1
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
2
|
Ives A, Le Roy D, Théroude C, Bernhagen J, Roger T, Calandra T. Macrophage migration inhibitory factor promotes the migration of dendritic cells through CD74 and the activation of the Src/PI3K/myosin II pathway. FASEB J 2021; 35:e21418. [PMID: 33774873 DOI: 10.1096/fj.202001605r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
Constitutively expressed by innate immune cells, the cytokine macrophage migration inhibitory factor (MIF) initiates host immune responses and drives pathogenic responses in infectious, inflammatory, and autoimmune diseases. Dendritic cells (DCs) express high levels of MIF, but the role of MIF in DC function remains poorly characterized. As migration is critical for DC immune surveillance, we investigated whether MIF promoted the migration of DCs. In classical transwell experiments, MIF-/- bone marrow-derived DCs (BMDCs) or MIF+/+ BMDCs treated with ISO-1, an inhibitor of MIF, showed markedly reduced spontaneous migration and chemotaxis. CD74-/- BMDCs that are deficient in the ligand-binding component of the cognate MIF receptor exhibited a migration defect similar to that of MIF-/- BMDCs. Adoptive transfer experiments of LPS-matured MIF+/+ and MIF-/- and of CD74+/+ and CD74-/- BMDCs injected into the hind footpads of homologous or heterologous mice showed that the autocrine and paracrine MIF activity acting via CD74 contributed to the recruitment of DCs to the draining lymph nodes. Mechanistically, MIF activated the Src/PI3K signaling pathway and myosin II complexes, which were required for the migration of BMDCs. Altogether, these data show that the cytokine MIF exerts chemokine-like activity for DC motility and trafficking.
Collapse
Affiliation(s)
- Annette Ives
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Elbaradie SMY, Bakry MS, Bosilah AH. Serum macrophage migration inhibition factor for diagnosing endometriosis and its severity: case-control study. BMC WOMENS HEALTH 2020; 20:189. [PMID: 32883256 PMCID: PMC7469285 DOI: 10.1186/s12905-020-01051-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023]
Abstract
Background Endometriosis is a long-standing progressive disease that affects women of reproductive age. Macrophage migration inhibitory factor (MIF) is one of non-invasive blood biomarker that was detected in sera of endometriotic patients. The present study aimed to determine the accuracy of serum MIF in diagnosing endometriosis in women with infertility and chronic pelvic pain, and correlate its level to the stage of the disease. Methods Observational case-control study conducted at Fayoum University hospital from March 2016 till September 2018. Three hundred women candidate for diagnostic laparoscopy for either infertility or gynecologic chronic pelvic pain were included. The study group included patients with symptoms suggestive of endometriosis or chocolate cyst by ultrasound and proved by laparoscopy and histopathology. The control group included other causes of infertility or pelvic pain. All patients undergone either diagnostic or operative laparoscopy, and before laparoscopy blood sampling for quantitative measurement of macrophage migration inhibitory factor (MIF) protein in serum by ELISA technique. Results The level of serum MIF was significantly higher in endometriosis group compared to control group (1.75 ± 1.48 pg/ml and 0.51 ± 0.45 pg/ ml, respectively, P = < 0.001), with a progressive increase with advancing stage (stage I, 1.3 ± 1.03 pg/ml, stage II, 1.7 ± 1.57 pg/ml, stage III, 2.1 ± 1.19 pg/ml and in stage IV, 3.2 ± 2.6 pg/ml). Moreover, in patients presented with pain and infertile patients showed significantly higher levels of serum MIF (1.92 ± 1.13 vs 1.21 ± 1.17 and 1.82 ± 1.13 vs 1.32 ± 0.91 respectively with p-value < 0.001). ROC curve of serum MIF with a cut off value of 0.85 pg/ml or more achieves a sensitivity of 80.6%, specificity of 83.3%, positive predictive value of 82.9% and negative predictive value of 81.2%. Conclusion Serum MIF might be a promising marker not only for noninvasive diagnosis of endometriosis but as a target for detecting severity as well.
Collapse
Affiliation(s)
- Sahar Mohamed Yehya Elbaradie
- Obstetric and Gynecology Department, Fayoum University, 23 Mohammed Gonemy of mohammed Elmakreef 6th district, nasr city, Cairo, Fayoum, Egypt.
| | - Mohamed Sobhy Bakry
- Obstetric and Gynecology Department, Fayoum University, 23 Mohammed Gonemy of mohammed Elmakreef 6th district, nasr city, Cairo, Fayoum, Egypt
| | - Almandouh Hussein Bosilah
- Obstetric and Gynecology Department, Fayoum University, 23 Mohammed Gonemy of mohammed Elmakreef 6th district, nasr city, Cairo, Fayoum, Egypt
| |
Collapse
|
4
|
Kakar-Bhanot R, Brahmbhatt K, Chauhan B, Katkam RR, Bashir T, Gawde H, Mayadeo N, Chaudhari UK, Sachdeva G. Rab11a drives adhesion molecules to the surface of endometrial epithelial cells. Hum Reprod 2020; 34:519-529. [PMID: 30597006 DOI: 10.1093/humrep/dey365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/11/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Is Rab11a GTPase, a regulator of intracellular trafficking, of significance in endometrial functions? SUMMARY ANSWER Rab11a is an important component of the cascades involved in equipping the endometrial epithelium (EE) with 'adhesiveness' and 'cohesiveness'. WHAT IS KNOWN ALREADY Cell adhesion molecules (CAMs) have been investigated extensively for modulation in their endometrial expression during the peri-implantation phase. However, the mechanisms by which CAMs are transported to the EE surface have not received the same attention. Rab11a facilitates transport of specific proteins to the plasma membrane in endothelial cells, fibroblasts, embryonic ectodermal cells, etc. However, its role in the transport of CAMs in EE remains unexplored. STUDY DESIGN, SIZE, DURATION In-vitro investigations were directed towards deciphering the role of Rab11a in trafficking of CAMs (integrins and E-cadherin) to the cell surface of Ishikawa, an EE cell line. Towards this, Rab11a stable knockdown (Rab-kd) and control clones of Ishikawa were generated. JAr (human trophoblastic cell line) cells were used to form multicellular spheroids. Pre-receptive (n = 6) and receptive (n = 6) phase endometrial tissues from women with proven fertility and receptive phase (n = 6) endometrial tissues from women with unexplained infertility were used. PARTICIPANTS/MATERIALS, SETTING, METHODS Rab-kd and control clones were used for in-vitro assays. Live cells were used for biotinylation, JAr spheroid assays, flow cytometry, trans-epithelial electrical resistance assays and wound-healing assays. Lysosome and Golgi membranes were isolated by ultracentrifugation. Confocal microscopy, immunoblotting, qRT-PCR and immunohistochemistry were employed for assessing the expression of Rab11a, integrins and E-cadherin. MAIN RESULTS AND THE ROLE OF CHANCE shRNA-mediated attenuation of Rab11a expression led to a significant (P < 0.01) decline in the surface localization of αVβ3 integrin. Cell surface protein extracts of Rab-kd clones showed a significant (P < 0.05) reduction in the levels of αV integrin. Further, a significant (P < 0.01) decrease was observed in the percent JAr spheroids attached to Rab-kd clones, compared to control clones. Rab-kd clones also showed a significant (P < 0.001) decline in the total levels of E-cadherin. This was caused neither by reduced transcription nor by increased lysosomal degradation. The role of Rab11a in maintaining the epithelial nature of the cells was evident by a significant increase in the migratory potential, presence of stress-fibres and a decrease in the trans-epithelial resistance in Rab-kd monolayers. Further, the levels of endometrial Rab11a and E-cadherin in the receptive phase were found to be significantly (P < 0.05) lower in women with unexplained infertility compared to that in fertile women. Taken together, these observations hint at a key role of Rab11a in the trafficking of αVβ3 integrin and maintenance of E-cadherin levels at the surface of EE cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The in-vitro setting of the study is a limitation. Further immunohistochemical localizations of Rab11a and CAMs were conducted on a limited number of human endometrial samples. WIDER IMPLICATIONS OF THE FINDINGS Rab11a-mediated trafficking of endometrial CAMs in EE cells can be explored further for its potential as a target for fertility regulation or infertility management. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Indian Council of Medical Research (ICMR), the Department of Science and Technology (DST), the Council of Scientific and Industrial Research (CSIR), Government of India. No competing interests are declared.
Collapse
Affiliation(s)
- Ruchi Kakar-Bhanot
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Krupanshi Brahmbhatt
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Bhagyashree Chauhan
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - R R Katkam
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - T Bashir
- Molecular Immunology and Microbiology Laboratory, ICMR-NIRRH, Mumbai, India
| | - H Gawde
- Genetic Research Centre, ICMR-NIRRH, Mumbai, India
| | - N Mayadeo
- Department of Gynecology and Obstetrics, Seth G.S. Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - U K Chaudhari
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Geetanjali Sachdeva
- Primate Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
5
|
Khamar P, Nishtala K, Shetty R, Panigrahi T, Shetty K, Pahuja N, Deshpande V, Ghosh A. Early biological responses in ocular tissue after SMILE and LASIK surgery. Exp Eye Res 2020; 192:107936. [PMID: 32001250 DOI: 10.1016/j.exer.2020.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/09/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
We studied the early protein profile in the ocular tissue extracted after LASIK and SMILE surgery. SMILE and LASIK was performed in contralateral eyes and stromal tissue samples were collected from 10 eyes of 5 donors. The stromal tissue samples were analyzed using label free quantification approach and ITRAQ labelling approach in LC-MS/MS. Combined functional analysis revealed many differentially expressed proteins which were involved in important biological processes. About 117 unique differentially expressed proteins were identified using two different proteomic approaches. Collagens, proteoglycans, corneal crystallins were enriched and showed differential expression in SMILE and LASIK as compared to the non-surgical control. Apart from these, 14-3-3 class of proteins, Lysozyme (LYZ), Macrophage Migratory Inhibitory Factor protein (MIF), Pigment Epithelial Derived Factor (PEDF) were differentially expressed when compared between LASIK and SMILE. Peroxiredoxin 1 (PRDX1) expression was found to be reduced in LASIK as compared to SMILE. The expression of Lysozyme C and Macrophage Migratory Inhibitory Factor inflammatory response was found to be less in SMILE as compared to LASIK. Western blot validation of specific markers such as Collagen IV (COL4), Keratocan (KERA), Lumican (LUM), Aldehyde dehydrogenase 3 A1 (ALDH3A1), Lysozyme C (LYZC) confirmed the differences in the protein levels observed in SMILE and LASIK operated tissues as compared to non-surgical controls. In conclusion, this study revealed the early molecular changes occurring in the cornea resulting from these two surgical procedures which may have implications on managing post-operative complications.
Collapse
Affiliation(s)
- Pooja Khamar
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore, India
| | | | - Rohit Shetty
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore, India
| | | | - Keerthi Shetty
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Natasha Pahuja
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore, India
| | - Vrushali Deshpande
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India; Singapore Eye Research Institute, Singapore.
| |
Collapse
|
6
|
Lv Z, Guo M, Li C, Shao Y, Zhao X, Zhang W. Macrophage migration inhibitory factor is involved in inflammation response in pathogen challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 87:839-846. [PMID: 30797067 DOI: 10.1016/j.fsi.2019.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine and plays critical roles in inflammatory and immune responses in vertebrates. However, its functional role in inflammation has not been well studied in invertebrates. In the present study, we cloned and characterized MIF gene from Apostichopus japonicus by RNA-seq and RACE approaches (designated as AjMIF). A 1047 bp fragment representing the full-length cDNA of AjMIF was obtained, including a 5' UTR of 100 bp, an open reading frame (ORF) of 366 bp encoding a polypeptide of 121 amino acids residues with the molecular weight of 13.43 kDa and theoretical isoelectric point of 5.63 and a 3' UTR of 580 bp. SMART analysis showed that AjMIF has conserved MIF domain (2-117aa) similar to its mammalian counterparts. The amino terminal proline residue (P2) and invariant lysine residue (K33) which are critical active sites of tautomerase activity in mammalian MIF were also detected. Phylogenic analysis and multiple alignments have shown that AjMIF shared higher degree of structural conservation and sequence identities with other counterparts from invertebrates and vertebrates. For Vibrio splendidus challenged sea cucumber, the peak expression of AjMIF mRNAs in coelomocytes were detected at 6 h (23.5-fold) and remained at high levels until 24 h (4.01-fold), and returned to normal level at 48 h in comparison with that of the control group. Similarly, a significant increase in the relative mRNA levels of AjMIF was also found in 10 μg mL-1 LPS-exposed primary cultured coelomocytes. Functional analysis indicated that recombinant AjMIF incubation could promote inflammatory response related genes of Ajp105, AjVEGF, AjMMP1 and AjHMGB3 expression by 1.35-fold, 1.36-fold, 1.83-fold and 1.27-fold increase, respectively, which was consistent with the findings in vertebrate MIFs. All these results collectively suggested that AjMIF had a similar function to MIFs in higher animals and might serve as a candidate cytokine in inflammatory regulation in sea cucumber.
Collapse
Affiliation(s)
- Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
7
|
Rutherford EJ, Hill ADK, Hopkins AM. Adhesion in Physiological, Benign and Malignant Proliferative States of the Endometrium: Microenvironment and the Clinical Big Picture. Cells 2018; 7:E43. [PMID: 29772648 PMCID: PMC5981267 DOI: 10.3390/cells7050043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Although the developments in cellular and molecular biology over the last few decades have significantly advanced our understanding of the processes and players that regulate invasive disease, many areas of uncertainty remain. This review will discuss the contribution of dysregulated cell⁻cell and cell⁻matrix adhesion to the invasion in both benign and malignant contexts. Using the endometrium as an illustrative tissue that undergoes clinically significant invasion in both contexts, the adhesion considerations in the cells ("seed") and their microenvironment ("soil") will be discussed. We hope to orientate this discussion towards translational relevance for the diagnosis and treatment of endometrial conditions, which are currently associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Emily J Rutherford
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
8
|
Schinagl A, Kerschbaumer RJ, Sabarth N, Douillard P, Scholz P, Voelkel D, Hollerweger JC, Goettig P, Brandstetter H, Scheiflinger F, Thiele M. Role of the Cysteine 81 Residue of Macrophage Migration Inhibitory Factor as a Molecular Redox Switch. Biochemistry 2018; 57:1523-1532. [PMID: 29412660 DOI: 10.1021/acs.biochem.7b01156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory and tumor-promoting cytokine that occurs in two redox-dependent immunologically distinct conformational isoforms. The disease-related structural isoform of MIF (oxMIF) can be specifically and predominantly detected in the circulation of patients with inflammatory diseases and in tumor tissue, whereas the ubiquitously expressed isoform of MIF (redMIF) is abundantly expressed in healthy and diseased subjects. In this article, we report that cysteine 81 within MIF serves as a "switch cysteine" for the conversion of redMIF to oxMIF. Modulating cysteine 81 by thiol reactive agents leads to significant structural rearrangements of the protein, resulting in a decreased β-sheet content and an increased random coil content, but maintaining the trimeric quaternary structure. This conformational change in the MIF molecule enables binding of oxMIF-specific antibodies BaxB01 and BaxM159, which showed beneficial activity in animal models of inflammation and cancer. Crystal structure analysis of the MIF-derived EPCALCS peptide, bound in its oxMIF-like conformation by the Fab fragment of BaxB01, revealed that this peptide adopts a curved conformation, making the central thiol protein oxidoreductase motif competent to undergo disulfide shuffling. We conclude that redMIF might reflect a latent zymogenic form of MIF, and formation of oxMIF leads to a physiologically relevant, i.e., enzymatically active, state.
Collapse
Affiliation(s)
- Alexander Schinagl
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | | | - Nicolas Sabarth
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | - Patrice Douillard
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | - Peter Scholz
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | - Dirk Voelkel
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | - Julia C Hollerweger
- Division of Structural Biology and Bioinformatics , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Peter Goettig
- Division of Structural Biology and Bioinformatics , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Hans Brandstetter
- Division of Structural Biology and Bioinformatics , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | | | - Michael Thiele
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| |
Collapse
|
9
|
MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc Natl Acad Sci U S A 2016; 113:E7917-E7926. [PMID: 27872288 DOI: 10.1073/pnas.1612717113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fibroblast-like synoviocytes mediate joint destruction in rheumatoid arthritis and exhibit sustained proinflammatory and invasive properties. CD44 is a polymorphic transmembrane protein with defined roles in matrix interaction and tumor invasion that is also a signaling coreceptor for macrophage migration inhibitory factor (MIF), which engages cell surface CD74. High-expression MIF alleles (rs5844572) are associated with rheumatoid joint erosion, but whether MIF signaling through the CD74/CD44 receptor complex promotes upstream autoimmune responses or contributes directly to synovial joint destruction is unknown. We report here the functional regulation of CD44 by an autocrine pathway in synovial fibroblasts that is driven by high-expression MIF alleles to up-regulate an inflammatory and invasive phenotype. MIF increases CD44 expression, promotes its recruitment into a functional signal transduction complex, and stimulates alternative exon splicing, leading to expression of the CD44v3-v6 isoforms associated with oncogenic invasion. CD44 recruitment into the MIF receptor complex, downstream MAPK and RhoA signaling, and invasive phenotype require MIF and CD74 and are reduced by MIF pathway antagonists. These data support a functional role for high-MIF expression alleles and the two-component CD74/CD44 MIF receptor in rheumatoid arthritis and suggest that pharmacologic inhibition of this pathway may offer a specific means to interfere with progressive joint destruction.
Collapse
|
10
|
Macrophage Migration Inhibitory Factor (MIF): Biological Activities and Relation with Cancer. Pathol Oncol Res 2016; 23:235-244. [DOI: 10.1007/s12253-016-0138-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/13/2016] [Indexed: 12/28/2022]
|
11
|
Xiong S, Klausen C, Cheng JC, Zhu H, Leung PCK. Activin B induces human endometrial cancer cell adhesion, migration and invasion by up-regulating integrin β3 via SMAD2/3 signaling. Oncotarget 2016; 6:31659-73. [PMID: 26384307 PMCID: PMC4741631 DOI: 10.18632/oncotarget.5229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/09/2015] [Indexed: 11/30/2022] Open
Abstract
Endometrial cancer is the fourth most common female cancer and the most common gynecological malignancy. Although it comprises only ~10% of all endometrial cancers, the serous histological subtype accounts for ~40% of deaths due to its aggressive behavior and propensity to metastasize. Histopathological studies suggest that elevated expression of activin/inhibin βB subunit is associated with reduced survival in non-endometrioid endometrial cancers (type II, mostly serous). However, little is known about the specific roles and mechanisms of activin (βB dimer) in serous endometrial cancer growth and progression. In the present study, we examined the biological functions of activin B in type II endometrial cancer cell lines, HEC-1B and KLE. Our results demonstrate that treatment with activin B increases cell migration, invasion and adhesion to vitronectin, but does not affect cell viability. Moreover, we show that activin B treatment increases integrin β3 mRNA and protein levels via SMAD2/3-SMAD4 signaling. Importantly, siRNA knockdown studies revealed that integrin β3 is required for basal and activin B-induced cell migration, invasion and adhesion. Our results suggest that activin B-SMAD2/3-integrin β3 signaling could contribute to poor patient survival by promoting the invasion and/or metastasis of type II endometrial cancers.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Xiao W, Dong X, Zhao H, Han S, Nie R, Zhang X, An R. Expression of MIF and c-erbB-2 in endometrial cancer. Mol Med Rep 2016; 13:3828-34. [PMID: 26985869 PMCID: PMC4838132 DOI: 10.3892/mmr.2016.4992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 12/08/2015] [Indexed: 12/03/2022] Open
Abstract
The aim of the present study was to investigate the expression of c-erbB-2 and macrophage migration inhibitory factor (MIF) in endometrial cancer and to elucidate the significance of the early diagnosis and prognosis of endometrial cancer. The gene copy number of c-erbB-2 and MIF was characterized by reverse transcription quantitative polymerase chain reaction and the reactivity was assessed by immunohistochemistry in 70 patients using a polyclonal antibody, and evaluated semiquantitatively according to the percentage of cells demonstrating membranous or diffuse cytoplasmic staining. A correlation between age, tumor stage, grade, myometrial invasion and lymph node metastasis was observed. The mRNA expression of c-erbB-2 and MIF was high in endometrial carcinoma. The positive expression rate of MIF protein in normal endometrium, atypical hyperplasia and endometrial carcinoma significantly increased along with the degree of aggravation of the disease by 20 (3/15), 45 (9/20) and 70% (35/50), respectively. The positive expression of MIF and c-erbB-2 was highest in endometrial cancer and a significantly higher level of protein was observed in tumors at stage I, stage G1, with a depth of myometrial invasion <0.4 cm and no lymph node metastasis. The protein expression of c-erbB-2 in endometrial cancer was higher in tumors at the G2-3 phase, clinical stage III–IV, lymph node metastasis, and had no association with the depth of myometrial invasion and age. MIF and c-erbB-2 were correlated with the occurrence and the development of endometrial cancer, and thus can be used for the early diagnosis and prognosis of endometrial cancer. The present study laid the foundation for identifying new treatments for endometrial cancer.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiujuan Dong
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Honghui Zhao
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Shiyu Han
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Ruixue Nie
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Xiahua Zhang
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Ruifang An
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
13
|
Zhang D, Xu G, Zhang R, Zhu Y, Gao H, Zhou C, Sheng J, Huang H. Decreased expression of aquaporin 2 is associated with impaired endometrial receptivity in controlled ovarian stimulation. Reprod Fertil Dev 2016; 28:499-506. [DOI: 10.1071/rd13397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 07/20/2014] [Indexed: 11/23/2022] Open
Abstract
Recently, there has been evidence of decreased implantation rates with in vitro fertilisation and embryo transfer due to controlled ovarian stimulation (COS). The aim of this study was to investigate the effect of COS on embryo implantation and the role of aquaporin 2 (AQP2). We recruited eight patients who underwent COS and 40 matched controls. Endometrial samples were collected on Day 4~8 after injection of human chorionic gonadotrophin in the COS group and in the mid-secretory phase in the control group. Human endometrial morphological changes after COS were examined and expression of AQP2, leukaemia inhibitory factor (LIF) and integrin B3 (ITGB3) were determined by quantitative polymerase chain reaction, western blotting and immunohistochemistry in human endometrium and Ishikawa cells. Attachment rates were obtained using the embryo attachment test. The results showed that endometrial epithelial cells from the COS group were disrupted and lacked pinopodes. Messenger RNA and protein levels of AQP2, LIF and ITGB3 decreased in endometrial samples from the COS group. Knockdown of AQP2 resulted in reduced expression of LIF and ITGB3 and reduced embryo attachment rates. In conclusion, impaired endometrial receptivity in patients who underwent COS is correlated with a decreased expression of AQP2.
Collapse
|
14
|
Pharmacological inhibition of MIF interferes with trophoblast cell migration and invasiveness. Placenta 2014; 36:150-9. [PMID: 25530499 DOI: 10.1016/j.placenta.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) is expressed by villous and extravillous cytotrophoblast. This study was aimed to investigate functional relevance of MIF for human trophoblast. METHODS MIF mRNA and protein were documented in cytotrophoblast (CT) and extravillous trophoblast cell line HTR-8/SVneo by RT-PCR, Western blot (WB), and immunocytochemistry. Recombinant human MIF (rhMIF), or its specific inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) were used in Wound healing migration and Matrigel invasion tests. Potential effectors, integrin subunits and matrix metalloproteinases (MMP) were studied using WB and gelatin zymography, respectively. RESULTS Blocking endogenous MIF by ISO-1 decreased HTR-8/SVneo cell migration dose dependently, most significantly with 200 μg/ml to 65% of control. Supplementation with rhMIF induced a significant stimulation to 129% of control with 200 ng/ml. In CT cell invasion test, ISO-1 at 200 μg/ml reduced invasion to 59% of control, while rhMIF (200 ng/ml) induced stimulation to 159% of control. In HTR-8/SVneo cells, invasion was significantly inhibited by ISO-1 to 40%, and increased to 150% of control by rhMIF (200 ng/ml). Integrin α1 was reduced by ISO-1 in both cell types, while integrins α5 and β1 were not changed. Addition of rhMIF increased integrin α1. In the presence of ISO-1, levels of MMP-2 and MMP-9 were reduced in CT and HTR-8/SVneo, while rhMIF stimulated MMP-2 in CT and MMP-9 in HTR-8/SVneo cells. CONCLUSION Reported findings provide the first insight into the cellular effects of MIF in human trophoblast, which acts to promote cell migration and invasion.
Collapse
|
15
|
Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development. PLoS One 2014; 9:e110434. [PMID: 25329068 PMCID: PMC4201552 DOI: 10.1371/journal.pone.0110434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease's symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF) appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO) mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT) mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2), cell adhesion (αv and β3 integrins), survival (B-cell lymphoma-2) and angiogenic (vascular endothelial cell growth) factorsrelevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.
Collapse
|
16
|
Wang D, Luo L, Chen W, Chen LZ, Zeng WT, Li W, Huang XH. Significance of the vascular endothelial growth factor and the macrophage migration inhibitory factor in the progression of hepatocellular carcinoma. Oncol Rep 2013; 31:1199-204. [PMID: 24366206 DOI: 10.3892/or.2013.2946] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the expression of vascular endothelial growth factor (VEGF) and macrophage migration inhibitory factor (MIF) in HCC progression and their correlation with clinicopathological factors as well as the relationship between their expression levels. The expression of serum VEGF and MIF was evaluated in 150 patients with HCC and in 30 normal volunteers by enzyme-linked immunosorbent assay (ELISA). VEGF and MIF expression levels were evaluated by immunohistochemistry on tissue microarrays containing 150 HCCs with paired adjacent non-cancer liver tissues. VEGF and MIF mRNA levels were determined by quantitative PCR in another 48 HCCs. The correlation of VEGF and MIF with clinicopathological factors was analyzed in HCC. Serum VEGF and MIF concentrations were higher in HCC patients than the levels in the controls. The expression levels of VEGF and MIF in the HCC tissues were both higher than those in the adjacent non-tumor liver tissues. Overexpression of VEGF and MIF was significantly associated with tumor size (P=0.027 and 0.022, respectively), intrahepatic metastasis (P=0.032 and 0.027, respectively), vascular invasion (P=0.044 and 0.039, respectively) and TNM stage (P=0.028 and 0.013, respectively). Furthermore, VEGF and MIF mRNA levels were higher in HCC compared to levels in the paired non-cancer liver tissues. VEGF and MIF mRNA levels were correlated with tumor stage and metastasis. The expression of VEGF was positively related with MIF expression in HCC. The expression of MIF and VEGF in HCC was markedly positively correlated, which suggests that MIF and VEGF play an important role in the progression of HCC. Both factors may concomitantly accelerate the progression of HCC.
Collapse
Affiliation(s)
- Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Liang Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Wei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Lian-Zhou Chen
- Department of General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Wen-Tao Zeng
- Department of General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Wen Li
- Department of General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Xiao-Hui Huang
- Department of General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| |
Collapse
|
17
|
Giannice R, Erreni M, Allavena P, Buscaglia M, Tozzi R. Chemokines mRNA expression in relation to the Macrophage Migration Inhibitory Factor (MIF) mRNA and Vascular Endothelial Growth Factor (VEGF) mRNA expression in the microenvironment of endometrial cancer tissue and normal endometrium: a pilot study. Cytokine 2013; 64:509-15. [PMID: 23985752 DOI: 10.1016/j.cyto.2013.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 07/03/2013] [Accepted: 07/21/2013] [Indexed: 12/30/2022]
Abstract
Tumor microenvironment inflammatory cells play a major role in cancer progression. Among these, the Tumor Associated Macrophages (TAMs) infiltration depends on the kind of chemokine, cytokines and growth factors secreted by the tumor cells and by the stroma in response to the cancer invasion. TAMs have been found to promote anti-tumor response in early stages and to stimulate neovascularization and metastases in advanced disease. In the microenvironment chemo-attractants of many human cancers, MIF and VEGF correlate with an increased TAMs recruitment. In addition, MIF enhances tumor cells metastases by modulating the immune responses and by promoting the angiogenesis related to VEGF. On the contrary the inhibition of MIF can lead to cell cycle arrest and apoptosis. Some chemokines (e.g. CXCL12, CXCL11, CXCL8) and their receptors, thanks to their ability to modulate migration and proliferation, are involved in the angiogenetic process. In this study we compared the expression of MIF mRNA with VEGF mRNA expression and with mRNA expression of other chemokines related to neo-angiogenesis, such as CXCL12, CXCL11, CXCL8 and CXCR4, in human endometrial cancer tissue (EC) and normal endometrium (NE). Fresh samples of EC tissue and NE were extracted from 15 patients with FIGO stage I-III undergoing primary surgery. Some of the tissue was sent for histology and part of it was treated with RNA later and stored at -80°C. Four patients dropped out. A significant up-regulation of MIF mRNA in EC tissue versus NE samples (P=0.01) was observed in all 11 patients. The MIF mRNA over-expression was coincident with a VEGF mRNA overexpression in 54% of patients (P=NS). MIF mRNA was inversely related to CXCL12 mRNA expression (P=0.01). MIF over-expression was significantly related to low grading G1-2 (P=0.01), endometrial type I (P=0.05), no lymphovascular spaces invasion (P=0.01) and 3years DFS (P=0.01). As reported in previous studies on patients with breast cancer, our data suggest that the up-regulation of MIF in patients with endometrial cancer might be related to the inhibition of distant and lymphatic spread.
Collapse
Affiliation(s)
- Raffaella Giannice
- Churchill Cancer Centre, Gynecologic Oncology Department, Old Road, Headington, Oxford OX3 7LE, UK; S. Carlo Borromeo's Hospital, Gynecologic and Obstetrics Department, Via Pio II n. 3, 20153 MI, Italy; Immunology and Inflammation Department, IRCCS Humanitas, Via A. Manzoni 53, Rozzano, MI, Italy.
| | | | | | | | | |
Collapse
|
18
|
Sun H, Choo-Wing R, Sureshbabu A, Fan J, Leng L, Yu S, Jiang D, Noble P, Homer RJ, Bucala R, Bhandari V. A critical regulatory role for macrophage migration inhibitory factor in hyperoxia-induced injury in the developing murine lung. PLoS One 2013; 8:e60560. [PMID: 23637753 PMCID: PMC3639272 DOI: 10.1371/journal.pone.0060560] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/27/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The role and mechanism of action of MIF in hyperoxia-induced acute lung injury (HALI) in the newborn lung are not known. We hypothesized that MIF is a critical regulatory molecule in HALI in the developing lung. METHODOLOGY We studied newborn wild type (WT), MIF knockout (MIFKO), and MIF lung transgenic (MIFTG) mice in room air and hyperoxia exposure for 7 postnatal (PN) days. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed. RESULTS MIF mRNA and protein expression were significantly increased in WT lungs at PN7 of hyperoxia exposure. The pattern of expression of Angiopoietin 2 protein (in MIFKO>WT>MIFTG) was similar to the mortality pattern (MIFKO>WT>MIFTG) in hyperoxia at PN7. In room air, MIFKO and MIFTG had modest but significant increases in chord length, compared to WT. This was associated with decreased expression of Angiopoietin 1 and Tie 2 proteins in the MIFKO and MIFTG, as compared to the WT control lungs in room air. However, on hyperoxia exposure, while the chord length was increased from their respective room air controls, there were no differences between the 3 genotypes. CONCLUSION These data point to the potential roles of Angiopoietins 1, 2 and their receptor Tie2 in the MIF-regulated response in room air and upon hyperoxia exposure in the neonatal lung.
Collapse
Affiliation(s)
- Huanxing Sun
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America
| | - Rayman Choo-Wing
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America
| | - Angara Sureshbabu
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America
| | - Juan Fan
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Lin Leng
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Shuang Yu
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Dianhua Jiang
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Paul Noble
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert J. Homer
- Department of Pathology, Yale University, New Haven, Connecticut, United States of America
| | - Richard Bucala
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Vineet Bhandari
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
19
|
Babu SN, Chetal G, Kumar S. Macrophage migration inhibitory factor: a potential marker for cancer diagnosis and therapy. Asian Pac J Cancer Prev 2013; 13:1737-44. [PMID: 22901113 DOI: 10.7314/apjcp.2012.13.5.1737] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine which plays roles in inflammation, immune responses and cancer development. It assists macrophages in carrying out functions like phagocytosis, adherence and motility. Of late, MIF is implicated in almost all stages of neoplasia and expression is a feature of most types of cancer. The presence of MIF in almost all tumors and all stages of cancer makes it an interesting candidate for cancer therapy. This review explores the roles of MIF in neoplasia.
Collapse
Affiliation(s)
- Spoorthy N Babu
- IGNOU-I2IT Centre of Excellence for Advanced Education and Research, Pune, Maharashtra, India
| | | | | |
Collapse
|
20
|
Veillat V, Sengers V, Metz CN, Roger T, Leboeuf M, Mailloux J, Akoum A. Macrophage Migration Inhibitory Factor Is Involved in a Positive Feedback Loop Increasing Aromatase Expression in Endometriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:917-27. [DOI: 10.1016/j.ajpath.2012.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 04/20/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
|
21
|
Khoufache K, Bazin S, Girard K, Guillemette J, Roy MC, Verreault JP, Al-Abed Y, Foster W, Akoum A. Macrophage migration inhibitory factor antagonist blocks the development of endometriosis in vivo. PLoS One 2012; 7:e37264. [PMID: 22649515 PMCID: PMC3359359 DOI: 10.1371/journal.pone.0037264] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/19/2012] [Indexed: 12/31/2022] Open
Abstract
Endometriosis, a disease of reproductive age women, is a major cause of infertility, menstrual disorders and pelvic pain. Little is known about its etiopathology, but chronic pelvic inflammation is a common feature in affected women. Beside symptomatic treatment of endometriosis-associated pain, only two main suboptimal therapeutic approaches (hormonal and invasive surgery) are generally recommended to patients and no specific targeted treatment is available. Our studies led to the detection of a marked increase in the expression of macrophage migration inhibitory factor (MIF) in the eutopic endometrium, the peripheral blood and the peritoneal fluid of women with endometriosis, and in early, vascularized and active endometriotic lesions. Herein, we developed a treatment model of endometriosis, where human endometrial tissue was first allowed to implant into the peritoneal cavity of nude mice, to assess in vivo the effect of a specific antagonist of MIF (ISO-1) on the progression of endometriosis and evaluate its efficacy as a potential therapeutic tool. Administration of ISO-1 led to a significant decline of the number, size and in situ dissemination of endometriotic lesions. We further showed that ISO-1 may act by significantly inhibiting cell adhesion, tissue remodeling, angiogenesis and inflammation as well as by altering the balance of pro- and anti-apoptotic factors. Actually, mice treatment with ISO-1 significantly reduced the expression of cell adhesion receptors αv and ß3 integrins (P<0.05), matrix metalloproteinases (MMP) 2 and 9 (P<0.05), vascular endothelial cell growth factor (VEGF) (P<0.01), interleukin 8 (IL8) (P<0.05), cyclooxygenease (COX)2 (P<0.001) and the anti-apoptotic protein Bcl2 (P<0.01), but significantly induced the expression of Bax (P<0.05), a potent pro-apoptotic protein. These data provide evidence that specific inhibition of MIF alters endometriotic tissue growth and progression in vivo and may represent a promising potential therapeutic avenue.
Collapse
Affiliation(s)
- Khaled Khoufache
- Endocrinologie de la Reproduction, Centre de Recherche, Hôpital Saint-François d’Assise, CHUQ, Quebec City, Québec, Canada
| | - Sylvie Bazin
- Département d’obstétrique et gynécologie, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - Karine Girard
- Département d’obstétrique et gynécologie, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - Julie Guillemette
- Département d’obstétrique et gynécologie, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - Marie-Christine Roy
- Département d’obstétrique et gynécologie, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - Jean-Pierre Verreault
- Département d’obstétrique et gynécologie, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - Yousef Al-Abed
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Warren Foster
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Ali Akoum
- Endocrinologie de la Reproduction, Centre de Recherche, Hôpital Saint-François d’Assise, CHUQ, Quebec City, Québec, Canada
- Département d’obstétrique et gynécologie, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
22
|
Renner P, Roger T, Bochud PY, Sprong T, Sweep FCGJ, Bochud M, Faust SN, Haralambous E, Betts H, Chanson AL, Reymond MK, Mermel E, Erard V, van Deuren M, Read RC, Levin M, Calandra T. A functional microsatellite of the macrophage migration inhibitory factor gene associated with meningococcal disease. FASEB J 2011; 26:907-16. [PMID: 21990375 DOI: 10.1096/fj.11-195065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an abundantly expressed proinflammatory cytokine playing a critical role in innate immunity and sepsis and other inflammatory diseases. We examined whether functional MIF gene polymorphisms (-794 CATT(5-8) microsatellite and -173 G/C SNP) were associated with the occurrence and outcome of meningococcal disease in children. The CATT(5) allele was associated with the probability of death predicted by the Pediatric Index of Mortality 2 (P=0.001), which increased in correlation with the CATT(5) copy number (P=0.04). The CATT(5) allele, but not the -173 G/C alleles, was also associated with the actual mortality from meningoccal sepsis [OR 2.72 (1.2-6.4), P=0.02]. A family-based association test (i.e., transmission disequilibrium test) performed in 240 trios with 1 afflicted offspring indicated that CATT(5) was a protective allele (P=0.02) for the occurrence of meningococcal disease. At baseline and after stimulation with Neisseria meningitidis in THP-1 monocytic cells or in a whole-blood assay, CATT(5) was found to be a low-expression MIF allele (P=0.005 and P=0.04 for transcriptional activity; P=0.09 and P=0.09 for MIF production). Taken together, these data suggest that polymorphisms of the MIF gene affecting MIF expression are associated with the occurrence, severity, and outcome of meningococcal disease in children.
Collapse
Affiliation(s)
- Pascal Renner
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang H, Taylor HS, Lei C, Cheng C, Zhang W. Hormonal Regulation of Galectin 3 in Trophoblasts and Its Effects on Endometrium. Reprod Sci 2011; 18:1118-27. [DOI: 10.1177/1933719111407212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Huan Yang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hugh S. Taylor
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, and Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Caixia Lei
- Shanghai Ji Ai Genetics and IVF China-USA Centre, Shanghai, China
| | - Chao Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Wei Zhang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
αVβ3-integrin expression through ERK activation mediates cell attachment and is necessary for production of tumor necrosis factor alpha in monocytic THP-1 cells stimulated by phorbol myristate acetate. Cell Immunol 2011; 270:25-31. [PMID: 21481849 DOI: 10.1016/j.cellimm.2011.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/28/2011] [Accepted: 03/21/2011] [Indexed: 11/21/2022]
Abstract
Macrophages play a key role in inflammation. Activated macrophages express adhesion molecules and produce tumor necrosis factor alpha (TNFα). Integrins are the main adhesion molecules that mediate binding to the extracellular matrix and they are involved in intracellular pathways. In the present study, human monocytic THP-1 cell adhesion to uncoated plastic plate was examined to investigate the regulatory mechanism of TNFα secretion. Addition of phorbol myristate acetate (PMA) for THP-1 cell activation induced cell adhesion in parallel with TNFα production. Among the mitogen-activated protein kinase pathways, the protein kinase C (PKC)-extracellular signal-regulated kinase (ERK) pathway was involved in αVβ3-integrin expression and PMA-induced cell adhesion. Flow cytometry and reverse transcription - quantitative polymerase chain reaction analysis revealed increased expression of matrix-binding integrins including integrin-αVβ3. Blockade of αVβ3-integrin by a specific antibody suppressed cell adhesion and TNFα production. These findings indicate that TNFα production from THP-1 cells is PKC-ERK, αVβ3-integrin and adhesion-dependent and its related pathway could be a target for TNFα-related diseases.
Collapse
|
25
|
Guay S, Michaud N, Bourcier N, Leboeuf M, Lemyre M, Mailloux J, Akoum A. Distinct expression of the soluble and the membrane-bound forms of interleukin-1 receptor accessory protein in the endometrium of women with endometriosis. Fertil Steril 2011; 95:1284-90. [DOI: 10.1016/j.fertnstert.2010.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/10/2010] [Accepted: 12/22/2010] [Indexed: 01/19/2023]
|
26
|
Macrophage migration inhibitory factor: a multifunctional cytokine in rheumatic diseases. ARTHRITIS 2010; 2010:106202. [PMID: 22046508 PMCID: PMC3195319 DOI: 10.1155/2010/106202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 12/04/2010] [Accepted: 12/21/2010] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibited the random migration of macrophages. MIF is now recognized to be a multipotent cytokine involved in the regulation of immune and inflammatory responses. Moreover, the pivotal nature of its involvement highlights the importance of MIF to the pathogenesis of various inflammatory disorders and suggests that blocking MIF may be a useful therapeutic strategy for treating these diseases. This paper discusses the function and expressional regulation of MIF in several rheumatic diseases and related conditions.
Collapse
|
27
|
Veillat V, Carli C, Metz CN, Al-Abed Y, Naccache PH, Akoum A. Macrophage migration inhibitory factor elicits an angiogenic phenotype in human ectopic endometrial cells and triggers the production of major angiogenic factors via CD44, CD74, and MAPK signaling pathways. J Clin Endocrinol Metab 2010; 95:E403-12. [PMID: 20829186 DOI: 10.1210/jc.2010-0417] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT An active angiogenesis is required for ectopic endometrial tissue growth. Our previous studies led to the identification of macrophage migration inhibitory factor (MIF), which is markedly elevated in active, vascularized, and early-stage endometriotic lesions, as a potent mitogenic factor for endothelial cells. OBJECTIVE Our objective was to study the mechanisms by which MIF may stimulate angiogenesis in ectopic endometrial implantation sites. DESIGN Primary cultures of ectopic endometrial cells were exposed to MIF, and the release of major angiogenic factors with targeted disruption of MIF signaling pathways was assessed. PATIENTS Patients were women found to have endometriosis during laparoscopy. SETTING The study was conducted at a hospital and reproduction research laboratory. INTERVENTIONS Biopsies were removed from endometriotic lesions. MAIN OUTCOME MEASURES Vascular endothelial cell growth factor (VEGF), IL-8, and monocyte chemotactic protein-1 (MCP-1) mRNA and protein levels and expression and small interfering RNA silencing of MIF CD74/CD44 receptor complex and phosphorylation of ERK and p38 MAPKs were evaluated. RESULTS MIF markedly up-regulated VEGF, IL-8, and MCP-1 expression in endometriotic cells. Such an effect was abolished by (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), a specific inhibitor of MIF, and significantly down-regulated after specific small interfering RNA silencing of CD44 or CD74. MIF treatment strongly activated ERK and p38 MAPKs, and specific inhibitors of both pathways completely blocked basal and MIF-induced VEGF, IL-8, and MCP-1 synthesis. CONCLUSIONS These results show for the first time that MIF exerts a potent indirect angiogenic effect by interacting with ectopic endometrial cells and inducing the secretion of major angiogenic factors via CD44, CD74, and MAPK signaling pathways and provide evidence for a possible new mechanism underlying endometriosis development and pathophysiology.
Collapse
Affiliation(s)
- Véronique Veillat
- Centre de recherche, Hôpital Saint-François d'Assise, and Faculty de Médecine, Université Laval, 10, rue de l'Espinay, Local D0-711, Québec (Québec), Canada G1L 3L5
| | | | | | | | | | | |
Collapse
|
28
|
Treatment with low-dose aspirin increased the level LIF and integrin β3 expression in mice during the implantation window. Placenta 2010; 31:1101-5. [DOI: 10.1016/j.placenta.2010.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/03/2010] [Accepted: 10/05/2010] [Indexed: 12/18/2022]
|
29
|
Lei CX, Zhang W, Zhou JP, Liu YK. Interactions between galectin-3 and integrin 3 in regulating endometrial cell proliferation and adhesion. Hum Reprod 2009; 24:2879-89. [DOI: 10.1093/humrep/dep250] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|