1
|
Feng S, Huang Y, Li H, Zhou S, Ning Y, Han W, Zhang Z, Liu C, Li J, Zhong L, Wu K, Wu F. Dynamic effective connectivity in the cerebellar dorsal dentate nucleus and the cerebrum, cognitive impairment, and clinical correlates in patients with schizophrenia. Schizophr Res 2024; 271:394-401. [PMID: 38729789 DOI: 10.1016/j.schres.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Schizophrenia (SZ) is characterized by disconnected cerebral networks. Recent studies have shown that functional connectivity between the cerebellar dorsal dentate nucleus (dDN) and cerebrum is correlated with psychotic symptoms, and processing speed in SZ patients. Dynamic effective connectivity (dEC) is a reliable indicator of brain functional status. However, the dEC between the dDN and cerebrum in patients with SZ remains largely unknown. METHODS Resting-state functional MRI data, symptom severity, and cognitive performance were collected from 74 SZ patients and 53 healthy controls (HC). Granger causality analysis and sliding time window methods were used to calculate dDN-based dEC maps for all subjects, and k-means clustering was performed to obtain several dEC states. Finally, between-group differences in dynamic effective connectivity variability (dECV) and clinical correlations were obtained using two-sample t-tests and correlation analysis. RESULTS We detected four dEC states from the cerebrum to the right dDN (IN states) and three dEC states from the right dDN to the cerebrum (OUT states), with SZ group having fewer transitions in the OUT states. SZ group had increased dECV from the right dDN to the right middle frontal gyrus (MFG) and left lingual gyrus (LG). Correlations were found between the dECV from the right dDN to the right MFG and symptom severity and between the dECV from the right dDN to the left LG and working memory performance. CONCLUSIONS This study reveals a dynamic causal relationship between cerebellar dDN and the cerebrum in SZ and provides new evidence for the involvement of cerebellar neural circuits in neurocognitive functions in SZ.
Collapse
Affiliation(s)
- Shixuan Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sumiao Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
| | - Wei Han
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyun Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenyu Liu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junhao Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liangda Zhong
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China.
| |
Collapse
|
2
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
3
|
Mehta DD, Siddiqui S, Ward HB, Steele VR, Pearlson GD, George TP. Functional and structural effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of auditory verbal hallucinations in schizophrenia: A systematic review. Schizophr Res 2024; 267:86-98. [PMID: 38531161 PMCID: PMC11531343 DOI: 10.1016/j.schres.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a disabling symptom for people with schizophrenia (SCZ), and do not always respond to antipsychotics. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for medication-refractory AVH, though the underlying neural mechanisms by which rTMS produces these effects remain unclear. This systematic review evaluated the structural and functional impact of rTMS for AVH in SCZ, and its association with clinical outcomes. METHODS A systematic search was conducted in Medline, PsychINFO, and PubMed using terms for four key concepts: AVH, SCZ, rTMS, neuroimaging. Using PRISMA guidelines, 18 studies were identified that collected neuroimaging data of an rTMS intervention for AVH in SCZ. Risk of bias assessments was conducted. RESULTS Low frequency (<5 Hz) rTMS targeting left hemispheric language processing regions may normalize brain abnormalities in AVH patients at structural, functional, electrophysiological, and topological levels, with concurrent symptom improvement. Amelioration of aberrant neural activity in frontotemporal networks associated with speech and auditory processing was commonly observed, as well as in cerebellar and emotion regulation regions. Neuroimaging analyses identified neural substrates with direct correlations to post-rTMS AVH severity, propounding their use as therapeutic targets. DISCUSSION Combined rTMS-neuroimaging highlights the multidimensional alterations of rTMS on brain activity and structure in treatment-resistant AVH, which may be used to develop more efficacious therapies. Larger randomized, sham-controlled studies are needed. Future studies should explore alternate stimulation targets, investigate the neural effects of high-frequency rTMS and evaluate long-term neuroimaging outcomes.
Collapse
Affiliation(s)
- Dhvani D Mehta
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Salsabil Siddiqui
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Heather B Ward
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vaughn R Steele
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Godfrey D Pearlson
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Tony P George
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
4
|
Cattarinussi G, Di Giorgio A, Sambataro F. Cerebellar dysconnectivity in schizophrenia and bipolar disorder is associated with cognitive and clinical variables. Schizophr Res 2024; 267:497-506. [PMID: 38582653 DOI: 10.1016/j.schres.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Abnormal cerebellar functional connectivity (FC) has been implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BD). However, the patterns of cerebellar dysconnectivity in these two disorders and their association with cognitive functioning and clinical symptoms have not been fully clarified. In this study, we examined cerebellar FC alterations in SCZ and BD-I and their association with cognition and psychotic symptoms. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data of 39 SCZ, 43 BD-I, and 61 healthy controls from the Consortium for Neuropsychiatric Phenomics dataset were examined. The cerebellum was parcellated into ten functional networks, and seed-based FC was calculated for each cerebellar system. Principal component analyses were used to reduce the dimensionality of the diagnosis-related FC and cognitive variables. Multiple regression analyses were used to assess the relationship between FC and cognitive and clinical data. RESULTS We observed decreased cerebellar FC with the frontal, temporal, occipital, and thalamic areas in individuals with SCZ, and a more widespread decrease in cerebellar FC in individuals with BD-I, involving the frontal, cingulate, parietal, temporal, occipital, and thalamic regions. SCZ had increased within-cerebellum and cerebellar frontal FC compared to BD-I. In BD-I, memory and verbal learning performances, which were higher compared to SCZ, showed a greater interaction with cerebellar FC patterns. Additionally, patterns of increased cortico-cerebellar FC were marginally associated with positive symptoms in patients. CONCLUSIONS Our findings suggest that shared and distinct patterns of cortico-cerebellar dysconnectivity in SCZ and BD-I could underlie cognitive impairments and psychotic symptoms in these disorders.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Annabella Di Giorgio
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Fan L, Li Y, Zhao X, Huang ZG, Liu T, Wang J. Dynamic nonreversibility view of intrinsic brain organization and brain dynamic analysis of repetitive transcranial magnitude stimulation. Cereb Cortex 2024; 34:bhae098. [PMID: 38494890 DOI: 10.1093/cercor/bhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Intrinsic neural activities are characterized as endless spontaneous fluctuation over multiple time scales. However, how the intrinsic brain organization changes over time under local perturbation remains an open question. By means of statistical physics, we proposed an approach to capture whole-brain dynamics based on estimating time-varying nonreversibility and k-means clustering of dynamic varying nonreversibility patterns. We first used synthetic fMRI to investigate the effects of window parameters on the temporal variability of varying nonreversibility. Second, using real test-retest fMRI data, we examined the reproducibility, reliability, biological, and physiological correlation of the varying nonreversibility substates. Finally, using repetitive transcranial magnetic stimulation-fMRI data, we investigated the modulation effects of repetitive transcranial magnetic stimulation on varying nonreversibility substate dynamics. The results show that: (i) as window length increased, the varying nonreversibility variance decreased, while the sliding step almost did not alter it; (ii) the global high varying nonreversibility states and low varying nonreversibility states were reproducible across multiple datasets and different window lengths; and (iii) there were increased low varying nonreversibility states and decreased high varying nonreversibility states when the left frontal lobe was stimulated, but not the occipital lobe. Taken together, these results provide a thermodynamic equilibrium perspective of intrinsic brain organization and reorganization under local perturbation.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xingjian Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
6
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
7
|
Xie Y, Guan M, He Y, Wang Z, Ma Z, Fang P, Wang H. The Static and dynamic functional connectivity characteristics of the left temporoparietal junction region in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Front Psychiatry 2023; 14:1071769. [PMID: 36761865 PMCID: PMC9907463 DOI: 10.3389/fpsyt.2023.1071769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a core symptom of schizophrenia. Low-frequency (e.g., 1 Hz) repetitive transcranial magnetic stimulation (rTMS) targeting language processing regions (e.g., left TPJ) has been evident as a potential treatment for AVH. However, the underlying neural mechanisms of the rTMS treatment effect remain unclear. The present study aimed to investigate the effects of 1 Hz rTMS on functional connectivity (FC) of the temporoparietal junction area (TPJ) seed with the whole brain in schizophrenia patients with AVH. METHODS Using a single-blind placebo-controlled randomized clinical trial, 55 patients with AVH were randomly divided into active treatment group (n = 30) or placebo group (n = 25). The active treatment group receive 15-day 1 Hz rTMS stimulation to the left TPJ, whereas the placebo group received sham rTMS stimulation to the same site. Resting-state fMRI scans and clinical measures were acquired for all patients before and after treatment. The seed-based (left TPJ) static and DFC was used to assess the connectivity characteristics during rTMS treatment in patients with AVH. RESULTS Overall, symptom improvement following 1 Hz rTMS treatment was found in the active treatment group, whereas no change occurred in the placebo group. Moreover, decreased static FC (SFC) of the left TPJ with the right temporal lobes, as well as increased SFC with the prefrontal cortex and subcortical structure were observed in active rTMS group. Increased dynamic FC (DFC) of the left TPJ with frontoparietal areas was also found in the active rTMS group. However, seed-based SFC and DFC were reduced to a great extent in the placebo group. In addition, these changed FC (SFC) strengths in the active rTMS group were associated with reduced severity of clinical outcomes (e.g., positive symptoms). CONCLUSION The application of 1 Hz rTMS over the left TPJ may affect connectivity characteristics of the targeted region and contribute to clinical improvement, which shed light on the therapeutic effect of rTMS on schizophrenia with AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|