1
|
Wang Y, Huang Y, Luo X, Lai X, Yu L, Zhao Z, Zhang A, Li H, Huang G, Li Y, Wang J, Wu Q. Deciphering the role of miRNA-134 in the pathophysiology of depression: A comprehensive review. Heliyon 2024; 10:e39026. [PMID: 39435111 PMCID: PMC11492588 DOI: 10.1016/j.heliyon.2024.e39026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
This study summarizes the significance of microRNA-134 (miRNA-134) in the pathophysiology, diagnosis, and treatment of depression, a disease still under investigation due to its complexity. miRNA-134 is an endogenous short non-coding RNA that can bind to the 3' untranslated region (3'UTR) of miRNA-134, inhibiting gene translation and showing great potential in the regulation of mood, synaptic plasticity, and neuronal function. This study included 15 articles retrieved from four English-language databases: PubMed, Embase, The Cochrane Library, and Web of Science, and three Chinese literature databases: CNKI, Wanfang, and Chinese Science and Technology Periodical Database (VIP).We evaluated each of the 15 articles using the Critical Appraisal Skills Program (CASP) tool.The standard integrates analyzes of genomic, transcriptomic, neuroimaging, and behavioral data analyses related to miRNA-134 and depression. A multidimensional framework based on standardized criteria was used for quality assessment. The main findings indicate that miRNA-134 significantly affects synaptic plasticity and neurotransmitter regulation, in particular the synthesis and release of serotonin and dopamine. miRNA-134 shows high sensitivity and specificity as a biomarker for the diagnosis of depression and has therapeutic potential for the targeted treatment of depression. miRNA-134 plays a crucial role in the pathogenesis of depression, providing valuable insights for early diagnosis and the development of targeted therapeutic strategies. This work highlights the potential of miRNA-134 as a focal point for advancing personalized medicine approaches for depression.
Collapse
Affiliation(s)
- Yunkai Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yali Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Xin Lai
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, Guangzhou, 510655, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Hong Li
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yu Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Yu H, Li X, Zhang Q, Geng L, Su B, Wang Y. miR-143-3p modulates depressive-like behaviors via Lasp1 in the mouse ventral hippocampus. Commun Biol 2024; 7:944. [PMID: 39098885 PMCID: PMC11298515 DOI: 10.1038/s42003-024-06639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Depression is a prevalent and intricate mental disorder. The involvement of small RNA molecules, such as microRNAs in the pathogenesis and neuronal mechanisms underlying the depression have been documented. Previous studies have demonstrated the involvement of microRNA-143-3p (miR-143-3p) in the process of fear memory and pathogenesis of ischemia; however, the relationship between miR-143-3p and depression remains poorly understood. Here we utilized two kinds of mouse models to investigate the role of miR-143-3p in the pathogenesis of depression. Our findings reveal that the expression of miR-143-3p is upregulated in the ventral hippocampus (VH) of mice subjected to chronic restraint stress (CRS) or acute Lipopolysaccharide (LPS) treatment. Inhibiting the expression of miR-143-3p in the VH effectively alleviates depressive-like behaviors in CRS and LPS-treated mice. Furthermore, we identify Lasp1 as one of the downstream target genes regulated by miR-143-3p. The miR-143-3p/Lasp1 axis primarily affects the occurrence of depressive-like behaviors in mice by modulating synapse numbers in the VH. Finally, miR-143-3p/Lasp1-induced F-actin change is responsible for the synaptic number variations in the VH. In conclusion, this study enhances our understanding of microRNA-mediated depression pathogenesis and provides novel prospects for developing therapeutic approaches for this intractable mood disorder.
Collapse
Affiliation(s)
- Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Xiaobing Li
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China
- Department of Human Anatomy Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China
| | - Qiyao Zhang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China
| | - Lian Geng
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China.
| | - Yue Wang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China.
- Department of Human Anatomy Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China.
| |
Collapse
|
3
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Wu D, Zhong S, Du H, Han S, Wei X, Gong Q. MiR-184-5p represses neuropathic pain by regulating CCL1/CCR8 signaling interplay in the spinal cord in diabetic mice. Neurol Res 2024; 46:54-64. [PMID: 37842802 DOI: 10.1080/01616412.2023.2257454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/18/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Diabetic neuropathic pain (DNP) is a serious complication for diabetic patients involving nervous system. MicroRNAs (miRNAs) are small-noncoding RNAs which are dysregulated in neuropathic pain, and might be critical molecules for pain treatment. Our previous study has shown miR-184-5p was significantly downregulated in DNP. Therefore, the mechanism of miR-184-5p in DNP was investigated in this study. METHODS A DNP model was established through streptozotocin (STZ). The pharmacological tools were injected intrathecally, and pain behavior was evaluated by paw withdrawal mechanical thresholds (PWMTs). Bioinformatics analysis, Dual-luciferase reporter assay and fluorescence-in-situ-hybridization (FISH) were used to seek and confirm the potential target genes of miR-184-5p. The expression of relative genes and proteins was analyzed by quantitative reverse transcriptase real-time PCR (qPCR) and western blotting. RESULTS MiR-184-5p expression was down-regulated in spinal dorsal on days 7 and 14 after STZ, while intrathecal administration of miR-184-5p agomir attenuates neuropathic pain induced by DNP and intrathecal miR-184-5p antagomir induces pain behaviors in naïve mice. Chemokine CC motif ligand 1 (CCL1) was found to be a potential target of miR-184-5p and the protein expression of CCL1 and the mRNA expression of CCR8 were up-regulated in spinal dorsal on days 7 and 14 after STZ. The luciferase reporter assay and FISH demonstrated that CCL1 is a direct target of miR-184-5p. MiR-184-5p overexpression attenuated the expression of CCL1/CCR8 in DNP; intrathecal miR-184-5p antagomir increased the expression of CCL1/CCR8 in spinal dorsal of naïve mice. CONCLUSION This research illustrates that miR-184-5p alleviates DNP through the inhibition of CCL1/CCR8 signaling expression.
Collapse
Affiliation(s)
- Danlei Wu
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuotao Zhong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiying Du
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Qingjuan Gong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Kurtulmuş A, Koçana CÇ, Toprak SF, Sözer S. The role of Extracellular Genomic Materials (EGMs) in psychiatric disorders. Transl Psychiatry 2023; 13:262. [PMID: 37464177 PMCID: PMC10354097 DOI: 10.1038/s41398-023-02549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Extracellular Genomic Materials (EGMs) are the nucleic acids secreted or released from all types of cells by endogenous or exogenous stimuli through varying mechanisms into the extracellular region and inevitably to all biological fluids. EGMs could be found as free, protein-bound, and/ or with vesicles. EGMs can potentially have immunophenotypic and/or genotypic characteristics of a cell of origin, travel to distant organs, and interact with the new microenvironment. To achieve all, EGMs might bi-directionally transit through varying membranes, including the blood-brain barrier. Such ability provides the transfer of any information related to the pathophysiological changes in psychiatric disorders in the brain to the other distant organ systems or vice versa. In this article, many aspects of EGMs have been elegantly reviewed, including their potential in diagnosis as biomarkers, application in treatment modalities, and functional effects in the pathophysiology of psychiatric disorders. The psychiatric disorders were studied under subgroups of Schizophrenia spectrum disorders, bipolar disorder, depressive disorders, and an autism spectrum disorders. EGMs provide a robust and promising tool in clinics for prognosis and diagnosis. The successful application of EGMs into treatment modalities might further provide encouraging outcomes for researchers and clinicians in psychiatric disorders.
Collapse
Affiliation(s)
- Ayşe Kurtulmuş
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
- Istanbul Göztepe Prof.Dr.Süleyman Yalçın City Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Cemal Çağıl Koçana
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
6
|
Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol 2023; 14:1129186. [PMID: 37063278 PMCID: PMC10090555 DOI: 10.3389/fphar.2023.1129186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disorder with increasing prevalence worldwide. It is a leading cause of disability and suicide, severely affecting physical and mental health. However, the study of depression remains at an exploratory stage in terms of diagnostics and treatment due to the complexity of its pathogenesis. MicroRNAs are endogenous short-stranded non-coding RNAs capable of binding to the 3’untranslated region of mRNAs. Because of their ability to repress translation process of genes and are found at high levels in brain tissues, investigation of their role in depression has gradually increased recently. This article summarizes recent research progress on the relationship between microRNAs and depression. The microRNAs play a regulatory role in the pathophysiology of depression, involving dysregulation of monoamines, abnormalities in neuroplasticity and neurogenesis, hyperactivity of the HPA axis, and dysregulation of inflammatory responses. These microRNAs might provide new clue for the diagnosis and treatment of MDD, and the development of antidepressant drugs.
Collapse
Affiliation(s)
- Ruidong Ding
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dingyuan Su
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yu Wang
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Jia-Yi Wang
- San-Quan College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
7
|
Guedes PHG, Brussasco JG, Moço ACR, Moraes DD, Segatto M, Flauzino JMR, Mendes-Silva AP, Vieira CU, Madurro JM, Brito-Madurro AG. A highly reusable genosensor for late-life depression diagnosis based on microRNA 184 attomolar detection in human plasma. Talanta 2023; 258:124342. [PMID: 36940569 DOI: 10.1016/j.talanta.2023.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Late-Life Depression (LLD) is one of the most prevalent psychiatric disorders in elderly, causing significant functional impairments. MicroRNAs are small molecules involved in the post-transcriptional regulation of gene expression. Elderly individuals diagnosed with LLD present down regulation of miR-184 (hsa-miR-184) expression compared to healthy patients. Therefore, this miR-184 can be used as a biomarker to diagnose LLD. Current LLD diagnosis depends primarily on clinical subjective identification, based on symptoms and variable scales. This work introduces a novel and facile approach for the LLD diagnosis based on the development of an electrochemical genosensor for miR-184 detection in plasma, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). DPV results presented a 2-Fold increase in current value for healthy patients, compared to individuals with LLD when monitoring ethidium bromide oxidation peak. For EIS, a 1.5-fold increase in charge transfer resistance for healthy elderly subjects was observed in comparison with depressed patients. In addition, the analytical performance of the biosensor was evaluated using DPV, obtaining a linear response ranging from 10-9 mol L-1 to 10-17 mol L-1 of miR-184 in plasma and a detection limit of 10 atomoles L-1. The biosensor presented reusability, selectivity and stability, the current response remained 72% up to 50 days of storage. Thus, the genosensor proved to be efficient in the diagnosis of LLD, as well as the accurate quantification of miR-184 in real plasma samples of healthy and depressed patients.
Collapse
Affiliation(s)
- Pedro H G Guedes
- Institute of Biotecnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Jéssica G Brussasco
- Institute of Biotecnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Anna C R Moço
- Institute of Biotecnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Dayane D Moraes
- Institute of Biotecnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Monica Segatto
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - José M R Flauzino
- Institute of Biotecnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana P Mendes-Silva
- Institute of Biotecnology, Federal University of Uberlândia, Uberlândia, Brazil; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Carlos U Vieira
- Institute of Biotecnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - João M Madurro
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana G Brito-Madurro
- Institute of Biotecnology, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
8
|
Identification of Differentially Expressed microRNAs Associated with Ischemic Stroke by Integrated Bioinformatics Approaches. Int J Genomics 2022; 2022:9264555. [PMID: 36262825 PMCID: PMC9576445 DOI: 10.1155/2022/9264555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of disability and mortality worldwide. This study aims to find the crucial exosomal miRNAs associated with IS by using bioinformatics methods, reveal potential biomarkers for IS, and investigate the association between the identified biomarker and immune cell pattern in the peripheral blood of IS patients. In this study, 3 up-regulated miRNAs (hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p) miRNAs in the serum exosomes between IS patients and healthy controls from GEO database (GSE199942) and 25 down-regulated genes of peripheral blood mononuclear cells of IS patients from GSE22255 were obtained with the help of the R software. GO annotation and KEGG pathway enrichment analysis showed that the 25 down-regulated genes were associated with coenzyme metabolic process and were mainly enriched in the N-glycan biosynthesis pathway. Furthermore, we performed the LASSO algorithm to narrow down the above 25 intersected genes, and identified 8 key genes which had a good diagnostic value in discriminating IS patients from the healthy controls analyzed with ROC curve. CIBERSORT algorithm indicated that the abundance of M0 macrophages and resting mast cells was significantly lower than that of the control group. The spearman correlation analysis showed that STT3A was negatively correlated with the proportion of follicular helper T cells, activated NK cells and resting dendritic cells. Finally, GSE117064 showed that has-miR-16-5p was more advantageous for diagnosing stroke. In conclusion, hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p are identified as specific related exosomal miRNAs for IS patients. These genes may provide new targets for the early identification of IS.
Collapse
|
9
|
Sánchez-Lafuente CL, Kalynchuk LE, Caruncho HJ, Ausió J. The Role of MeCP2 in Regulating Synaptic Plasticity in the Context of Stress and Depression. Cells 2022; 11:cells11040748. [PMID: 35203405 PMCID: PMC8870391 DOI: 10.3390/cells11040748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a transcriptional regulator that is highly abundant in the brain. It binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. MeCP2 has mainly been studied for its role in neurodevelopmental disorders, but alterations in MeCP2 are also present in stress-related disorders such as major depression. Impairments in both stress regulation and synaptic plasticity are associated with depression, but the specific mechanisms underlying these changes have not been identified. Here, we review the interplay between stress, synaptic plasticity, and MeCP2. We focus our attention on the transcriptional regulation of important neuronal plasticity genes such as BDNF and reelin (RELN). Moreover, we provide evidence from recent studies showing a link between chronic stress-induced depressive symptoms and dysregulation of MeCP2 expression, underscoring the role of this protein in stress-related pathology. We conclude that MeCP2 is a promising target for the development of novel, more efficacious therapeutics for the treatment of stress-related disorders such as depression.
Collapse
Affiliation(s)
- Carla L. Sánchez-Lafuente
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Hector J. Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
- Correspondence:
| |
Collapse
|
10
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
11
|
The miRNome of Depression. Int J Mol Sci 2021; 22:ijms222111312. [PMID: 34768740 PMCID: PMC8582693 DOI: 10.3390/ijms222111312] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Depression is an effect of complex interactions between genetic, epigenetic and environmental factors. It is well established that stress responses are associated with multiple modest and often dynamic molecular changes in the homeostatic balance, rather than with a single genetic factor that has a strong phenotypic penetration. As depression is a multifaceted phenotype, it is important to study biochemical pathways that can regulate the overall allostasis of the brain. One such biological system that has the potential to fine-tune a multitude of diverse molecular processes is RNA interference (RNAi). RNAi is an epigenetic process showing a very low level of evolutionary diversity, and relies on the posttranscriptional regulation of gene expression using, in the case of mammals, primarily short (17–23 nucleotides) noncoding RNA transcripts called microRNAs (miRNA). In this review, our objective was to examine, summarize and discuss recent advances in the field of biomedical and clinical research on the role of miRNA-mediated regulation of gene expression in the development of depression. We focused on studies investigating post-mortem brain tissue of individuals with depression, as well as research aiming to elucidate the biomarker potential of miRNAs in depression and antidepressant response.
Collapse
|
12
|
A pair of dopamine neurons mediate chronic stress signals to induce learning deficit in Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:2023674118. [PMID: 34654742 DOI: 10.1073/pnas.2023674118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic stress could induce severe cognitive impairments. Despite extensive investigations in mammalian models, the underlying mechanisms remain obscure. Here, we show that chronic stress could induce dramatic learning and memory deficits in Drosophila melanogaster The chronic stress-induced learning deficit (CSLD) is long lasting and associated with other depression-like behaviors. We demonstrated that excessive dopaminergic activity provokes susceptibility to CSLD. Remarkably, a pair of PPL1-γ1pedc dopaminergic neurons that project to the mushroom body (MB) γ1pedc compartment play a key role in regulating susceptibility to CSLD so that stress-induced PPL1-γ1pedc hyperactivity facilitates the development of CSLD. Consistently, the mushroom body output neurons (MBON) of the γ1pedc compartment, MBON-γ1pedc>α/β neurons, are important for modulating susceptibility to CSLD. Imaging studies showed that dopaminergic activity is necessary to provoke the development of chronic stress-induced maladaptations in the MB network. Together, our data support that PPL1-γ1pedc mediates chronic stress signals to drive allostatic maladaptations in the MB network that lead to CSLD.
Collapse
|
13
|
Shi Y, Wang Q, Song R, Kong Y, Zhang Z. Non-coding RNAs in depression: Promising diagnostic and therapeutic biomarkers. EBioMedicine 2021; 71:103569. [PMID: 34521053 PMCID: PMC8441067 DOI: 10.1016/j.ebiom.2021.103569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Non-coding RNAs (ncRNAs), including microRNAs, circular RNAs, and long non-coding RNAs, are important regulators of normal biological processes and their abnormal expression may be involved in the pathogenesis of human diseases including depression. Multiple studies have demonstrated a significantly increased or reduced ncRNAs expression in depressed patients compared with healthy subjects and that antidepressant therapy can alter the aberrant expression of ncRNAs in depressed patients. Although the existing evidence is important, it is also mixed and a comprehensive review to guide an effective clinical translation is lacking. Focused on human research, this review summarizes clinical findings of ncRNAs in depression, including those in brain tissues and peripheral samples. We outlined the characteristics and functions of ncRNAs and highlighted their performance in the diagnosis and treatment of depression. Although their precise roles in depression remain uncertain, ncRNAs have shown potential value as biomarkers for diagnosis and therapy in depressed patients.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Qingyun Wang
- College of Agricultural and Environmental Sciences, University of California, Davis, California 95616, United States
| | - Ruize Song
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China; School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, Guangdong 510330, China.
| |
Collapse
|
14
|
Wang H. MicroRNAs, Multiple Sclerosis, and Depression. Int J Mol Sci 2021; 22:ijms22157802. [PMID: 34360568 PMCID: PMC8346048 DOI: 10.3390/ijms22157802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects the brain and spinal cord. There are several disease courses in MS including relapsing–remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS). Up to 50% of MS patients experience depressive disorders. Major depression (MD) is a serious comorbidity of MS. Many dysfunctions including neuroinflammation, peripheral inflammation, gut dysbiosis, chronic oxidative and nitrosative stress, and neuroendocrine and mitochondrial abnormalities may contribute to the comorbidity between MS and MD. In addition to these actions, medical treatment and microRNA (miRNA) regulation may also be involved in the mechanisms of the comorbidity between MS and MD. In the study, I review many common miRNA biomarkers for both diseases. These common miRNA biomarkers may help further explore the association between MS and MD.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
15
|
Miao C, Chang J. The important roles of microRNAs in depression: new research progress and future prospects. J Mol Med (Berl) 2021; 99:619-636. [PMID: 33641067 DOI: 10.1007/s00109-021-02052-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-encoding, single-stranded RNA molecules of about 22 nucleotides in length encoded by endogenous genes involved in posttranscriptional gene expression regulation. Studies have shown that miRNAs participate in a series of important pathophysiological processes, including the pathogenesis of depression. This article systematically summarized the research results published in the field of miRNAs and depression, which mainly involved three topics: circulating miRNAs as markers for diagnosis and prognosis of depression, the regulatory roles of miRNAs in the pathogenesis of depression, and the roles of miRNAs in the mechanisms of depression treatment. By summarizing and analyzing the research literature in recent years, we found that some circulating miRNAs can be potential biomarkers for the diagnosis and prognostic evaluation of depression. miRNAs that disorderly expressed during the disease play important roles in the depression pathogenesis, and miRNAs also play roles in the mechanisms of psychotherapy and drug therapy for depression. Elucidating the important roles of miRNAs in depression will bring people's understanding of the pathogenesis of depression to a new level. In addition, these miRNAs may be developed as new biomarkers for diagnosing depression, or as drug targets, or these molecules may be used as new drugs, which may provide new means for the treatment of depression. KEY MESSAGES: • The research results of miRNAs and depression are reviewed. • Circulating miRNAs can be potential biomarkers for depression. • MiRNAs play important roles in the depression pathogenesis. • MiRNAs play important roles in drug therapy for depression.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China. .,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Institute of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, 233100, China.
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
16
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
17
|
Abstract
Bcl-xL is a pro-survival protein of the Bcl2 family found in the mitochondrial membrane. Bcl-xL supports growth, development, and maturation of neurons, and it also prevents neuronal death during neurotoxic stimulation. This article reviews the mechanisms and upstream signaling that regulate the activity and abundance of Bcl-xL. Our team and others have reported that oxidative stress is a key regulator of intracellular Bcl-xL balance in neurons. Oxidative stress regulates synthesis, degradation, and activity of Bcl-xL and therefore neuronal function. During apoptosis, pro-apoptotic Bcl2 proteins such as Bax and Bak translocate to and oligomerize in the mitochondrial membrane. Formation of oligomers causes release of cytochrome c and activation of caspases that lead to neuronal death. Bcl-xL binds directly to pro-apoptotic Bcl2 proteins to block apoptotic signaling. Although anti-apoptotic roles of Bcl-xL have been well documented, an increasing number of studies in recent decades show that protein binding partners of Bcl-xL are not limited to Bcl2 proteins. Bcl-xL forms a complex with F1Fo ATP synthase, DJ-1, DRP1, IP3R, and the ryanodine receptor. These proteins support physiological processes in neurons such as growth and development and prevent neuronal damage by regulating mitochondrial ATP production, synapse formation, synaptic vesicle recycling, neurotransmission, and calcium signaling. However, under conditions of oxidative stress, Bcl-xL undergoes proteolytic cleavage thus lowering the abundance of functional Bcl-xL in neurons. Additionally, oxidative stress alters formation of Bcl-xL-mediated multiprotein complexes by regulating post-translational phosphorylation. Finally, oxidative stress regulates transcription factors that target the Bcl-x gene and alter accessibility of microRNA to mRNA influencing mRNA levels of Bcl-xL. In this review, we discussed how Bcl-xL supports the normal physiology of neurons, and how oxidative stress contributes to pathology by manipulating the dynamics of Bcl-xL production, degradation, and activity.
Collapse
Affiliation(s)
- Han-A Park
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Katheryn Broman
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Gibbons A, Sundram S, Dean B. Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Noncoding RNA 2020; 6:E33. [PMID: 32846922 PMCID: PMC7549354 DOI: 10.3390/ncrna6030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
The similarities between the depressive symptoms of Major Depressive Disorders (MDD) and Bipolar Disorders (BD) suggest these disorders have some commonality in their molecular pathophysiologies, which is not apparent from the risk genes shared between MDD and BD. This is significant, given the growing literature suggesting that changes in non-coding RNA may be important in both MDD and BD, because they are causing dysfunctions in the control of biochemical pathways that are affected in both disorders. Therefore, understanding the changes in non-coding RNA in MDD and BD will lead to a better understanding of how and why these disorders develop. Furthermore, as a significant number of individuals suffering with MDD and BD do not respond to medication, identifying non-coding RNA that are altered by the drugs used to treat these disorders offer the potential to identify biomarkers that could predict medication response. Such biomarkers offer the potential to quickly identify patients who are unlikely to respond to traditional medications so clinicians can refocus treatment strategies to ensure more effective outcomes for the patient. This review will focus on the evidence supporting the involvement of non-coding RNA in MDD and BD and their potential use as biomarkers for treatment response.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Suresh Sundram
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
19
|
Wingo TS, Yang J, Fan W, Min Canon S, Gerasimov ES, Lori A, Logsdon B, Yao B, Seyfried NT, Lah JJ, Levey AI, Boyle PA, Schneider JA, De Jager PL, Bennett DA, Wingo AP. Brain microRNAs associated with late-life depressive symptoms are also associated with cognitive trajectory and dementia. NPJ Genom Med 2020; 5:6. [PMID: 32047652 PMCID: PMC7004995 DOI: 10.1038/s41525-019-0113-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Late-life depression is associated with an increased risk for dementia but we have limited knowledge of the molecular mechanisms underlying this association. Here we investigated whether brain microRNAs, important posttranscriptional regulators of gene expression, contribute to this association. Late-life depressive symptoms were assessed annually in 300 participants of the Religious Orders Study and Rush Memory and Aging Project for a mean of 7 years. Participants underwent annual cognitive testing, clinical assessment of cognitive status, and uniform neuropathologic examination after death. microRNAs were profiled from the prefrontal cortex using NanoString platform in the discovery cohort and small RNA sequencing in the replication cohort. A global microRNA association study of late-life depressive symptoms was performed using linear mixed model adjusting for the potential confounding factors. Four brain microRNAs were associated with late-life depressive symptoms at adjusted p < 0.05: miR-484, miR-26b-5p, miR-30d-5p, and miR-197-3p. Lower expression levels of these miRNAs were associated having greater depressive symptoms. Furthermore, lower levels of miR-484 and miR-197-3p were associated with faster decline of cognition over time. Moreover, lower miR-484 level was associated with higher probability of having Alzheimer's dementia. Importantly, the associations between miR-484 and depressive symptoms and Alzheimer's dementia, respectively, were replicated in an independent cohort. Lastly, the predicted targets of miR-484 were enriched in a brain protein co-expression module involving synaptic transmission and regulation of synaptic plasticity. This study identified four brain microRNAs associated with late-life depressive symptoms assessed longitudinally. In addition, we found a molecular connection between late-life depression and dementia through miR-484.
Collapse
Affiliation(s)
- Thomas S. Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Jingjing Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Wen Fan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Se Min Canon
- Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | | | - Adriana Lori
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA USA
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA USA
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Allan I. Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Julia A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Aliza P. Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA USA
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA USA
| |
Collapse
|
20
|
Liu YP, Wu X, Meng JH, Yao J, Wang BJ. Functional Analysis of the 3' Untranslated Region of the Human GRIN1 Gene in Regulating Gene Expression in vitro. Neuropsychiatr Dis Treat 2020; 16:2361-2370. [PMID: 33116535 PMCID: PMC7567549 DOI: 10.2147/ndt.s268753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/12/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Abnormal expression of the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor may potentially increase the susceptibility to neuropsychiatric diseases. The purpose of this study was to investigate the functional sequence of the 3'UTR of the human GRIN1 gene, which encodes the GluN1 receptor to determine the effect on the expression of GluN1 receptor. METHODS We transferred seven recombinant pmirGLO recombinant vectors containing the 3'UTR truncated fragment of the GRIN1 gene into HEK-293, SK-N-SH, and U87 cell lines and compared the relative fluorescence intensity of adjacent length fragments. The TargetScan database was used to predict miRNAs. Then, miRNA mimics/inhibitors were co-transfected into the three cell lines with the 3'UTR of GRIN1 (pmirGLO - GRIN1), to investigate their influence on GRIN1 gene expression. RESULTS Compared with the pmirGLo-Basic vector, the relative fluorescence intensity of the complete GRIN1 gene 3'UTR recombinant sequence -27 bp - +1284 bp (the next base of the stop codon is +1) was significantly decreased in all three cell lines. The relative fluorescence intensities were significantly different between -27 bp - +294 bp and -27 bp - +497 bp regions, and between -27 bp - +708 bp and -27 bp - +907 bp regions. According to the prediction of the TargetScan database and analysis, miR-212-5p, miR-324-3p and miR-326 may bind to +295 bp - +497 bp, while miR-491-5p may bind to +798 bp - +907 bp. After co-transfection of miRNA mimic/inhibitor or mimic/inhibitor NC with a recombinant vector in the 3'UTR region of GRIN1 gene, we found that has-miR-491-5p inhibited GRIN1 expression significantly in all three cell lines, while has-miR-326 inhibitor upregulated GRIN1 expression in HEK-293 and U87 cells. CONCLUSION miR-491-5p may bind to the 3'UTR of the GRIN1 gene (+799 bp - +805 bp, the next base of the stop codon is +1) and down-regulate gene expression in HEK-293, SK-N-SH, and U87 cell lines, which implicates a potential role of miR-491-5p in central nervous system diseases.
Collapse
Affiliation(s)
- Yong-Ping Liu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jing-Hua Meng
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|