It is now widely accepted that antipsychotic treatment plays an important role in the development of obesity and its consequences. However, some intrinsic mechanisms need to be taken into consideration. One of these mechanisms might be related to impaired hormonal regulation of appetite in this group of patients. In this narrative review, we aimed to dissect impairments of appetite-regulating hormones attributable to intrinsic mechanisms and those related to medication effects. Early hormonal alterations that might be associated with intrinsic mechanisms include low levels of leptin and glucagon-like peptide-1 (GLP-1) together with elevated insulin levels in first-episode psychosis (FEP) patients. However, evidence regarding low GLP-1 levels in FEP patients is based on one large study. In turn, multiple-episode schizophrenia patients show elevated levels of insulin, leptin and orexin A together with decreased levels of adiponectin. In addition, patients receiving olanzapine may present with low ghrelin levels. Post mortem studies have also demonstrated reduced number of neuropeptide Y neurons in the prefrontal cortex of patients with schizophrenia. Treatment with certain second-generation antipsychotics may also point to these alterations. Although our understanding of hormonal regulation of appetite in schizophrenia has largely been improved, several limitations and directions for future studies need to be addressed. This is of particular importance since several novel pharmacological interventions for obesity and diabetes have already been developed and translation of these developments to the treatment of cardiometabolic comorbidities in schizophrenia patients is needed.
Collapse
Affiliation(s)
- Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618, Wroclaw, Poland
| | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460, Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| |
Collapse
|
4
|
The hypothalamus and neuropsychiatric disorders: psychiatry meets microscopy. Cell Tissue Res 2018; 375:243-258. [DOI: 10.1007/s00441-018-2849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
|
5
|
Minichino A, Ando' A, Francesconi M, Salatino A, Delle Chiaie R, Cadenhead K. Investigating the link between drug-naive first episode psychoses (FEPs), weight gain abnormalities and brain structural damages: Relevance and implications for therapy. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:9-22. [PMID: 28363765 DOI: 10.1016/j.pnpbp.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Evidence suggests that obesity and overweight may be associated with severe brain structural abnormalities and poor cognitive and functional outcomes in the general population. Despite these observations and the high prevalence of weight gain abnormalities in patients with psychosis spectrum disorders (PSDs), no studies have investigated the impact that these metabolic disturbances may have on brain structures and development in the earliest stages of PSDs. In the present review we shed light on the association between weight gain and brain structural abnormalities that may affect the course of illness in drug-naïve FEPs. Given the lack of studies directly investigating this issue, we firstly identified and critically evaluated the literature assessing weight gain abnormalities and gray or white matter (GM, WM) volumes (either globally or in specific regions of interest) in otherwise healthy obese/overweight adolescents and young adults. We then compared the results of this systematic review with those of two recent meta-analysis investigating GM and WM abnormalities in drug-naïve FEPs. Weight gain in otherwise healthy subjects was consistently associated with frontal and temporal GM atrophy and with reduced integrity of WM in the corpus callosum. Of relevance, all these brain regions are affected in drug-naïve FEPs, and their integrity is associated with clinical, cognitive and functional outcomes. The underlying mechanisms that may explain the association between weight gain, adiposity, and brain damage in both healthy subjects and drug-naïve FEPs are widely discussed. On the basis of this knowledge, we tried: a) to deduce an integrative model for the development of obesity in psychosis spectrum disorders; b) to identify the key vulnerability factors underlying the association between weight gain and psychosis; c) to provide information on new potential targets of intervention.
Collapse
Affiliation(s)
- Amedeo Minichino
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy; Department of Psychiatry, UCSD, La Jolla, CA, United States.
| | - Agata Ando'
- Department of Psychology, University of Turin, Italy
| | - Marta Francesconi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy; Department of Psychiatry, UCSD, La Jolla, CA, United States
| | | | | | | |
Collapse
|
6
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Caravaggio F, Hahn M, Nakajima S, Gerretsen P, Remington G, Graff-Guerrero A. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia. Med Hypotheses 2015; 85:391-6. [PMID: 26118462 DOI: 10.1016/j.mehy.2015.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022]
Abstract
Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin is reduced in the brains of persons with schizophrenia.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Margaret Hahn
- Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
8
|
Foley DL, Mackinnon A. A systematic review of antipsychotic drug effects on human gene expression related to risk factors for cardiovascular disease. THE PHARMACOGENOMICS JOURNAL 2014; 14:446-51. [DOI: 10.1038/tpj.2014.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/22/2014] [Accepted: 01/31/2014] [Indexed: 11/09/2022]
|
9
|
Steiner J, Bernstein HG, Schiltz K, Müller UJ, Westphal S, Drexhage HA, Bogerts B. Immune system and glucose metabolism interaction in schizophrenia: a chicken-egg dilemma. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:287-94. [PMID: 23085507 DOI: 10.1016/j.pnpbp.2012.09.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/15/2012] [Accepted: 09/22/2012] [Indexed: 12/15/2022]
Abstract
Impaired glucose metabolism and the development of metabolic syndrome contribute to a reduction in the average life expectancy of individuals with schizophrenia. It is unclear whether this association simply reflects an unhealthy lifestyle or whether weight gain and impaired glucose tolerance in patients with schizophrenia are directly attributable to the side effects of atypical antipsychotic medications or disease-inherent derangements. In addition, numerous previous studies have highlighted alterations in the immune system of patients with schizophrenia. Increased concentrations of interleukin (IL)-1, IL-6, and transforming growth factor-beta (TGF-β) appear to be state markers, whereas IL-12, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and soluble IL-2 receptor (sIL-2R) appear to be trait markers of schizophrenia. Moreover, the mononuclear phagocyte system (MPS) and microglial activation are involved in the early course of the disease. This review illustrates a "chicken-egg dilemma", as it is currently unclear whether impaired cerebral glucose utilization leads to secondary disturbances in peripheral glucose metabolism, an increased risk of cardiovascular complications, and accompanying pro-inflammatory changes in patients with schizophrenia or whether immune mechanisms may be involved in the initial pathogenesis of schizophrenia, which leads to disturbances in glucose metabolism such as metabolic syndrome. Alternatively, shared underlying factors may be responsible for the co-occurrence of immune system and glucose metabolism disturbances in schizophrenia.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Bernstein HG, Trübner K, Krebs P, Dobrowolny H, Bielau H, Steiner J, Bogerts B. Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: possible implications for heroin neurotoxicity. Acta Histochem 2014; 116:182-90. [PMID: 23953641 DOI: 10.1016/j.acthis.2013.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022]
Abstract
Heroin is one of the most dangerous drugs of abuse, which may exert various neurotoxic actions on the brain (such as gray matter loss, neuronal apoptosis, mitochondrial dysfunction, synaptic defects, depression of adult neurogenensis, as well as development of spongiform leucoencephalopathy). Some of these toxic effects are probably mediated by the gas nitric oxide (NO). We studied by morphometric analysis the numerical density of neurons expressing neuronal nitric oxide synthase (nNOS) in cortical and hypothalamic areas of eight heroin overdose victims and nine matched controls. Heroin addicts showed significantly increased numerical densities of nNOS immunoreactive cells in the right temporal cortex and the left paraventricular nucleus. Remarkably, in heroin abusers, but not in controls, we observed not only immunostained interneurons, but also cortical pyramidal cells. Given that increased cellular expression of nNOS was accompanied by elevated NO generation in brains of heroin addicts, these elevated levels of NO might have contributed to some of the known toxic effects of heroin (for example, reduced adult neurogenesis, mitochondrial pathology or disturbances in synaptic functioning).
Collapse
|
11
|
Harris LW, Guest PC, Wayland MT, Umrania Y, Krishnamurthy D, Rahmoune H, Bahn S. Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology 2013; 38:752-66. [PMID: 23084727 DOI: 10.1016/j.psyneuen.2012.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Despite decades of research, the pathophysiology and aetiology of schizophrenia remains incompletely understood. The disorder is frequently accompanied by metabolic symptoms including dyslipidaemia, hyperinsulinaemia, type 2 diabetes and obesity. These symptoms are a common side effect of currently available antipsychotic medications. However, reports of metabolic dysfunction in schizophrenia predate the antipsychotic era and have also been observed in first onset patients prior to antipsychotic treatment. Here, we review the evidence for abnormalities in metabolism in schizophrenia patients, both in the central nervous system and periphery. Molecular analysis of post mortem brain tissue has pointed towards alterations in glucose metabolism and insulin signalling pathways, and blood-based molecular profiling analyses have demonstrated hyperinsulinaemia and abnormalities in secretion of insulin and co-released factors at first presentation of symptoms. Nonetheless, such features are not observed for all subjects with the disorder and not all individuals with such abnormalities suffer the symptoms of schizophrenia. One interpretation of these data is the presence of an underlying metabolic vulnerability in a subset of individuals which interacts with environmental or genetic factors to produce the overt symptoms of the disorder. Further investigation of metabolic aspects of schizophrenia may prove critical for diagnosis, improvement of existing treatment based on patient stratification/personalised medicine strategies and development of novel antipsychotic agents.
Collapse
Affiliation(s)
- Laura W Harris
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bernstein HG, Dobrowolny H, Schott BH, Gorny X, Becker V, Steiner J, Seidenbecher CI, Bogerts B. Increased density of AKAP5-expressing neurons in the anterior cingulate cortex of subjects with bipolar disorder. J Psychiatr Res 2013; 47:699-705. [PMID: 23462372 DOI: 10.1016/j.jpsychires.2012.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
Brain anatomical abnormalities as well as cognitive and emotional processing deficits have been reported for the prefrontal cortex in bipolar disorder, which are in part attributable to cellular and laminar abnormalities in postsynaptic protein expression. A kinase anchoring protein (AKAP) 5/79 plays a key role in postsynaptic signalling of excitatory synapses. We aimed to reveal if the cellular expression of AKAP5/79 protein is altered in the anterior cingulate cortex and the dorsolateral prefrontal cortex in bipolar disorder. Ten subjects with bipolar disorder and ten control cases were investigated by use of immunohistochemical and morphometric techniques. Compared with controls in subjects with bipolar disorder, the numerical density of AKAP5-expressing neurons was significantly increased in the left (p = 0.002) and right (p = 0.008) anterior cingulate cortex. Layer-specific counting revealed that left side layers II (p = 0.000), III (p = 0.001) and V (p = 0.005) as well as right side layers III (p = 0.007), IV (p = 0.007) and V (p = 0.004) had significantly increased AKAP5-positive cell densities in bipolar disorder. In contrast, no statistically significant differences were found for the dorsolateral prefrontal cortex. However, we observed a more intense intraneuronal immunostaining in both prefrontal areas in bipolar disorder patients. Elevated cell numbers and increased intracellular expression of AKAP, together with the altered expression patterns of most intracellular interaction partners of this protein in bipolar disorder as known from the literature, might point to disease-related abnormalities of the AKAP-associated signalosome in prefrontal cortex neurons.
Collapse
|
13
|
Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.31008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Steiner J, Bernstein HG, Bogerts B, Gonçalves CA. Os possíveis papéis da S100B na esquizofrenia. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s0101-60832012005000008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CONTEXTO: Evidências científicas do aumento da concentração da proteína S100B no sangue de pacientes esquizofrênicos são muito consistentes. No passado essa informação era principalmente considerada como reflexo da disfunção astroglial ou da barreira hematoencefálica. MÉTODOS: Pesquisa de publicações no PubMed até o dia 15 de junho de 2011 visando estabelecer potenciais ligações entre a proteína S100B e as hipóteses correntes da esquizofrenia. RESULTADOS: A S100B está potencialmente associada com as hipóteses dopaminérgica e glutamatérgica. O aumento da expressão de S100B tem sido detectado em astrócitos corticais em casos de esquizofrenia paranoide, enquanto se observa uma redução da expressão em oligodendrócitos na esquizofrenia residual, dando suporte à hipótese glial. Recentemente, a hipótese da neuroinflamação da esquizofrenia tem recebido atenção crescente. Nesse sentido, a S100B pode funcionar como uma citocina secretada por células gliais, linfócitos CD8+ e células NK, levando à ativação de monócitos e microglia. Além disso, a S100B apresenta propriedades do tipo adipocina e pode estar desregulada na esquizofrenia, devido a distúrbios da sinalização de insulina, levando ao aumento da liberação de S100B e ácidos graxos do tecido adiposo. CONCLUSÃO: A expressão de S100B em diferentes tipos celulares está envolvida em muitos processos regulatórios. Atualmente, não pode ser respondido qual mecanismo relacionado à esquizofrenia é o mais importante.
Collapse
Affiliation(s)
- Johann Steiner
- Universidade de Magdeburg, Germany; Universidade de Cambridge, UK
| | | | | | | |
Collapse
|
15
|
Differential topochemistry of three cationic amino acid transporter proteins, hCAT1, hCAT2 and hCAT3, in the adult human brain. Amino Acids 2012; 44:423-33. [DOI: 10.1007/s00726-012-1348-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/20/2012] [Indexed: 11/26/2022]
|
16
|
Do elevated glucocorticoids contribute to reduced cerebral expression of insulin-degrading enzyme in schizophrenia? J Psychiatr Res 2011; 45:1655-6. [PMID: 21872264 DOI: 10.1016/j.jpsychires.2011.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 11/20/2022]
|
17
|
Stereological approaches to identifying neuropathology in psychosis. Biol Psychiatry 2011; 69:113-26. [PMID: 20678756 PMCID: PMC2974031 DOI: 10.1016/j.biopsych.2010.04.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 12/12/2022]
Abstract
The challenges involved in identifying the neuropathological substrates of the clinical syndrome recognized as schizophrenia are well known. Stereological sampling provides a means to obtain accurate and precise quantitative estimates of components of neural circuits and thus offers promise of an enhanced capacity to detect subtle alterations in brain structure associated with schizophrenia. In this review, we 1) consider the importance and rationale for robust quantitative measures of brain abnormalities in postmortem studies of schizophrenia; 2) provide a brief overview of stereological methods for obtaining such measures; 3) discuss the methodological details that should be reported to document the robustness of a stereological study; 4) given the constraints of postmortem human studies, suggest how to approach the limitations of less robust designs; and 5) present an overview of methodologically sound stereological estimates from postmortem studies of schizophrenia.
Collapse
|
18
|
Guest PC, Martins-de-Souza D, Vanattou-Saifoudine N, Harris LW, Bahn S. Abnormalities in Metabolism and Hypothalamic–Pituitary–Adrenal Axis Function in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:145-68. [DOI: 10.1016/b978-0-12-387718-5.00006-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
20
|
S100B Serum Levels in Schizophrenia Are Presumably Related to Visceral Obesity and Insulin Resistance. Cardiovasc Psychiatry Neurol 2010; 2010:480707. [PMID: 20631894 PMCID: PMC2902008 DOI: 10.1155/2010/480707] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/31/2010] [Indexed: 12/21/2022] Open
Abstract
Elevated blood levels of S100B in schizophrenia have so far been mainly attributed to glial pathology, as S100B is produced by astro- and oligodendroglial cells and is thought to act as a neurotrophic factor with effects on synaptogenesis, dopaminergic and glutamatergic neutrotransmission. However, adipocytes are another important source of S100B since the concentration of S100B in adipose tissue is as high as in nervous tissue. Insulin is downregulating S100B in adipocytes, astrocyte cultures and rat brain. As reviewed in this paper, our recent studies suggest that overweight, visceral obesity, and peripheral/cerebral insulin resistance may be pivotal for at least part of the elevated S100B serum levels in schizophrenia. In the context of this recently identified framework of metabolic disturbances accompanying S100B elevation in schizophrenia, it rather has to be attributed to systemic alterations in glucose metabolism than to be considered a surrogate marker for astrocyte-specific pathologies.
Collapse
|