1
|
Kennedy KG, Shahatit Z, Dimick MK, Fiksenbaum L, Freeman N, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. Neurostructural correlates of BDNF rs6265 genotype in youth bipolar disorder. Bipolar Disord 2022; 24:185-194. [PMID: 34263997 DOI: 10.1111/bdi.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) rs6265 single-nucleotide polymorphism has been associated with bipolar disorder (BD), and with brain structure among adults with BD. We set out to investigate the association of the BDNF rs6265 Met allele with neurostructural phenotypes in youth BD. METHODS Caucasian youth (N = 99; 13-20 years; n = 56 BD, n = 43 age and sex-matched healthy controls) underwent 3-Tesla Magnetic Resonance Imaging and genotyping for BDNF rs6265. Region of interest (ROI) analyses of the ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), and hippocampus were complemented by vertex-wise analyses examining cortical thickness, surface area (SA) and volume. Multivariable models included the main effects of diagnosis and gene, and a diagnosis-by-genotype interaction term, controlling for age, sex, and intracranial volume. RESULTS There were no significant gene main effects or diagnosis-by-gene interaction effects in ROI analyses. The vertex-wise analysis yielded a significant gene main effect whereby Met allele carriers had greater middle temporal gyrus SA (p = 0.001) and supramarginal gyrus volume (p = 0.03) than Val/Val individuals. Significant interaction effects were found on lateral occipital lobe SA (p = 0.03), whereby the Met allele was associated with increased SA in BD only. Interaction effects were also found on postcentral gyrus SA (p = 0.049) and supramarginal gyrus SA (p = 0.04), with smaller SA in BD Met carriers versus healthy control Met carriers. CONCLUSION These findings suggest that BDNF rs6265 is differentially associated with regional SA in youth BD. Further investigation is warranted to evaluate whether BDNF protein levels mediate the observed effects, and to evaluate rs6265-related developmental changes.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Zaid Shahatit
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Lisa Fiksenbaum
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Natalie Freeman
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement C Zai
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. DISEASE MARKERS 2021; 2021:6644631. [PMID: 33520013 PMCID: PMC7819753 DOI: 10.1155/2021/6644631] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a global medical problem that characterizes poor prognosis and high economic burden for the health system and family of the HF patients. Although modern treatment approaches have significantly decreased a risk of the occurrence of HF among patients having predominant coronary artery disease, hypertension, and myocarditis, the mortality of known HF continues to be unacceptably high. One of the most important symptoms of HF that negatively influences tolerance to physical exercise, well-being, social adaptation, and quality of life is deep fatigue due to HF-related myopathy. Myopathy in HF is associated with weakness of the skeletal muscles, loss of myofibers, and the development of fibrosis due to microvascular inflammation, metabolic disorders, and mitochondrial dysfunction. The pivotal role in the regulation of myocardial and skeletal muscle rejuvenation, attenuation of muscle metabolic homeostasis, and protection against ischemia injury and apoptosis belongs to myokines. Myokines are defined as a wide spectrum of active molecules that are directly synthesized and released by both cardiac and skeletal muscle myocytes and regulate energy homeostasis in autocrine/paracrine manner. In addition, myokines have a large spectrum of pleiotropic capabilities that are involved in the pathogenesis of HF including cardiac remodeling, muscle atrophy, and cardiac cachexia. The aim of the narrative review is to summarize the knowledge with respect to the role of myokines in adverse cardiac remodeling, myopathy, and clinical outcomes among HF patients. Some myokines, such as myostatin, irisin, brain-derived neurotrophic factor, interleukin-15, fibroblast growth factor-21, and growth differential factor-11, being engaged in the regulation of the pathogenesis of HF-related myopathy, can be detected in peripheral blood, and the evaluation of their circulating levels can provide new insights to the course of HF and stratify patients at higher risk of poor outcomes prior to sarcopenic stage.
Collapse
|
3
|
Are serum brain-derived neurotrophic factor concentrations related to brain structure and psychopathology in late childhood and early adolescence? CNS Spectr 2020; 25:790-796. [PMID: 31845634 DOI: 10.1017/s1092852919001688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Mental disorders can have a major impact on brain development. Peripheral blood concentrations of brain-derived neurotrophic factor (BDNF) are lower in adult psychiatric disorders. Serum BDNF concentrations and BDNF genotype have been associated with cortical maturation in children and adolescents. In 2 large independent samples, this study tests associations between serum BDNF concentrations, brain structure, and psychopathology, and the effects of BDNF genotype on BDNF serum concentrations in late childhood and early adolescence. METHODS Children and adolescents (7-14 years old) from 2 cities (n = 267 in Porto Alegre; n = 273 in São Paulo) were evaluated as part of the Brazilian high-risk cohort (HRC) study. Serum BDNF concentrations were quantified by sandwich ELISA. Genotyping was conducted from blood or saliva samples using the SNParray Infinium HumanCore Array BeadChip. Subcortical volumes and cortical thickness were quantified using FreeSurfer. The Development and Well-Being Behavior Assessment was used to identify the presence of a psychiatric disorder. RESULTS Serum BDNF concentrations were not associated with subcortical volumes or with cortical thickness. Serum BDNF concentration did not differ between participants with and without mental disorders, or between Val homozygotes and Met carriers. CONCLUSIONS No evidence was found to support serum BDNF concentrations as a useful marker of developmental differences in brain and behavior in early life. Negative findings were replicated in 2 of the largest independent samples investigated to date.
Collapse
|
4
|
Cirillo A, Diniz E, Gadelha A, Asevedo E, Axelrud LK, Miguel EC, Rohde LA, Bressan RA, Pan P, Mari JDJ. Population neuroscience: challenges and opportunities for psychiatric research in low- and middle-income countries. ACTA ACUST UNITED AC 2020; 42:442-448. [PMID: 32267341 PMCID: PMC7430393 DOI: 10.1590/1516-4446-2019-0761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/01/2019] [Indexed: 12/21/2022]
Abstract
Objective: Population neuroscience is an emerging field that combines epidemiology and neuroscience to study how genes and the environment shape typical and atypical brain functioning. The objective of this study was to review key studies on population neuroscience from low- and middle-income countries (LMICs) and to identify potential gaps vis-à-vis studies conducted in high-income countries. Methods: We conducted a systematic review to search for longitudinal cohort studies investigating the development of psychiatric disorders in children and adolescents in LMICs. We performed an electronic search in the EMBASE and MEDLINE databases from inception to July 5th, 2019. Results: We found six cohorts from four countries that met our search criteria: three cohorts from Brazil, one from China, one from South Africa, and one from Mauritius. Relevant examples of findings from these studies are reported. Conclusion: Our results demonstrate the impact of the valuable science output these cohort designs promote, allowing LMICs to have a share in frontline global psychiatry research. National and international funding agencies should invest in LMIC population neuroscience in order to promote replication and generalization of research from high-income countries.
Collapse
Affiliation(s)
| | - Elton Diniz
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ary Gadelha
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elson Asevedo
- Global Mental Health Program, Columbia University, New York, NY, USA
| | - Luiza K Axelrud
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Departamento de Psiquiatria, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Eurípedes C Miguel
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Departamento de Psiquiatria, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Luis Augusto Rohde
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Departamento de Psiquiatria, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Rodrigo A Bressan
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Pedro Pan
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jair de J Mari
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
5
|
Zortea M, Ramalho L, Alves RL, Alves CFDS, Braulio G, Torres ILDS, Fregni F, Caumo W. Transcranial Direct Current Stimulation to Improve the Dysfunction of Descending Pain Modulatory System Related to Opioids in Chronic Non-cancer Pain: An Integrative Review of Neurobiology and Meta-Analysis. Front Neurosci 2019; 13:1218. [PMID: 31803005 PMCID: PMC6876542 DOI: 10.3389/fnins.2019.01218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Opioid long-term therapy can produce tolerance, opioid-induced hyperalgesia (OIH), and it induces dysfunction in pain descending pain inhibitory system (DPIS). Objectives: This integrative review with meta-analysis aimed: (i) To discuss the potential mechanisms involved in analgesic tolerance and opioid-induced hyperalgesia (OIH). (ii) To examine how the opioid can affect the function of DPIS. (ii) To show evidence about the tDCS as an approach to treat acute and chronic pain. (iii) To discuss the effect of tDCS on DPIS and how it can counter-regulate the OIH. (iv) To draw perspectives for the future about the tDCS effects as an approach to improve the dysfunction in the DPIS in chronic non-cancer pain. Methods: Relevant published randomized clinical trials (RCT) comparing active (irrespective of the stimulation protocol) to sham tDCS for treating chronic non-cancer pain were identified, and risk of bias was assessed. We searched trials in PubMed, EMBASE and Cochrane trials databases. tDCS protocols accepted were application in areas of the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), or occipital area. Results: Fifty-nine studies were fully reviewed, and 24 with moderate to the high-quality methodology were included. tDCS improved chronic pain with a moderate effect size [pooled standardized mean difference; -0.66; 95% confidence interval (CI) -0.91 to -0.41]. On average, active protocols led to 27.26% less pain at the end of treatment compared to sham [95% CI; 15.89-32.90%]. Protocol varied in terms of anodal or cathodal stimulation, areas of stimulation (M1 and DLPFC the most common), number of sessions (from 5 to 20) and current intensity (from 1 to 2 mA). The time of application was 20 min in 92% of protocols. Conclusion: In comparison with sham stimulation, tDCS demonstrated a superior effect in reducing chronic pain conditions. They give perspectives that the top-down neuromodulator effects of tDCS are a promising approach to improve management in refractory chronic not-cancer related pain and to enhance dysfunctional neuronal circuitries involved in the DPIS and other pain dimensions and improve pain control with a therapeutic opioid-free. However, further studies are needed to determine individualized protocols according to a biopsychosocial perspective.
Collapse
Affiliation(s)
- Maxciel Zortea
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Leticia Ramalho
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Rael Lopes Alves
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Gilberto Braulio
- Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Service of Anesthesia and Perioperative Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Iraci Lucena da Silva Torres
- Department of Pharmacology, Institute of Health Sciences (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Pharmacology of Pain and Neuromodulation: Pre-clinical Investigations Research Group, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Pain Treatment and Palliative Medicine Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
6
|
Effects of Exercise on Cognitive Performance in Children and Adolescents with ADHD: Potential Mechanisms and Evidence-based Recommendations. J Clin Med 2019; 8:jcm8060841. [PMID: 31212854 PMCID: PMC6617109 DOI: 10.3390/jcm8060841] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with a complex symptomatology, and core symptoms as well as functional impairment often persist into adulthood. Recent investigations estimate the worldwide prevalence of ADHD in children and adolescents to be ~7%, which is a substantial increase compared to a decade ago. Conventional treatment most often includes pharmacotherapy with central nervous stimulants, but the number of non-responders and adverse effects call for treatment alternatives. Exercise has been suggested as a safe and low-cost adjunctive therapy for ADHD and is reported to be accompanied by positive effects on several aspects of cognitive functions in the general child population. Here we review existing evidence that exercise affects cognitive functions in children with and without ADHD and present likely neurophysiological mechanisms of action. We find well-described associations between physical activity and ADHD, as well as causal evidence in the form of small to moderate beneficial effects following acute aerobic exercise on executive functions in children with ADHD. Despite large heterogeneity, meta-analyses find small positive effects of exercise in population-based control (PBC) children, and our extracted effect sizes from long-term interventions suggest consistent positive effects in children and adolescents with ADHD. Paucity of studies probing the effect of different exercise parameters impedes finite conclusions in this regard. Large-scale clinical trials with appropriately timed exercise are needed. In summary, the existing preliminary evidence suggests that exercise can improve cognitive performance intimately linked to ADHD presentations in children with and without an ADHD diagnosis. Based on the findings from both PBC and ADHD children, we cautiously provide recommendations for parameters of exercise.
Collapse
|
7
|
Jin MJ, Jeon H, Hyun MH, Lee SH. Influence of childhood trauma and brain-derived neurotrophic factor Val66Met polymorphism on posttraumatic stress symptoms and cortical thickness. Sci Rep 2019; 9:6028. [PMID: 30988377 PMCID: PMC6465240 DOI: 10.1038/s41598-019-42563-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Interaction between childhood trauma and genetic factors influences the pathophysiology of posttraumatic stress disorder (PTSD). This study examined the interaction effect of childhood trauma and brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on PTSD symptoms and brain cortical thickness. A total of 216 participants (133 healthy volunteers and 83 PTSD patients) were recruited. T1-weighted structural magnetic resonance imaging, BDNF rs6265 genotyping through blood sampling, and clinical assessments including the childhood trauma questionnaire (CTQ) and posttraumatic stress disorder Checklist (PCL) were performed. A moderated regression analysis, two-way multivariate analysis of covariance, and correlation analysis were conducted. An interaction between the CTQ and the BDNF polymorphism significantly influenced PTSD symptom severity. In fact, people with rs6265 Val/Val genotype and higher CTQ scores showed higher PCL scores. Additionally, this interaction was significant on both left fusiform and transverse temporal gyri thickness. Furthermore, the thickness of both brain regions was significantly correlated with psychological symptoms including depression, anxiety, rumination, and cognitive emotion regulation methods; yet this was mainly observed in people with the Val/Val genotype. The interaction between childhood trauma and BDNF polymorphism significantly influences both PTSD symptoms and cortical thickness and the Val/Val genotype may increase the risk in Korean population.
Collapse
Affiliation(s)
- Min Jin Jin
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
- Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Myoung Ho Hyun
- Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea.
- Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea.
| |
Collapse
|
8
|
Changes in neuroplasticity following early-life social adversities: the possible role of brain-derived neurotrophic factor. Pediatr Res 2019; 85:225-233. [PMID: 30341412 DOI: 10.1038/s41390-018-0205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Social adversities experienced in childhood can have a profound impact on the developing brain, leading to the emergence of psychopathologies in adulthood. Despite the burden this places on both the individual and society, the neurobiological aspects mediating this transition remain unclear. Recent advances in preclinical and clinical research have begun examining neuroplasticity-the nervous system's ability to form adaptive changes in response to new experience-in the context of early-life vulnerability to social adversities and plasticity-related alterations following such traumatic events. A key mediator of plasticity-related molecular processes is the brain-derived neurotrophic factor (BDNF), which has also been implicated in various psychiatric disorders related to childhood social adversities. Preclinical and clinical data suggest early-life social adversities (ELSA) might be associated with accelerated maturation of social network circuitry, a possible ontogenic adaptation to the adverse environment. Neural plasticity decreases by adulthood, lessening the efficacy of treatment in ELSA-related psychiatric disorders. However, literature data suggest that by increasing BDNF/TrkB signalling through antidepressant treatment a juvenile-like plasticity state can be induced, which allows for reorganization of the social circuitry when guided by psychotherapy and surrounded by a safe and positive environment.
Collapse
|
9
|
Hill T, Polk JD. BDNF, endurance activity, and mechanisms underlying the evolution of hominin brains. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:47-62. [PMID: 30575024 DOI: 10.1002/ajpa.23762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/21/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES As a complex, polygenic trait, brain size has likely been influenced by a range of direct and indirect selection pressures for both cognitive and non-cognitive functions and capabilities. It has been hypothesized that hominin brain expansion was, in part, a correlated response to selection acting on aerobic capacity (Raichlen & Polk, 2013). According to this hypothesis, selection for aerobic capacity increased the activity of various signaling molecules, including those involved in brain growth. One key molecule is brain-derived neurotrophic factor (BDNF), a protein that regulates neuronal development, survival, and plasticity in mammals. This review updates, partially tests, and expands Raichlen and Polk's (2013) hypothesis by evaluating evidence for BDNF as a mediator of brain size. DISCUSSION We contend that selection for endurance capabilities in a hot climate favored changes to muscle composition, mitochondrial dynamics and increased energy budget through pathways involving regulation of PGC-1α and MEF2 genes, both of which promote BDNF activity. In addition, the evolution of hairlessness and the skin's thermoregulatory response provide other molecular pathways that promote both BDNF activity and neurotransmitter synthesis. We discuss how these pathways contributed to the evolution of brain size and function in human evolution and propose avenues for future research. Our results support Raichlen and Polk's contention that selection for non-cognitive functions has direct mechanistic linkages to the evolution of brain size in hominins.
Collapse
Affiliation(s)
- Tyler Hill
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - John D Polk
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, Illinois
| |
Collapse
|