1
|
Zoghbi AW, Lieberman JA, Girgis RR. The neurobiology of duration of untreated psychosis: a comprehensive review. Mol Psychiatry 2023; 28:168-190. [PMID: 35931757 PMCID: PMC10979514 DOI: 10.1038/s41380-022-01718-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Duration of untreated psychosis (DUP) is defined as the time from the onset of psychotic symptoms until the first treatment. Studies have shown that longer DUP is associated with poorer response rates to antipsychotic medications and impaired cognition, yet the neurobiologic correlates of DUP are poorly understood. Moreover, it has been hypothesized that untreated psychosis may be neurotoxic. Here, we conducted a comprehensive review of studies that have examined the neurobiology of DUP. Specifically, we included studies that evaluated DUP using a range of neurobiologic and imaging techniques and identified 83 articles that met inclusion and exclusion criteria. Overall, 27 out of the total 83 studies (32.5%) reported a significant neurobiological correlate with DUP. These results provide evidence against the notion of psychosis as structurally or functionally neurotoxic on a global scale and suggest that specific regions of the brain, such as temporal regions, may be more vulnerable to the effects of DUP. It is also possible that current methodologies lack the resolution needed to more accurately examine the effects of DUP on the brain, such as effects on synaptic density. Newer methodologies, such as MR scanners with stronger magnets, PET imaging with newer ligands capable of measuring subcellular structures (e.g., the PET ligand [11C]UCB-J) may be better able to capture these limited neuropathologic processes. Lastly, to ensure robust and replicable results, future studies of DUP should be adequately powered and specifically designed to test for the effects of DUP on localized brain structure and function with careful attention paid to potential confounds and methodological issues.
Collapse
Affiliation(s)
- Anthony W Zoghbi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Office of Mental Health, New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Jeffrey A Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Ragy R Girgis
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Office of Mental Health, New York State Psychiatric Institute, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Sharaev M, Malashenkova I, Maslennikova A, Zakharova N, Bernstein A, Burnaev E, Mamedova G, Krynskiy S, Ogurtsov D, Kondrateva E, Druzhinina P, Zubrikhina M, Arkhipov A, Strelets V, Ushakov V. Diagnosis of Schizophrenia Based on the Data of Various Modalities: Biomarkers and Machine Learning Techniques (Review). Sovrem Tekhnologii Med 2022; 14:53-75. [PMID: 37181835 PMCID: PMC10171060 DOI: 10.17691/stm2022.14.5.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 05/16/2023] Open
Abstract
Schizophrenia is a socially significant mental disorder resulting frequently in severe forms of disability. Diagnosis, choice of treatment tactics, and rehabilitation in clinical psychiatry are mainly based on the assessment of behavioral patterns, socio-demographic data, and other investigations such as clinical observations and neuropsychological testing including examination of patients by the psychiatrist, self-reports, and questionnaires. In many respects, these data are subjective and therefore a large number of works have appeared in recent years devoted to the search for objective characteristics (indices, biomarkers) of the processes going on in the human body and reflected in the behavioral and psychoneurological patterns of patients. Such biomarkers are based on the results of instrumental and laboratory studies (neuroimaging, electro-physiological, biochemical, immunological, genetic, and others) and are successfully being used in neurosciences for understanding the mechanisms of the emergence and development of nervous system pathologies. Presently, with the advent of new effective neuroimaging, laboratory, and other methods of investigation and also with the development of modern methods of data analysis, machine learning, and artificial intelligence, a great number of scientific and clinical studies is being conducted devoted to the search for the markers which have diagnostic and prognostic value and may be used in clinical practice to objectivize the processes of establishing and clarifying the diagnosis, choosing and optimizing treatment and rehabilitation tactics, predicting the course and outcome of the disease. This review presents the analysis of the works which describe the correlates between the diagnosis of schizophrenia, established by health professionals, various manifestations of the psychiatric disorder (its subtype, variant of the course, severity degree, observed symptoms, etc.), and objectively measured characteristics/quantitative indicators (anatomical, functional, immunological, genetic, and others) obtained during instrumental and laboratory examinations of patients. A considerable part of these works has been devoted to correlates/biomarkers of schizophrenia based on the data of structural and functional (at rest and under cognitive load) MRI, EEG, tractography, and immunological data. The found correlates/biomarkers reflect anatomic disorders in the specific brain regions, impairment of functional activity of brain regions and their interconnections, specific microstructure of the brain white matter and the levels of connectivity between the tracts of various structures, alterations of electrical activity in various parts of the brain in different EEG spectral ranges, as well as changes in the innate and adaptive links of immunity. Current methods of data analysis and machine learning to search for schizophrenia biomarkers using the data of diverse modalities and their application during building and interpretation of predictive diagnostic models of schizophrenia have been considered in the present review.
Collapse
Affiliation(s)
- M.G. Sharaev
- Senior Researcher; Skolkovo Institute of Science and Technology (Skoltech), Territory of Skolkovo Innovation Center, Bldg 1, 30 Bolshoy Boulevard, Moscow, 121205, Russia; Department Senior Researcher; N.A. Alekseyev Psychiatric Clinical Hospital No.1, 2 Zagorodnoye Shosse, Moscow, 117152, Russia
- Corresponding author: Maksim G. Sharaev, e-mail:
| | - I.K. Malashenkova
- Head of the Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia; Senior Researcher, Laboratory of Clinical Immunology; Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency of Russia, 1A Malaya Pirogovskaya St., Moscow, 119435, Russia
| | - A.V. Maslennikova
- Researcher, Laboratory of Human Higher Nervous Activity; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow, 117485, Russia
| | - N.V. Zakharova
- Head of the Laboratory for Fundamental Research Methods, Research Clinical Center of Neuropsychiatry; N.A. Alekseyev Psychiatric Clinical Hospital No.1, 2 Zagorodnoye Shosse, Moscow, 117152, Russia
| | - A.V. Bernstein
- Professor, Professor of the Center of Applied Artificial Intelligence; Skolkovo Institute of Science and Technology (Skoltech), Territory of Skolkovo Innovation Center, Bldg 1, 30 Bolshoy Boulevard, Moscow, 121205, Russia
| | - E.V. Burnaev
- Associate Professor, Professor of the Center of Applied Artificial Intelligence; Skolkovo Institute of Science and Technology (Skoltech), Territory of Skolkovo Innovation Center, Bldg 1, 30 Bolshoy Boulevard, Moscow, 121205, Russia
| | - G.S. Mamedova
- Junior Researcher, Laboratory for Fundamental Research Methods, Research Clinical Center of Neuropsychiatry; N.A. Alekseyev Psychiatric Clinical Hospital No.1, 2 Zagorodnoye Shosse, Moscow, 117152, Russia
| | - S.A. Krynskiy
- Researcher, Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - D.P. Ogurtsov
- Researcher, Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - E.A. Kondrateva
- PhD Student; Skolkovo Institute of Science and Technology (Skoltech), Territory of Skolkovo Innovation Center, Bldg 1, 30 Bolshoy Boulevard, Moscow, 121205, Russia
| | - P.V. Druzhinina
- PhD Student; Skolkovo Institute of Science and Technology (Skoltech), Territory of Skolkovo Innovation Center, Bldg 1, 30 Bolshoy Boulevard, Moscow, 121205, Russia
| | - M.O. Zubrikhina
- PhD Student; Skolkovo Institute of Science and Technology (Skoltech), Territory of Skolkovo Innovation Center, Bldg 1, 30 Bolshoy Boulevard, Moscow, 121205, Russia
| | - A.Yu. Arkhipov
- Researcher, Laboratory of Human Higher Nervous Activity; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow, 117485, Russia
| | - V.B. Strelets
- Chief Researcher, Laboratory of Human Higher Nervous Activity; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow, 117485, Russia
| | - V.L. Ushakov
- Associate Professor, Chief Researcher, Institute for Advanced Brain Research; Lomonosov Moscow State University, 27/1 Lomonosov Avenue, Moscow, 119192, Russia; Head of the Department; N.A. Alekseyev Psychiatric Clinical Hospital No.1, 2 Zagorodnoye Shosse, Moscow, 117152, Russia; Senior Researcher; National Research Nuclear University MEPhI, 31 Kashirskoye Shosse, Moscow, 115409, Russia
| |
Collapse
|
3
|
Cortical surface abnormalities are different depending on the stage of schizophrenia: A cross-sectional vertexwise mega-analysis of thickness, area and gyrification. Schizophr Res 2021; 236:104-114. [PMID: 34481405 DOI: 10.1016/j.schres.2021.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Brain magnetic resonance imaging studies have not investigated the cortical surface comprehensively in schizophrenia subjects by assessing thickness, surface area and gyrification separately during the first-episode of psychosis (FEP) or chronic schizophrenia (ChSch). METHODS We investigated cortical surface abnormalities in 137 FEP patients and 240 ChSch subjects compared to 297 Healthy Controls (HC) contributed by five cohorts. Maps showing results of vertexwise between-group comparisons of cortical thickness, area, and gyrification were produced using T1-weighted datasets processed using FreeSurfer 5.3, followed by validated quality control protocols. RESULTS FEP subjects showed large clusters of increased area and gyrification relative to HC in prefrontal and insuli cortices (Cohen's d: 0.049 to 0.28). These between-group differences occurred partially beyond the effect of sample. ChSch subjects displayed reduced cortical thickness relative to HC in smaller fronto-temporal foci (d: -0.73 to -0.35), but not beyond the effect of sample. Differences between FEP and HC subjects were associated with male gender, younger age, and earlier illness onset, while differences between ChSch and HC were associated with treatment-resistance and first-generation antipsychotic (FGA) intake independently of sample effect. CONCLUSIONS Separate assessments of FEP and ChSch revealed abnormalities that differed in regional distribution, phenotypes affected and effect size. In FEP, associations of greater cortical area and gyrification abnormalities with earlier age of onset suggest an origin on anomalous neurodevelopment, while thickness reductions in ChSch are at least partially explained by treatment-resistance and FGA intake. Associations of between-group differences with clinical variables retained statistical significance beyond the effect of sample.
Collapse
|
4
|
Alloza C, Blesa-Cábez M, Bastin ME, Madole JW, Buchanan CR, Janssen J, Gibson J, Deary IJ, Tucker-Drob EM, Whalley HC, Arango C, McIntosh AM, Cox SR, Lawrie SM. Psychotic-like experiences, polygenic risk scores for schizophrenia, and structural properties of the salience, default mode, and central-executive networks in healthy participants from UK Biobank. Transl Psychiatry 2020; 10:122. [PMID: 32341335 PMCID: PMC7186224 DOI: 10.1038/s41398-020-0794-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a highly heritable disorder with considerable phenotypic heterogeneity. Hallmark psychotic symptoms can be considered as existing on a continuum from non-clinical to clinical populations. Assessing genetic risk and psychotic-like experiences (PLEs) in non-clinical populations and their associated neurobiological underpinnings can offer valuable insights into symptom-associated brain mechanisms without the potential confounds of the effects of schizophrenia and its treatment. We leveraged a large population-based cohort (UKBiobank, N = 3875) including information on PLEs (obtained from the Mental Health Questionnaire (MHQ); UKBiobank Category: 144; N auditory hallucinations = 55, N visual hallucinations = 79, N persecutory delusions = 16, N delusions of reference = 13), polygenic risk scores for schizophrenia (PRSSZ) and multi-modal brain imaging in combination with network neuroscience. Morphometric (cortical thickness, volume) and water diffusion (fractional anisotropy) properties of the regions and pathways belonging to the salience, default-mode, and central-executive networks were computed. We hypothesized that these anatomical concomitants of functional dysconnectivity would be negatively associated with PRSSZ and PLEs. PRSSZ was significantly associated with a latent measure of cortical thickness across the salience network (r = -0.069, p = 0.010) and PLEs showed a number of significant associations, both negative and positive, with properties of the salience and default mode networks (involving the insular cortex, supramarginal gyrus, and pars orbitalis, pFDR < 0.050); with the cortical thickness of the insula largely mediating the relationship between PRSSZ and auditory hallucinations. Generally, these results are consistent with the hypothesis that higher genetic liability for schizophrenia is related to subtle disruptions in brain structure and may predispose to PLEs even among healthy participants. In addition, our study suggests that networks engaged during auditory hallucinations show structural associations with PLEs in the general population.
Collapse
Affiliation(s)
- C Alloza
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- Ciber del Area de Salud Mental (CIBERSAM), Madrid, Spain.
| | - M Blesa-Cábez
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - M E Bastin
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - J W Madole
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - C R Buchanan
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, The University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK
| | - J Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber del Area de Salud Mental (CIBERSAM), Madrid, Spain
| | - J Gibson
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - E M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - H C Whalley
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - C Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber del Area de Salud Mental (CIBERSAM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - A M McIntosh
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - S R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, The University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK
| | - S M Lawrie
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Fovet T, Orlov N, Dyck M, Allen P, Mathiak K, Jardri R. Translating Neurocognitive Models of Auditory-Verbal Hallucinations into Therapy: Using Real-time fMRI-Neurofeedback to Treat Voices. Front Psychiatry 2016; 7:103. [PMID: 27445865 PMCID: PMC4921472 DOI: 10.3389/fpsyt.2016.00103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Auditory-verbal hallucinations (AVHs) are frequent and disabling symptoms, which can be refractory to conventional psychopharmacological treatment in more than 25% of the cases. Recent advances in brain imaging allow for a better understanding of the neural underpinnings of AVHs. These findings strengthened transdiagnostic neurocognitive models that characterize these frequent and disabling experiences. At the same time, technical improvements in real-time functional magnetic resonance imaging (fMRI) enabled the development of innovative and non-invasive methods with the potential to relieve psychiatric symptoms, such as fMRI-based neurofeedback (fMRI-NF). During fMRI-NF, brain activity is measured and fed back in real time to the participant in order to help subjects to progressively achieve voluntary control over their own neural activity. Precisely defining the target brain area/network(s) appears critical in fMRI-NF protocols. After reviewing the available neurocognitive models for AVHs, we elaborate on how recent findings in the field may help to develop strong a priori strategies for fMRI-NF target localization. The first approach relies on imaging-based "trait markers" (i.e., persistent traits or vulnerability markers that can also be detected in the presymptomatic and remitted phases of AVHs). The goal of such strategies is to target areas that show aberrant activations during AVHs or are known to be involved in compensatory activation (or resilience processes). Brain regions, from which the NF signal is derived, can be based on structural MRI and neurocognitive knowledge, or functional MRI information collected during specific cognitive tasks. Because hallucinations are acute and intrusive symptoms, a second strategy focuses more on "state markers." In this case, the signal of interest relies on fMRI capture of the neural networks exhibiting increased activity during AVHs occurrences, by means of multivariate pattern recognition methods. The fine-grained activity patterns concomitant to hallucinations can then be fed back to the patients for therapeutic purpose. Considering the potential cost necessary to implement fMRI-NF, proof-of-concept studies are urgently required to define the optimal strategy for application in patients with AVHs. This technique has the potential to establish a new brain imaging-guided psychotherapy for patients that do not respond to conventional treatments and take functional neuroimaging to therapeutic applications.
Collapse
Affiliation(s)
- Thomas Fovet
- Univ Lille, CNRS, UMR-9193, psyCHIC team & CHU Lille, Psychiatry Dpt (CURE), Fontan Hospital , Lille , France
| | - Natasza Orlov
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London , London , UK
| | - Miriam Dyck
- Department of Psychiatry, Psychotherapy and Psychosomatics, JARA-Brain, RWTH Aachen University , Aachen , Germany
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Department of Psychology, University of Roehampton, London, UK
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, JARA-Brain, RWTH Aachen University , Aachen , Germany
| | - Renaud Jardri
- Univ Lille, CNRS, UMR-9193, psyCHIC team & CHU Lille, Psychiatry Dpt (CURE), Fontan Hospital , Lille , France
| |
Collapse
|
6
|
Tordesillas-Gutierrez D, Koutsouleris N, Roiz-Santiañez R, Meisenzahl E, Ayesa-Arriola R, Marco de Lucas E, Soriano-Mas C, Suarez-Pinilla P, Crespo-Facorro B. Grey matter volume differences in non-affective psychosis and the effects of age of onset on grey matter volumes: A voxelwise study. Schizophr Res 2015; 164:74-82. [PMID: 25687531 DOI: 10.1016/j.schres.2015.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/18/2023]
Abstract
Previous evidence indicates that structural brain alterations are already present in the early phases of psychosis. In this study we aim to investigate the relationships among the different diagnoses in the spectrum of non-affective psychosis. A hundred-and-one first-episode psychosis patients (FEP) and 69 healthy volunteers, matched for age, gender, handedness and educational level were analyzed by structural MRI and high-dimensional voxel-based morphometry as implemented in SPM8 software. We obtained three main results: (1) FEP patients showed reduction of grey matter volume (GMV) in the frontal, temporal and occipital lobes, left insula and cerebellum. (2) Age of disease onset was an important factor revealing a gradual decrease of GMV (healthy controls>late onset>intermediate onset>early onset) in the frontal, temporal and occipital lobes, insula and cerebellum. (3) A gradual reduction of GMV related to diagnosis spectrum in the frontal, temporal, parietal and occipital lobes of schizophrenia patients being the most affected. These results suggest that an earlier onset of psychosis is linked to an earlier disease-related disruption of structural brain development, which may be most pronounced in schizophrenia compared to other psychoses.
Collapse
Affiliation(s)
- Diana Tordesillas-Gutierrez
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain; CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain.
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Bavaria, Germany
| | - Roberto Roiz-Santiañez
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Bavaria, Germany
| | - Rosa Ayesa-Arriola
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Enrique Marco de Lucas
- Department of Radiology, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Carles Soriano-Mas
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Paula Suarez-Pinilla
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Benedicto Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| |
Collapse
|
7
|
Anderson KK, Rodrigues M, Mann K, Voineskos A, Mulsant BH, George TP, McKenzie KJ. Minimal evidence that untreated psychosis damages brain structures: a systematic review. Schizophr Res 2015; 162:222-33. [PMID: 25649287 DOI: 10.1016/j.schres.2015.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION A longer duration of untreated psychosis (DUP) is associated with poor outcomes in first-episode psychosis (FEP); however, it is unclear whether this is due to the effects of psychosis on brain structure. We systematically reviewed the literature on the association between the length of untreated psychosis and brain structure in first-episode psychosis. METHODS We searched three electronic databases and conducted forward and backward citation searching to identify relevant papers. Studies were included if they: (1) included patients with a psychotic disorder who were treatment naïve or minimally treated; and (2) had correlated measures of DUP or duration of untreated illness (DUI) with structural measures. RESULTS We identified 48 studies that met the inclusion criteria. Forty-three examined the correlation between DUP and brain structure, and 19 examined the correlation between DUI and brain structure. There was evidence of significant associations in brain regions considered important in psychosis; however, the proportion of significant associations was low and the findings were inconsistent across studies. The majority of included studies were not primarily designed to examine whether DUP/DUI is correlated with brain structure, and there were methodological limitations in many studies that prevent drawing a strong conclusion. CONCLUSION To date, there is minimal evidence of an association between untreated psychosis and brain structure in FEP. Although the body of literature is substantial, there are few hypothesis-driven studies with a primary objective to answer this question. Future studies should be specifically designed to examine whether untreated psychosis has a deleterious effect on brain structure.
Collapse
Affiliation(s)
- Kelly K Anderson
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| | - Myanca Rodrigues
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| | - Kamalpreet Mann
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| | - Aristotle Voineskos
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| | - Benoit H Mulsant
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| | - Tony P George
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| | - Kwame J McKenzie
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
8
|
Crow TJ, Chance SA, Priddle TH, Radua J, James AC. Laterality interacts with sex across the schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI. Psychiatry Res 2013; 210:1232-44. [PMID: 24011847 DOI: 10.1016/j.psychres.2013.07.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 06/29/2013] [Accepted: 07/31/2013] [Indexed: 12/30/2022]
Abstract
Review of the first comprehensive meta-analysis of VBM (voxel-based morphometry) studies in schizophrenia indicates asymmetrical reductions of anterior cingulate gyrus to the right, and medial temporal lobe (including the uncus) and para-hippocampal gyrus to the left. In subsequent meta-analyses of schizophrenia and bipolar disorder change in these limbic structures is systematically related to change in the insula. Deficits in insula (and para-hippocampal gyrus) to the left, and dorsal anterior cingulate gyrus to the right are greater in schizophrenic psychoses whereas deficits in anterior cingulate to the left and insula to the right are greater in bipolar illness. Thus (1) brain structures implicated in schizophrenia include those implicated in bipolar disorder, (2) the variation that separates the prototypical psychoses may be a subset of that relating to the structural asymmetry (the "torque") characteristic of the human brain, and (3) the meta-analysis of Bora et al. (2012) indicates that laterality of involvement of the insula and cingulate gyrus across the spectrum of bipolar and schizophrenic psychoses is critically dependent upon the sex ratio. Thus structural change underlying the continuum of psychosis relates to the interaction of laterality and sex.
Collapse
Affiliation(s)
- Timothy J Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | | | | | |
Collapse
|
9
|
Systematic meta-analysis of insula volume in schizophrenia. Biol Psychiatry 2012; 72:775-84. [PMID: 22621997 DOI: 10.1016/j.biopsych.2012.04.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/30/2012] [Accepted: 04/23/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Volume reduction in insular cortex may constitute an important neuropathology in schizophrenia. We provide the first meta-analysis of studies that conducted region-of-interest analyses of the magnitude of effect and pattern of insula volume reduction in schizophrenia compared with healthy control subjects. METHODS Included studies examined insula volume in schizophrenia relative to healthy control subjects. Studies were located via electronic database searches and hand searching. Study selection, data extraction, and quality assessment were completed by two independent reviewers. Hedge's g effect sizes were calculated using Comprehensive Meta-Analysis (v.2) to quantify volumetric differences between people with and without schizophrenia, accounting for moderating influences of age, sex, illness duration, medication, whole brain volume, and potential differences in hemispheric and anatomical subregions. RESULTS Random-effects analysis showed reductions of bilateral insula (n = 945, g = -.446, 95% confidence interval -.639 to -.252, p = .00001), with moderate heterogeneity apparent (I² = 76%). This effect was consistent across left and right insula and not influenced by illness stage or sex. Additional analyses revealed larger reductions of anterior (n = 605, g = -.643, p < 0.001; I² = 52%) than of posterior insula (n = 453, g = -.321, p = .028; I² = 55%). Meta-regression analyses did not identify any significant predictors of reduced insula volume. CONCLUSIONS This meta-analysis indicates medium-sized reduction of insula volume in schizophrenia, of greatest magnitude in the anterior subregion. Cellular distinctions across anterior and posterior insula may contribute to understanding the neuropathology and functional significance of the observed volumetric differences.
Collapse
|
10
|
Smieskova R, Fusar-Poli P, Aston J, Simon A, Bendfeldt K, Lenz C, Stieglitz RD, McGuire P, Riecher-Rössler A, Borgwardt SJ. Insular volume abnormalities associated with different transition probabilities to psychosis. Psychol Med 2012; 42:1613-1625. [PMID: 22126702 PMCID: PMC3413195 DOI: 10.1017/s0033291711002716] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Although individuals vulnerable to psychosis show brain volumetric abnormalities, structural alterations underlying different probabilities for later transition are unknown. The present study addresses this issue by means of voxel-based morphometry (VBM). METHOD We investigated grey matter volume (GMV) abnormalities by comparing four neuroleptic-free groups: individuals with first episode of psychosis (FEP) and with at-risk mental state (ARMS), with either long-term (ARMS-LT) or short-term ARMS (ARMS-ST), compared to the healthy control (HC) group. Using three-dimensional (3D) magnetic resonance imaging (MRI), we examined 16 FEP, 31 ARMS, clinically followed up for on average 3 months (ARMS-ST, n=18) and 4.5 years (ARMS-LT, n=13), and 19 HC. RESULTS The ARMS-ST group showed less GMV in the right and left insula compared to the ARMS-LT (Cohen's d 1.67) and FEP groups (Cohen's d 1.81) respectively. These GMV differences were correlated positively with global functioning in the whole ARMS group. Insular alterations were associated with negative symptomatology in the whole ARMS group, and also with hallucinations in the ARMS-ST and ARMS-LT subgroups. We found a significant effect of previous antipsychotic medication use on GMV abnormalities in the FEP group. CONCLUSIONS GMV abnormalities in subjects at high clinical risk for psychosis are associated with negative and positive psychotic symptoms, and global functioning. Alterations in the right insula are associated with a higher risk for transition to psychosis, and thus may be related to different transition probabilities.
Collapse
Affiliation(s)
- R. Smieskova
- Department of Psychiatry, University of Basel, Switzerland
- Medical Image Analysis Centre, University of Basel, Switzerland
| | - P. Fusar-Poli
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| | - J. Aston
- Department of Psychiatry, University of Basel, Switzerland
| | - A. Simon
- Specialized Out-patient Service for Early Psychosis, Department of Psychiatry, Bruderholz, Switzerland
- University Hospital of Psychiatry, University of Bern, Switzerland
| | - K. Bendfeldt
- Medical Image Analysis Centre, University of Basel, Switzerland
| | - C. Lenz
- Radiological Physics, University Hospital Basel, Switzerland
| | | | - P. McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| | | | - S. J. Borgwardt
- Department of Psychiatry, University of Basel, Switzerland
- Medical Image Analysis Centre, University of Basel, Switzerland
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| |
Collapse
|
11
|
Allen P, Modinos G, Hubl D, Shields G, Cachia A, Jardri R, Thomas P, Woodward T, Shotbolt P, Plaze M, Hoffman R. Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophr Bull 2012; 38:695-703. [PMID: 22535906 PMCID: PMC3406523 DOI: 10.1093/schbul/sbs066] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Despite more than 2 decades of neuroimaging investigations, there is currently insufficient evidence to fully understand the neurobiological substrate of auditory hallucinations (AH). However, some progress has been made with imaging studies in patients with AH consistently reporting altered structure and function in speech and language, sensory, and nonsensory regions. This report provides an update of neuroimaging studies of AH with a particular emphasis on more recent anatomical, physiological, and neurochemical imaging studies. Specifically, we provide (1) a review of findings in schizophrenia and nonschizophrenia voice hearers, (2) a discussion regarding key issues that have interfered with progress, and (3) practical recommendations for future studies.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, King's College, DeCrespigny Park, London SE5 8AF, UK.
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, King's College, DeCrespigny Park, London SE5 8AF, UK
| | - Daniela Hubl
- University Hospital of Psychiatry, Bern, Switzerland
| | - Gregory Shields
- Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK
| | - Arnaud Cachia
- UMR INSERM 894, Centre de Psychiatrie & Neurosciences, Centre Hospitalier Sainte-Anne & UMR CNRS 6232, Groupe d'imagerie neurofonctionnelle du développement, Sorbonne Université Paris Descartes, France
| | - Renaud Jardri
- Psychiatry Department, University Medical Centre of Lille, Lille North of France University, Lille, France
| | - Pierre Thomas
- Psychiatry Department, University Medical Centre of Lille, Lille North of France University, Lille, France
| | - Todd Woodward
- Department of Psychiatry, University of British Columbia BC Mental Health and Addiction Research Institute, Vancouver, Canada
| | - Paul Shotbolt
- Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK
| | - Marion Plaze
- Service Hospitalo-Universitaire & UMR INSERM 894, Centre de Psychiatrie & Neurosciences, Centre Hospitalier Sainte-Anne; Université Paris Descartes, France
| | - Ralph Hoffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
12
|
Virupaksha HS, Kalmady SV, Shivakumar V, Arasappa R, Venkatasubramanian G, Gangadhar BN. Volume and asymmetry abnormalities of insula in antipsychotic-naive schizophrenia: a 3-tesla magnetic resonance imaging study. Indian J Psychol Med 2012; 34:133-9. [PMID: 23162188 PMCID: PMC3498775 DOI: 10.4103/0253-7176.101778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
CONTEXT Insula, which is a vital brain region for self-awareness, empathy, and sensory stimuli processing, is critically implicated in schizophrenia pathogenesis. Existing studies on insula volume abnormalities report inconsistent findings potentially due to the evaluation of 'antipsychotic-treated' schizophrenia patients as well as suboptimal methodology. AIM To understand the role of insula in schizophrenia. MATERIALS AND METHODS In this first-time 3-T magnetic resonance imaging study, we examined antipsychotic-naive schizophrenic patients (N=30) and age-, sex-, handedness- and education-matched healthy controls (N=28). Positive and negative symptoms were scored with good interrater reliability (intraclass correlation coefficient (ICC)>0.9) by using the scales for negative and positive symptoms. Gray matter volume of insula and its anterior/posterior subregions were measured by using a three-dimensional, interactive, semiautomated software based on the valid method with good interrater reliability (ICC>0.85). Intracranial volume was automatically measured by using the FreeSurfer software. RESULTS Patients had significantly deficient gray matter volumes of left (F=33.4; P<0.00001) and right (F=11.9; P=0.001) insula after controlling for the effects of age, sex, and intracranial volume. Patients with predominantly negative symptoms had a significantly deficient right posterior insula volume than those with predominantly positive symptoms (F=6.3; P=0.02). Asymmetry index analysis revealed anterior insular asymmetry to be significantly reversed (right>left) in male patients in comparison with male controls (left>right) (t=2.7; P=0.01). CONCLUSIONS Robust insular volume deficits in antipsychotic-naive schizophrenia support intrinsic role for insula in pathogenesis of this disorder. The first-time demonstration of a relationship between right posterior insular deficit and negative symptoms is in tune with the background neurobiological literature. Another novel observation of sex-specific anterior insular asymmetry reversal in patients supports evolutionary postulates of schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Harve Shanmugam Virupaksha
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | | | | | | | | | | |
Collapse
|
13
|
Waters-Metenier S, Toulopoulou T. Putative structural neuroimaging endophenotypes in schizophrenia: a comprehensive review of the current evidence. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic contribution to schizophrenia etiopathogenesis is underscored by the fact that the best predictor of developing schizophrenia is having an affected first-degree relative, which increases lifetime risk by tenfold, as well as the observation that when both parents are affected, the risk of schizophrenia increases to approximately 50%, compared with 1% in the general population. The search to elucidate the complex genetic architecture of schizophrenia has employed various approaches, including twin and family studies to examine co-aggregation of brain abnormalities, studies on genetic linkage and studies using genome-wide association to identify genetic variations associated with schizophrenia. ‘Endophenotypes’, or ‘intermediate phenotypes’, are potentially narrower constructs of genetic risk. Hypothetically, they are intermediate in the pathway between genetic variation and clinical phenotypes and can supposedly be implemented to assist in the identification of genetic diathesis for schizophrenia and, possibly, in redefining clinical phenomenology.
Collapse
Affiliation(s)
- Sheena Waters-Metenier
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, London, UK
| | | |
Collapse
|
14
|
Wylie KP, Tregellas JR. The role of the insula in schizophrenia. Schizophr Res 2010; 123:93-104. [PMID: 20832997 PMCID: PMC2957503 DOI: 10.1016/j.schres.2010.08.027] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 11/30/2022]
Abstract
Involvement of the insular cortex is a common finding in neuroanatomical studies of schizophrenia, yet its contribution to disease pathology remains unknown. This review describes the normal function of the insula and examines pathology of this region in schizophrenia. The insula is a cortical structure with extensive connections to many areas of the cortex and limbic system. It integrates external sensory input with the limbic system and is integral to the awareness of the body's state (interoception). Many deficits observed in schizophrenia involve these functions and may relate to insula pathology. Furthermore, reports describing deficits caused by lesions of the insula parallel deficits observed in schizophrenia. Examples of insula-related functions that are altered in schizophrenia include the processing of both visual and auditory emotional information, pain, and neuronal representations of the self. The last of these functions, processing representations of the self, plays a key role in discriminating between self-generated and external information, suggesting that insula dysfunction may contribute to hallucinations, a cardinal feature of schizophrenia.
Collapse
Affiliation(s)
- Korey P Wylie
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO 80045, United States
| | | |
Collapse
|
15
|
Gutiérrez-Galve L, Wheeler-Kingshott CA, Altmann DR, Price G, Chu EM, Leeson VC, Lobo A, Barker GJ, Barnes TR, Joyce EM, Ron MA. Changes in the frontotemporal cortex and cognitive correlates in first-episode psychosis. Biol Psychiatry 2010; 68:51-60. [PMID: 20452574 PMCID: PMC3025327 DOI: 10.1016/j.biopsych.2010.03.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters. METHODS Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function. RESULTS Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered. CONCLUSIONS Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases.
Collapse
Affiliation(s)
- Leticia Gutiérrez-Galve
- University College London Institute of Neurology, London, United Kingdom,Hospital Clínico Universitario and Universidad de Zaragoza, Centro de Investigación Biomédica en Red de Salud Mental and Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | | | - Daniel R. Altmann
- University College London Institute of Neurology, London, United Kingdom,Medical Statistics Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gary Price
- University College London Institute of Neurology, London, United Kingdom
| | - Elvina M. Chu
- University College London Institute of Neurology, London, United Kingdom
| | - Verity C. Leeson
- University College London Institute of Neurology, London, United Kingdom
| | - Antonio Lobo
- Hospital Clínico Universitario and Universidad de Zaragoza, Centro de Investigación Biomédica en Red de Salud Mental and Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Gareth J. Barker
- King's College London, Institute of Psychiatry, Department of Clinical Neuroscience, Centre for Neuroimaging Sciences, London, United Kingdom
| | - Thomas R.E. Barnes
- Imperial College Faculty of Medicine, Charing Cross Campus, London, United Kingdom
| | - Eileen M. Joyce
- University College London Institute of Neurology, London, United Kingdom
| | - María A. Ron
- University College London Institute of Neurology, London, United Kingdom,Address correspondence to Maria A. Ron, Ph.D., FRCP, FRCPsych, University College London Institute of Neurology, London WC1N 3BG, United Kingdom
| |
Collapse
|
16
|
Roiz-Santiáñez R, Pérez-Iglesias R, Quintero C, Tordesillas-Gutiérrez D, Mata I, Ayesa R, Sánchez JMR, Gutiérrez A, Sanchez E, Vázquez-Barquero JL, Crespo-Facorro B. Insular cortex thinning in first episode schizophrenia patients. Psychiatry Res 2010; 182:216-22. [PMID: 20488679 DOI: 10.1016/j.pscychresns.2010.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/11/2010] [Accepted: 03/06/2010] [Indexed: 11/24/2022]
Abstract
Overall and regional cortical thinning has been observed at the first break of schizophrenia. Due to the fact that structural abnormalities in the insular cortex have been described in schizophrenia, we investigated insular thickness anomalies in first episode schizophrenia. Participants comprised 118 schizophrenia patients and 83 healthy subjects. Magnetic resonance imaging brain scans (1.5T) were obtained, and images were analyzed by using BRAINS2. The contribution of sociodemographic, cognitive and clinical characterictics was controlled. Schizophrenia patients demonstrated a significant right insular thinning, and a significant group by gender interaction was found for left insular thickness. Post-hoc comparisons revealed that male schizophrenia patients had a significant left insular thinning compared with healthy male subjects. There were no significant associations between insular thickness, the severity of symptoms at baseline and cognitive measurements and premorbid variables. The fact that insular thinning is already present at early phases of the illness and is independent of intervening variables offers evidence for the potential of these changes to be a biological marker of the illness.
Collapse
Affiliation(s)
- Roberto Roiz-Santiáñez
- University Hospital Marqués de Valdecilla, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|