1
|
Malinská N, Grobárová V, Knížková K, Černý J. Maternal-Fetal Microchimerism: Impacts on Offspring's Immune Development and Transgenerational Immune Memory Transfer. Physiol Res 2024; 73:315-332. [PMID: 39027950 PMCID: PMC11299782 DOI: 10.33549/physiolres.935296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 07/27/2024] Open
Abstract
Maternal-fetal microchimerism is a fascinating phenomenon in which maternal cells migrate to the tissues of the offspring during both pregnancy and breastfeeding. These cells primarily consist of leukocytes and stem cells. Remarkably, these maternal cells possess functional potential in the offspring and play a significant role in shaping their immune system development. T lymphocytes, a cell population mainly found in various tissues of the offspring, have been identified as the major cell type derived from maternal microchimerism. These T lymphocytes not only exert effector functions but also influence the development of the offspring's T lymphocytes in the thymus and the maturation of B lymphocytes in the lymph nodes. Furthermore, the migration of maternal leukocytes also facilitates the transfer of immune memory across generations. Maternal microchimerism has also been observed to address immunodeficiencies in the offspring. This review article focuses on investigating the impact of maternal cells transported within maternal microchimerism on the immune system development of the offspring, as well as elucidating the effector functions of maternal cells that migrate through the placenta and breast milk to reach the offspring.
Collapse
Affiliation(s)
- N Malinská
- Laboratory of Cell Immunology, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Hemon M, Giassi M, Ghaffar Y, Martin M, Roudier J, Auger I, Lambert NC. Microchimeric cells promote production of rheumatoid arthritis-specific autoantibodies. J Autoimmun 2024; 146:103238. [PMID: 38754239 DOI: 10.1016/j.jaut.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Women are more likely to develop autoimmune diseases than men. Contribution from microchimerism (Mc) has been proposed, as women naturally acquire Mc from more sources than men because of pregnancy. Women with Rheumatoid Arthritis (RA) who lack RA-associated HLA alleles have been found to harbor Mc with RA-associated HLA alleles in higher amounts than healthy women in prior work. However, an immunological impact of Mc remains to be elucidated. OBJECTIVES To test the hypothesis that Mc with RA-risk associated HLA alleles can result in the production of RA-associated autoantibodies, when host genetic risk is absent. METHODS DBA/2 mice are unable to produce RA-specific anti-citrullinated autoantibodies (ACPAs) after immunization with the enzyme peptidyl arginine deiminase (PAD) in a previously developed model. DBA/2 females were mated with C57BL/6 males humanized to express HLA-DR4, which is associated with RA-risk and production of ACPAs, to evaluate DR4+ fetal Mc contribution. Next, DBA/2 females born of heterozygous DR4+/- mothers were evaluated for DR4+ Mc of maternal or littermate origin. Finally, DBA/2 females from DR4+/- mothers were crossed with DR4+ males, to evaluate the contribution of any Mc source to ACPA production. RESULTS After PAD immunization, between 20 % and 43 % of DBA/2 females (otherwise unable to produce ACPAs) had detectable ACPAs (CCP2 kit) after exposure to sources of Mc with RA-associated HLA alleles, compared to 0 % of unmated/unexposed DBA/2 females. Further the microchimeric origin of the autoantibodies was confirmed by detecting a C57BL/6-specific immunoglobulin isotype in the DBA/2 response. CONCLUSION Our study demonstrates that Mc cells can produce "autoantibodies" and points to a role of Mc in the biology of autoimmune diseases, including RA.
Collapse
Affiliation(s)
- Marie Hemon
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France; Arthritis R&D, Neuilly-sur-Seine, France
| | - Mathilde Giassi
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Yoan Ghaffar
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Marielle Martin
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Jean Roudier
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France; Rheumatology department, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille France
| | - Isabelle Auger
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Nathalie C Lambert
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France.
| |
Collapse
|
3
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2Rα KO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. Front Immunol 2024; 15:1369818. [PMID: 38812502 PMCID: PMC11133634 DOI: 10.3389/fimmu.2024.1369818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction IL-2Rα knock out (KO) mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα KO mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα KO to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα KO vascular smooth muscle cells had detectable IL-2Rα. Methods We used multiple gene and protein-based methods to determine why IL-2Rα KO vascular smooth muscle cells exhibited IL-2Rα protein. These methods included: genomic sequencing, assessing cells and tissues for evidence of maternal microchimerism, and determining the half-life of IL-2Rα protein. Results Our studies demonstrated the following: (1) in addition to the cell surface, IL-2Rα is localized to the nucleus; (2) the genetic deletion of IL-2Rα is intact in IL-2Rα KO mice; (3) both IL-2Rα KO and WT tissues show evidence of maternal microchimerism, the likely source of IL-2Rα (4) IL-2Rα is transmitted between cells; (5) IL-2Rα has a long half-life; and (6) nuclear IL-2Rα contributes to the regulation of cell proliferation and size. Conclusion Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
Affiliation(s)
- Victoria A. Wong
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kristie N. Dinh
- Fertility Wellness Institute of Ohio West Chester Township, OH, United States
| | - Guangchun Chen
- Genomics and Microarray Core Facility, University of Texas Southwestern Medical Center Dallas, TX, United States
| | - Lucile E. Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Medical Education, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
4
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2RαKO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565571. [PMID: 37961725 PMCID: PMC10635137 DOI: 10.1101/2023.11.03.565571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
IL-2Rα KO mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα knock out (KO) mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα knock mice to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα knock out vascular smooth muscle cells had detectable IL-2Rα. Further studies suggested that the source of IL-2Rα protein was likely maternal heterozygous cells present in KO offspring due to maternal microchimerism. Because the KO was generated by using a neomycin resistance gene insert, we treated cells with G418 and were able to eliminate the majority of IL-2Rα expressing cells. This elimination revealed that IL-2Rα KO vascular smooth muscle cells exhibited increased proliferation, decreased size, and hypodiploid DNA content when compared to wildtype cells. Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
|
5
|
Vazquez-Pagan A, Roubidoux EK, Cherry S, Livingston B, Bub T, Lazure L, Sharp B, Confer T, Brigleb PH, Honce R, Whitt KT, Johnson M, Meliopoulos V, Schultz-Cherry S. Maternal immunization with distinct influenza vaccine platforms elicits unique antibody profiles that impact the protection of offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564827. [PMID: 37961247 PMCID: PMC10634944 DOI: 10.1101/2023.10.30.564827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pregnant women and infants are considered high-risk groups for increased influenza disease severity. While influenza virus vaccines are recommended during pregnancy, infants cannot be vaccinated until at least six months of age. Passive transfer of maternal antibodies (matAbs) becomes vital for the infant's protection. Here, we employed an ultrasound-based timed-pregnancy murine model and examined matAb responses to distinct influenza vaccine platforms and influenza A virus (IAV) infection in dams and their offspring. We demonstrate vaccinating dams with a live-attenuated influenza virus (LAIV) vaccine or recombinant hemagglutinin (rHA) proteins administered with adjuvant resulted in enhanced and long-lasting immunity and protection from influenza in offspring. In contrast, a trivalent split-inactivated vaccine (TIV) afforded limited protection in our model. By cross-fostering pups, we show the timing of antibody transfer from vaccinated dams to their offspring (prenatal versus postnatal) can shape the antibody profile depending on the vaccine platform. Our studies provide information on how distinct influenza vaccines lead to immunogenicity and efficacy during pregnancy, impact the protection of their offspring, and detail roles for IgG1 and IgG2c in the development of vaccine administration during pregnancy that stimulate and measure expression of both antibody subclasses.
Collapse
|
6
|
Yüzen D, Urbschat C, Schepanski S, Thiele K, Arck PC, Mittrücker H. Pregnancy-induced transfer of pathogen-specific T cells from mother to fetus in mice. EMBO Rep 2023; 24:e56829. [PMID: 37610043 PMCID: PMC10561172 DOI: 10.15252/embr.202356829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Neonatal health is determined by the transfer of maternal antibodies from the mother to the fetus. Besides antibodies, maternal cells cross the placental barrier and seed into fetal organs. Contrary to maternal antibodies, maternal microchimeric cells (MMc) show a high longevity, as they can persist in the offspring until adulthood. Recent evidence highlights that MMc leukocytes promote neonatal immunity against early-life infections in mice and humans. As shown in mice, this promotion of immunity was attributable to an improved fetal immune development. Besides this indirect effect, MMc may be pathogen-specific and thus, directly clear pathogen threats in the offspring postnatally. By using ovalbumin recombinant Listeria monocytogenes (LmOVA), we here provide evidence that OVA-specific T cells are transferred from the mother to the fetus, which is associated with increased activation of T cells and a milder course of postnatal infection in the offspring. Our data highlight that maternally-derived passive immunity of the neonate is not limited to antibodies, as MMc have the potential to transfer immune memory between generations.
Collapse
Affiliation(s)
- Dennis Yüzen
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of ImmunologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christopher Urbschat
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steven Schepanski
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kristin Thiele
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Petra C Arck
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | |
Collapse
|
7
|
Giassi M, Hemon MF, Martin M, Roudier J, Auger I, Lambert NC. In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism. Front Immunol 2023; 14:1200920. [PMID: 37575249 PMCID: PMC10422045 DOI: 10.3389/fimmu.2023.1200920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Feto-maternal cell transfer during pregnancy is called microchimerism (Mc). Its persistence in respective hosts is increasingly studied as to its potential role in immune tolerance, autoimmunity, cancer, and degenerative diseases. Murine models with transgenic reporter genes, heterozygously carried by the mother, allow maternal Mc tracking in wild-type (WT) offspring. However, as gestation in mice is multi-embryonic, an exchange of cells between fetuses carrying the same reporter gene as their mother and negative WT littermate, named littermate Mc (LMc), can occur and be confounded with the maternal source. We propose here to evaluate LMc contribution in mice. Methods To avoid the maternal confounding source of Mc, transgenic males, heterozygous for a reporter gene, here, the human leukocyte antigen DRB1*04 (DR4+/-), were crossed with WT females (DR4-/-). DR4+/- LMc was specifically quantified by HLA-DR4 quantitative PCR, i) in utero in main organs from 15 DR4-/- fetuses from three litters of 11, nine, and five; and ii) after birth in two litters of eight pups: in two DR4-/- stillborns and four DR4-/- adult mice. Results At embryonic stages, DR4-/- fetuses having one or two nearby DR4+/- littermates in the same uterine horn were almost seven times more frequently positive for DR4- microchimerism in their organs (p = 0.01) and had quantitatively more LMc (p = 0.009) than those without nearby DR4+/- littermates. Furthermore, LMc persists at birth and into adulthood with interindividual heterogeneity. Conclusions This study identifies heterogeneity for LMc acquisition according to in utero position and different interpretation of previously published results on maternal Mc in mice.
Collapse
Affiliation(s)
- Mathilde Giassi
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Marie F. Hemon
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
- Arthritis R&D, Neuilly-sur-Seine, France
| | - Marielle Martin
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Jean Roudier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
- Rheumatology Department, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Isabelle Auger
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Nathalie C. Lambert
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| |
Collapse
|
8
|
Callender M, Harvill ET. Maternal vaccination: shaping the neonatal response to pertussis. Front Immunol 2023; 14:1210580. [PMID: 37520565 PMCID: PMC10374427 DOI: 10.3389/fimmu.2023.1210580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Antepartum maternal vaccination can protect highly sensitive newborns before they are old enough to receive their own vaccines. Two vaccines are currently recommended during pregnancy: the flu vaccine and the Tdap vaccine against tetanus, diphtheria, and pertussis. Although there is strong evidence that maternal vaccination works to protect the offspring, limitations in the understanding of vaccines and of maternal transfer of immunity compound to obscure our understanding of how they work. Here we focus on the example of pertussis to explore the possible mechanisms involved in the transfer of protection to offspring and how these may impact the newborn's response to future exposure to pertussis. For example, Tdap vaccines induce pathogen specific antibodies, and those antibodies are known to be transferred from mother to the fetus in utero and to the newborn via milk. But antibodies alone have modest impact on pertussis disease, and even less effect on colonization/transmission. Maternal immune cells can also be transferred to offspring and may play a direct role in protection from disease and/or influence the developing neonatal immune system. However, some of the transferred immunity may also blunt the offspring's response to subsequent vaccination. In this review we will summarize the protection conferred to offspring by maternal vaccination against pertussis and the likely mechanisms by which protection is transferred, identifying the many knowledge gaps that limit our most effective application of this approach.
Collapse
Affiliation(s)
- Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
9
|
Borges A, Castellan F, Irie N. Emergent roles of maternal microchimerism in postnatal development. Dev Growth Differ 2023; 65:75-81. [PMID: 36519824 DOI: 10.1111/dgd.12830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Maternal microchimerism (MMc) is the phenomenon that a low number of cells from the mother persists within her progeny. Despite their regular presence in mammalian pregnancies, the overall cell type repertoire and roles of maternal cells, especially after birth, remain unclear. By using transgenic mouse strains and human umbilical blood samples, recent studies have for the first time characterized and quantified MMc cell type repertoires in offspring, identified the cross-generational influence on fetal immunity, and determined possible factors that affect their presence in offspring. This review summarizes new findings, especially on the maternal cell type repertoires and their potential role in utero, in postnatal life, and long after birth.
Collapse
Affiliation(s)
- Alexandria Borges
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Flore Castellan
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Irie
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Fujimoto K, Nakajima A, Hori S, Tanaka Y, Shirasaki Y, Uemura S, Irie N. Whole-embryonic identification of maternal microchimeric cell types in mouse using single-cell RNA sequencing. Sci Rep 2022; 12:18313. [PMID: 36333354 PMCID: PMC9636240 DOI: 10.1038/s41598-022-20781-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
Even though the mother and the fetus of placental mammals are immunologically non-self with respect to one other, mutual exchange of small numbers of cells between them is known to occur. Maternal cells entering the fetus, called maternal microchimeric cells (MMc cells), are thought to be involved in different physiological phenomena, such as establishing immune tolerance, tissue repair, and the pathogenesis or deterioration of some inflammatory diseases and congenital malformations. While specific MMc cell types have been reported as associated with these phenomena, the contribution of MMc cells to these different outcomes remains unknown. As one possibility, we hypothesized that different embryos have differing repertoires of MMc cell types, leading to or biasing embryos toward different fates. To date, no studies have succeeded in identifying the MMc cell type repertoire of a single embryo. Accordingly, here, we isolated MMc cells from whole mouse embryos, determined their types, and analyzed their MMc cell type variability. By combining our previously established, whole-embryonic MMc isolation method with single-cell RNA sequencing, we successfully estimated the cell type repertoires of MMc cells isolated from 26 mouse embryos. The majority of MMc cells were immune-related cells, such as myeloid cells and granulocytes. We also detected stem cell-like MMc cells expressing proliferation marker genes and terminally differentiated cells. As hypothesized, we noted statistically significant inter-individual variation in the proportion of immune-related cells in the different embryos. We here successfully estimated MMc cell types in individual whole mouse embryos. The proportion of immune-related cells significantly differed among the individual embryos, suggesting that the variations are one of the potential mechanisms underlying the differing MMc-related physiological phenomena in offspring. These findings provide insight into cell-level epigenetics by maternal cells.
Collapse
Affiliation(s)
- Kana Fujimoto
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akira Nakajima
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shohei Hori
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Tanaka
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoshitaka Shirasaki
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sotaro Uemura
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Naoki Irie
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan ,grid.26999.3d0000 0001 2151 536XUniversal Biology Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Castellan FS, Irie N. Postnatal depletion of maternal cells biases T lymphocytes and natural killer cells' profiles toward early activation in the spleen. Biol Open 2022; 11:bio059334. [PMID: 36349799 PMCID: PMC9672855 DOI: 10.1242/bio.059334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/11/2022] [Indexed: 08/27/2023] Open
Abstract
The maternal cells transferred into the fetus during gestation persist long after birth in the progeny. These maternal cells have been hypothesized to promote the maturation of the fetal immune system in utero but there are still significant gaps in our knowledge of their potential roles after birth. To provide insights into these maternal cells' postnatal functional roles, we set up a transgenic mouse model to specifically eliminate maternal cells in the neonates by diphtheria toxin injection and confirmed significant depletion in the spleens. We then performed immunophenotyping of the spleens of two-week-old pups by mass cytometry to pinpoint the immune profile differences driven by the depletion of maternal cells in early postnatal life. We observed a heightened expression of markers related to activation and maturation in some natural killer and T cell populations. We hypothesize these results to indicate a potential postnatal regulation of lymphocytic responses by maternal cells. Together, our findings highlight an immunological influence of maternal microchimeric cells postnatally, possibly protecting against adverse hypersensitivity reactions of the neonate at a crucial time of new encounters with self and environmental antigens.
Collapse
Affiliation(s)
- Flore S. Castellan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Schepanski S, Chini M, Sternemann V, Urbschat C, Thiele K, Sun T, Zhao Y, Poburski M, Woestemeier A, Thieme MT, Zazara DE, Alawi M, Fischer N, Heeren J, Vladimirov N, Woehler A, Puelles VG, Bonn S, Gagliani N, Hanganu-Opatz IL, Arck PC. Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice. Nat Commun 2022; 13:4571. [PMID: 35931682 PMCID: PMC9356013 DOI: 10.1038/s41467-022-32230-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.
Collapse
Affiliation(s)
- Steven Schepanski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Sternemann
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Poburski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Theres Thieme
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikita Vladimirov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Victor G Puelles
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Petra C Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Murrieta-Coxca JM, Fuentes-Zacarias P, Ospina-Prieto S, Markert UR, Morales-Prieto DM. Synergies of Extracellular Vesicles and Microchimerism in Promoting Immunotolerance During Pregnancy. Front Immunol 2022; 13:837281. [PMID: 35844513 PMCID: PMC9285877 DOI: 10.3389/fimmu.2022.837281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of biological identity has been traditionally a central issue in immunology. The assumption that entities foreign to a specific organism should be rejected by its immune system, while self-entities do not trigger an immune response is challenged by the expanded immunotolerance observed in pregnancy. To explain this "immunological paradox", as it was first called by Sir Peter Medawar, several mechanisms have been described in the last decades. Among them, the intentional transfer and retention of small amounts of cells between a mother and her child have gained back attention. These microchimeric cells contribute to expanding allotolerance in both organisms and enhancing genetic fitness, but they could also provoke aberrant alloimmune activation. Understanding the mechanisms used by microchimeric cells to exert their function in pregnancy has proven to be challenging as per definition they are extremely rare. Profiting from studies in the field of transplantation and cancer research, a synergistic effect of microchimerism and cellular communication based on the secretion of extracellular vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to reshape their function. A further aspect of EVs is their function in antigen presentation either directly or on the surface of recipient cells. Here, we review the current understanding of microchimerism in the feto-maternal tolerance during human pregnancy and the potential role of EVs in mediating the allorecognition and tropism of microchimeric cells.
Collapse
Affiliation(s)
| | | | | | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
14
|
Cómitre-Mariano B, Martínez-García M, García-Gálvez B, Paternina-Die M, Desco M, Carmona S, Gómez-Gaviro MV. Feto-maternal microchimerism: Memories from pregnancy. iScience 2022; 25:103664. [PMID: 35072002 PMCID: PMC8762399 DOI: 10.1016/j.isci.2021.103664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is a bidirectional transplacental cell trafficking between mother and fetus during pregnancy in placental mammals. The presence and persistence of fetal cells in maternal tissues are known as fetal microchimerism (FMc). FMc has high multilineage potential with a great ability to differentiate and functionally integrate into maternal tissue. FMc has been found in various maternal tissues in animal models and humans. Its permanence in the maternal body up to decades after delivery suggests it might play an essential role in maternal pathophysiology. Studying the presence, localization, and characteristics of FMc in maternal tissues is key to understanding its impact on the woman's body. Here we comprehensively review the existence of FMc in different species and organs and tissues, aiming to better characterize their possible role in human health and disease. We also highlight several methodological considerations that would optimize the detection, quantification, and functional determination of FMc.
Collapse
Affiliation(s)
- Blanca Cómitre-Mariano
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain
| | - Bárbara García-Gálvez
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain
| | - María Paternina-Die
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avenida de la Universidad, 30, 28911 Leganés, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/ Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain
| | - María Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avenida de la Universidad, 30, 28911 Leganés, Spain
| |
Collapse
|
15
|
Skarzynski DJ, Bazer FW, Maldonado-Estrada JG. Editorial: Veterinary Reproductive Immunology. Front Vet Sci 2022; 8:823169. [PMID: 35083310 PMCID: PMC8784508 DOI: 10.3389/fvets.2021.823169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dariusz J. Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Juan G. Maldonado-Estrada
- OHVRI Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Juan G. Maldonado-Estrada
| |
Collapse
|
16
|
Hardardottir L, Bazzano MV, Glau L, Gattinoni L, Köninger A, Tolosa E, Solano ME. The New Old CD8+ T Cells in the Immune Paradox of Pregnancy. Front Immunol 2021; 12:765730. [PMID: 34868016 PMCID: PMC8635142 DOI: 10.3389/fimmu.2021.765730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
CD8+ T cells are the most frequent T cell population in the immune cell compartment at the feto-maternal interface. Due to their cytotoxic potential, the presence of CD8+ T cells in the immune privileged pregnant uterus has raised considerable interest. Here, we review our current understanding of CD8+ T cell biology in the uterus of pregnant women and discuss this knowledge in relation to a recently published immune cell Atlas of human decidua. We describe how the expansion of CD8+ T cells with an effector memory phenotype often presenting markers of exhaustion is critical for a successful pregnancy, and host defense towards pathogens. Moreover, we review new evidence on the presence of long-lasting immunological memory to former pregnancies and discuss its impact on prospective pregnancy outcomes. The formation of fetal-specific memory CD8+ T cell subests in the uterus, in particular of tissue resident, and stem cell memory cells requires further investigation, but promises interesting results to come. Advancing the knowledge of CD8+ T cell biology in the pregnant uterus will be pivotal for understanding not only tissue-specific immune tolerance but also the etiology of complications during pregnancy, thus enabling preventive or therapeutic interventions in the future.
Collapse
Affiliation(s)
- Lilja Hardardottir
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Maria Victoria Bazzano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Gattinoni
- Department of Functional Immune Cell Modulation, Regensburg Center for Interventional Immunology, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Angela Köninger
- Department of Obstetrics and Gynecology of the University of Regensburg at the St. Hedwig Hospital of the Order of St. John, Regensburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Emilia Solano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Vazquez-Pagan A, Schultz-Cherry S. Serological Responses to Influenza Vaccination during Pregnancy. Microorganisms 2021; 9:microorganisms9112305. [PMID: 34835431 PMCID: PMC8619416 DOI: 10.3390/microorganisms9112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Pregnant women, newborns, and infants under six months old are at the highest risk of developing severe and even fatal influenza. This risk is compounded by the inability to vaccinate infants under six months, highlighting the importance of vertically transferred immunity. This review identifies novel insights that have emerged from recent studies using animal models of pregnancy and vaccination. We also discuss the knowledge obtained using existing clinical trials that have evaluated influenza-specific serological responses in pregnant women and how these responses may impact early life immunity. We delineate the mechanisms involved in transferring specific maternal antibodies and discuss the consequences for early life immunity. Most importantly, we highlight the need for continued research using pregnant animal models and the inclusion of pregnant women, a commonly neglected population, when evaluating novel vaccine platforms to better serve and treat communicable diseases.
Collapse
Affiliation(s)
- Ana Vazquez-Pagan
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stacey Schultz-Cherry
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
18
|
Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat Commun 2021; 12:4706. [PMID: 34349112 PMCID: PMC8338998 DOI: 10.1038/s41467-021-24719-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
During mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc. We report a functional role of MMc in promoting fetal immune development. MMc induces preferential differentiation of hematopoietic stem cells in fetal bone marrow towards monocytes within the myeloid compartment. Neonatal mice with higher numbers of MMc and monocytes show enhanced resilience against cytomegalovirus infection. Similarly, higher numbers of MMc in human cord blood are linked to a lower number of respiratory infections during the first year of life. Our data highlight the importance of MMc in promoting fetal immune development, potentially averting the threats caused by early life exposure to pathogens. Maternal immune cells seed into the foetus during mammalian pregnancy, yet the functional role of these cells is unclear. Here the authors show that maternal immune cells in foetal bone marrow stimulate immune development, subsequently reducing the risk or severity of infections in newborns.
Collapse
|
19
|
Iwai S, Okada A, Sasano K, Endo M, Yamazaki S, Wang X, Shimbo T, Tomimatsu T, Kimura T, Tamai K. Controlled induction of immune tolerance by mesenchymal stem cells transferred by maternal microchimerism. Biochem Biophys Res Commun 2021; 539:83-88. [PMID: 33461067 DOI: 10.1016/j.bbrc.2020.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Feto-maternal immune tolerance is established during pregnancy; however, its mechanism and maintenance remain underexplored. Here, we investigated whether mesenchymal stem/stromal cells (MSCs) as non-inherited maternal antigens (NIMAs) transferred by maternal microchimerism could induce immune tolerance. We showed that MSCs had a potential equivalent to hematopoietic stem and progenitor cells (HSPCs) to induce immune tolerance and that MSCs were essential to induce tolerance to MSC-specific antigens. Furthermore, we demonstrated that MSCs as NIMAs transferred by maternal microchimerism could induce robust immune tolerance that can be further enhanced using a drug. Our data shed light on induction of immune tolerance and serve as a foundation to develop new therapies using maternally derived cells for autoimmune or genetic diseases.
Collapse
Affiliation(s)
- Sayuri Iwai
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Aiko Okada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kei Sasano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Endo
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan; Department of Children's and Women's Health, Division of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Sho Yamazaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc, Ibaraki, Osaka, Japan
| | - Xin Wang
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc, Ibaraki, Osaka, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan
| | - Takuji Tomimatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
20
|
Camacho-Morales A, Caba M, García-Juárez M, Caba-Flores MD, Viveros-Contreras R, Martínez-Valenzuela C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. Front Pediatr 2021; 9:744104. [PMID: 34746058 PMCID: PMC8567139 DOI: 10.3389/fped.2021.744104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
The first 1,000 days in the life of a human being are a vulnerable stage where early stimuli may program adverse health outcomes in future life. Proper maternal nutrition before and during pregnancy modulates the development of the fetus, a physiological process known as fetal programming. Defective programming promotes non-communicable chronic diseases in the newborn which might be prevented by postnatal interventions such as breastfeeding. Breast milk provides distinct bioactive molecules that contribute to immune maturation, organ development, and healthy microbial gut colonization, and also secures a proper immunological response that protects against infection and inflammation in the newborn. The gut microbiome provides the most critical immune microbial stimulation in the newborn in early life, allowing a well-trained immune system and efficient metabolic settings in healthy subjects. Conversely, negative fetal programming by exposing mothers to diets rich in fat and sugar has profound effects on breast milk composition and alters the immune profiles in the newborn. At this new stage, newborns become vulnerable to immune compromise, favoring susceptibility to defective microbial gut colonization and immune response. This review will focus on the importance of breastfeeding and its immunological biocomponents that allow physiological immune programming in the newborn. We will highlight the importance of immunological settings by breastfeeding, allowing proper microbial gut colonization in the newborn as a window of opportunity to secure effective immunological response.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Martín García-Juárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | | |
Collapse
|
21
|
Vadakke-Madathil S, Chaudhry HW. Chimerism as the basis for organ repair. Ann N Y Acad Sci 2020; 1487:12-20. [PMID: 32991755 DOI: 10.1111/nyas.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/14/2023]
Abstract
Organ and tissue repair are complex processes involving signaling molecules, growth factors, and cell cycle regulators that act in concert to promote cell division and differentiation at sites of injury. In embryonic development, progenitor fetal cells are actively involved in reparative mechanisms and display a biphasic interaction with the mother; and there is constant trafficking of fetal cells into maternal circulation and vice versa. This phenomenon of fetal microchimerism may have significant impact considering the primitive, multilineage nature of these cells. In published work, we have reported that fetal-derived placental cells expressing the homeodomain protein CDX2 retain all "stem" functional proteins of embryonic stem cells yet are endowed with additional functions in areas of growth, survival, homing, and immune modulation. These cells exhibit multipotency in vitro and in vivo, giving rise to spontaneously beating cardiomyocytes and vascular cells. In mouse models, CDX2 cells from female placentas can be administered intravenously to male mice subjected to myocardial infarction with subsequent homing of the CDX2 cells to infarcted areas and evidence of cellular regeneration with enhanced cardiac function. Elucidating the role of microchimeric fetal-derived placental cells may have broader scientific potential, as one can envision allogeneic cell therapy strategies targeted at tissue regeneration for a variety of organ systems.
Collapse
Affiliation(s)
| | - Hina W Chaudhry
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
22
|
Solano ME. Decidual immune cells: Guardians of human pregnancies. Best Pract Res Clin Obstet Gynaecol 2019; 60:3-16. [PMID: 31285174 DOI: 10.1016/j.bpobgyn.2019.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
During human pregnancy, trophoblast cells, the main cellular component of the placenta, invade deeply into uterine blood vessels and the modified endometrium (decidua). Hence, the maternal immune system must adapt to it. A successful pregnancy requires the tolerance of genetically different (allogenic) cells while the mother's immune competence is maintained. This tolerance is ensured through multiple overlapping and occasionally redundant innate and adaptive immune mechanisms. The present article aims to provide a broad overview on uterine immune cell components and the phenotypical and functional changes that they experience during pregnancy. Particularly, we seek to highlight very recent findings in functional adaptations to pregnancy in immune cell populations encountered in the decidua. These adaptations not only ensure tolerance to allogenic trophoblast cells but also promote optimal placental and fetal growth, simultaneously endeavoring to maintain immune surveillance to provide defense against infections.
Collapse
Affiliation(s)
- Maria Emilia Solano
- Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg Germany.
| |
Collapse
|
23
|
Hahn S, Hasler P, Vokalova L, van Breda SV, Than NG, Hoesli IM, Lapaire O, Rossi SW. Feto-Maternal Microchimerism: The Pre-eclampsia Conundrum. Front Immunol 2019; 10:659. [PMID: 31001268 PMCID: PMC6455070 DOI: 10.3389/fimmu.2019.00659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Feto-maternal microchimerism (FMM) involves bidirectional cross-placental trafficking during pregnancy, leading to a micro-chimeric state that can persist for decades. In this manner a pregnant woman will harbor cells from her mother, as well as, cells from her child. Historically, eclampsia, a severe disorder of pregnancy provided the basis for FMM following the detection of trophoblast cells in the lungs of deceased women. Bi-directional cell trafficking between mother and fetus is also altered in pre-eclampsia and has been suggested to contribute to the underlying etiology. FMM has been implicated in tolerance promotion, remission of auto-inflammatory disorders during pregnancy, or the development of autoimmune conditions post-partum. The underlying mechanism whereby the host immune system is modulated is unclear but appears to involve HLA class II molecules, in that incompatibility between mother and fetus promotes remission of rheumatoid arthritis, whereas feto-maternal HLA compatibility may assist in the post-partum initiation of scleroderma. Couples having a high degree of HLA class II compatibility have an increased risk for pre-eclampsia, while the occurrence of scleroderma and rheumatoid arthritis is greater in pre-eclamptic cases than in women with normal pregnancies, suggesting a long term autoimmune predisposition. Since pregnant women with pre-eclampsia exhibit significantly lower levels of maternally-derived micro-chimerism, the question arises whether pre-eclampsia and post-partum development of autoimmune conditions occur due to the failure of the grandmothers cells to adequately regulate an inappropriate micro-chimeric constellation.
Collapse
Affiliation(s)
- Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Paul Hasler
- Division of Rheumatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Lenka Vokalova
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Shane Vontelin van Breda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Division of Rheumatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Olav Lapaire
- Department of Obstetrics, University Women's Hospital Basel, Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
24
|
Knoop KA, Holtz LR, Newberry RD. Inherited nongenetic influences on the gut microbiome and immune system. Birth Defects Res 2018; 110:1494-1503. [PMID: 30576093 PMCID: PMC8759455 DOI: 10.1002/bdr2.1436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
The gut microbiome and the immune system codevelop around the time of birth, well after genetic information has been passed from the parents to the offspring. Each of these "organ systems" displays plasticity. The immune system can mount highly specific adaptive responses to newly encountered antigens, and the gut microbiota is affected by changes in the environment. Despite this plasticity, there is a growing appreciation that these organ systems, once established, are remarkably stable. In health, the immune system rapidly mounts responses to infections, and once cleared, resolves inflammatory responses to return to homeostasis. However, a skewed immune system, such as seen in allergy, does not easily return to homeostasis. Allergic responses are often seen to multiple antigens. Likewise, a dysbiotic gut microbiota is seen in multiple diseases. Attempts to reset the gut microbiota as a therapy for disease have met with varied success. Therefore, how these codeveloping "organ systems" become established is a central question relevant to our overall health. Recent observations suggest that maternal factors encountered both in utero and after birth can directly or indirectly impact the development of the offspring's gut microbiome and immune system. Here, we discuss how these nongenetic maternal influences can have long-term effects on the progeny's health.
Collapse
Affiliation(s)
- Kathryn A. Knoop
- Department of Medicine, Washington University School of Medicine in Saint Louis, MO 63110
| | - Lori R. Holtz
- Department of Pediatrics, Washington University School of Medicine in Saint Louis, MO 63110
| | - Rodney D. Newberry
- Department of Medicine, Washington University School of Medicine in Saint Louis, MO 63110
| |
Collapse
|
25
|
Zazara DE, Arck PC. Developmental origin and sex-specific risk for infections and immune diseases later in life. Semin Immunopathol 2018; 41:137-151. [DOI: 10.1007/s00281-018-0713-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
|
26
|
Schepanski S, Buss C, Hanganu-Opatz IL, Arck PC. Prenatal Immune and Endocrine Modulators of Offspring's Brain Development and Cognitive Functions Later in Life. Front Immunol 2018; 9:2186. [PMID: 30319639 PMCID: PMC6168638 DOI: 10.3389/fimmu.2018.02186] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
Milestones of brain development in mammals are completed before birth, which provide the prerequisite for cognitive and intellectual performances of the offspring. Prenatal challenges, such as maternal stress experience or infections, have been linked to impaired cognitive development, poor intellectual performances as well as neurodevelopmental and psychiatric disorders in the offspring later in life. Fetal microglial cells may be the target of such challenges and could be functionally modified by maternal markers. Maternal markers can cross the placenta and reach the fetus, a phenomenon commonly referred to as “vertical transfer.” These maternal markers include hormones, such as glucocorticoids, and also maternal immune cells and cytokines, all of which can be altered in response to prenatal challenges. Whilst it is difficult to discriminate between the maternal or fetal origin of glucocorticoids and cytokines in the offspring, immune cells of maternal origin—although low in frequency—can be clearly set apart from offspring's cells in the fetal and adult brain. To date, insights into the functional role of these cells are limited, but it is emergingly recognized that these maternal microchimeric cells may affect fetal brain development, as well as post-natal cognitive performances and behavior. Moreover, the inheritance of vertically transferred cells across generations has been proposed, yielding to the presence of a microchiome in individuals. Hence, it will be one of the scientific challenges in the field of neuroimmunology to identify the functional role of maternal microchimeric cells as well as the brain microchiome. Maternal microchimeric cells, along with hormones and cytokines, may induce epigenetic changes in the fetal brain. Recent data underpin that brain development in response to prenatal stress challenges can be altered across several generations, independent of a genetic predisposition, supporting an epigenetic inheritance. We here discuss how fetal brain development and offspring's cognitive functions later in life is modulated in the turnstile of prenatal challenges by introducing novel and recently emerging pathway, involving maternal hormones and immune markers.
Collapse
Affiliation(s)
- Steven Schepanski
- Laboratory of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Buss
- Institute of Medical Psychology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Development, Health, and Disease Research Program, University of California, Irvine, Orange, CA, United States
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C Arck
- Laboratory of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Kinder JM, Stelzer IA, Arck PC, Way SS. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol 2017; 17:483-494. [PMID: 28480895 PMCID: PMC5532073 DOI: 10.1038/nri.2017.38] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological identity is traditionally defined by genetically encoded antigens, with equal maternal and paternal contributions as a result of Mendelian inheritance. However, vertically transferred maternal cells also persist in individuals at very low levels throughout postnatal development. Reciprocally, mothers are seeded during pregnancy with genetically foreign fetal cells that persist long after parturition. Recent findings suggest that these microchimeric cells expressing non-inherited, familially relevant antigenic traits are not accidental 'souvenirs' of pregnancy, but are purposefully retained within mothers and their offspring to promote genetic fitness by improving the outcome of future pregnancies. In this Review, we discuss the immunological implications, benefits and potential consequences of individuals being constitutively chimeric with a biologically active 'microchiome' of genetically foreign cells.
Collapse
Affiliation(s)
- Jeremy M. Kinder
- Division of Infectious Disease and Perinatal Institute, Cincinnati Children’s Hospital. Cincinnati, Ohio 45229 USA
| | - Ina A. Stelzer
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Petra C. Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sing Sing Way
- Division of Infectious Disease and Perinatal Institute, Cincinnati Children’s Hospital. Cincinnati, Ohio 45229 USA
| |
Collapse
|
28
|
Lipták N, Hoffmann OI, Kerekes A, Iski G, Ernszt D, Kvell K, Hiripi L, Bősze Z. Monitoring of Venus transgenic cell migration during pregnancy in non-transgenic rabbits. Transgenic Res 2017; 26:291-299. [PMID: 27832434 PMCID: PMC5350230 DOI: 10.1007/s11248-016-9994-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Cell transfer between mother and fetus were demonstrated previously in several species which possess haemochorial placenta (e.g. in humans, mice, rats, etc.). Here we report the assessment of fetal and maternal microchimerism in non-transgenic (non-TG) New Zealand white rabbits which were pregnant with transgenic (TG) fetuses and in non-TG newborns of TG does. The TG construct, including the Venus fluorophore cDNA driven by a ubiquitous cytomegalovirus enhancer, chicken ß-actin promoter (CAGGS), was previously integrated into the rabbit genome by Sleeping Beauty transposon system. Three different methods [fluorescence microscopy, flow cytometry and quantitative polymerase chain reaction (QPCR)] were employed to search for TG cells and gene products in blood and other tissues of non-TG rabbits. Venus positive peripheral blood mononuclear cells (PBMCs) were not detected in the blood of non-TG littermates or non-TG does by flow cytometry. Tissue samples (liver, kidney, skeletal and heart muscle) also proved to be Venus negative examined with fluorescence microscopy, while histology sections and PBMCs of TG rabbits showed robust Venus protein expression. In case of genomic DNA (gDNA) sourced from tissue samples of non-TG rabbits, CAGGS promoter-specific fragments could not be amplified by QPCR. Our data showed the lack of detectable cell transfer between TG and non-TG rabbits during gestation.
Collapse
Affiliation(s)
- N Lipták
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary.
| | - O I Hoffmann
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - A Kerekes
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - G Iski
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - D Ernszt
- Department of Pharmaceutical Biotechnology, University of Pécs, Pécs, Hungary
| | - K Kvell
- Department of Pharmaceutical Biotechnology, University of Pécs, Pécs, Hungary
| | - L Hiripi
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Z Bősze
- NARIC-Agricultural Biotechnology Institute, Gödöllő, Hungary
| |
Collapse
|
29
|
Omidi A, Akbari M, Mortezaee K, Eqlimi E, Beyer C, Zendedel A, Ragerdi Kashani I. Prenatal transplantation of epidermal neural crest stem cells in malformation of cortical development mouse model. Microsc Res Tech 2016; 80:394-405. [DOI: 10.1002/jemt.22809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/18/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Ameneh Omidi
- Department of Anatomy, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine; Kurdistan University of Medical Sciences; Sanandaj Iran
| | - Ehsan Eqlimi
- Department of Medical Physics and Biomedical Engineering, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, School of Medicine; RWTH Aachen University; 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, School of Medicine; RWTH Aachen University; 52074 Aachen, Germany
- JARA-Brain; RWTH Aachen University; 52074 Aachen, Germany
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
30
|
Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol 2016; 38:739-763. [DOI: 10.1007/s00281-016-0575-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
31
|
Stelzer IA, Mori M, DeMayo F, Lydon J, Arck PC, Solano ME. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures. Cell Adh Migr 2016; 10:2-17. [PMID: 26914234 DOI: 10.1080/19336918.2015.1118605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth.
Collapse
Affiliation(s)
- Ina Annelies Stelzer
- a Laboratory for Exp. Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Mayumi Mori
- a Laboratory for Exp. Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | | | - John Lydon
- b Baylor College of Medicine , Houston , TX , USA
| | - Petra Clara Arck
- a Laboratory for Exp. Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Maria Emilia Solano
- a Laboratory for Exp. Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|