1
|
van Harten RM, Tjeerdsma-van Bokhoven JL, de Greeff A, Balhuizen MD, van Dijk A, Veldhuizen EJ, Haagsman HP, Scheenstra MR. d-enantiomers of CATH-2 enhance the response of macrophages against Streptococcus suis serotype 2. J Adv Res 2022; 36:101-112. [PMID: 35127168 PMCID: PMC8799869 DOI: 10.1016/j.jare.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022] Open
Abstract
D-CATH-2 has strong antimicrobial activities towards multiple S.suis strains. D-CATH-2 ameliorates macrophage function. DCATH-2 binds LTA. DCATH-2 has prophylactic effect against S. suis infection in vivo.
Introduction Due to the increase of antibiotic resistant bacterial strains, there is an urgent need for development of alternatives to antibiotics. Cathelicidins can be such an alternative to antibiotics having both a direct antimicrobial capacity as well as an immunomodulatory function. Previously, the full d-enantiomer of chicken cathelicidin-2 (d-CATH-2) has shown to prophylactically protect chickens against infection 7 days post hatch when administered in ovo three days before hatch. Objectives To further evaluate d-CATH-2 in mammals as a candidate for an alternative to antibiotics. In this study, the prophylactic capacity of d-CATH-2 and two truncated derivatives, d-C(1–21) and d-C(4–21), was determined in mammalian cells. Methods Antibacterial assays; immune cell differentiation and modulation; cytotoxicity, isothermal titration calorimetry; in vivo prophylactic capacity of peptides in an S. suis infection model. Results d-CATH-2 and its derivatives were shown to have a strong direct antibacterial capacity against four different S. suis serotype 2 strains (P1/7, S735, D282, and OV625) in bacterial medium and even stronger in cell culture medium. In addition, d-CATH-2 and its derivatives ameliorated the efficiency of mouse bone marrow-derived macrophages (BMDM) and skewed mouse bone marrow-derived dendritic cells (BMDC) towards cells with a more macrophage-like phenotype. The peptides directly bind lipoteichoic acid (LTA) and inhibit LTA-induced activation of macrophages. In addition, S. suis killed by the peptide was unable to further activate mouse macrophages, which indicates that S. suis was eliminated by the previously reported silent killing mechanism. Administration of d-C(1–21) at 24 h or 7 days before infection resulted in a small prophylactic protection with reduced disease severity and reduced mortality of the treated mice. Conclusion d-enantiomers of CATH-2 show promise as anti-infectives against pathogenic S. suis for application in mammals.
Collapse
Affiliation(s)
- Roel M. van Harten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Astrid de Greeff
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Melanie D. Balhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Albert van Dijk
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Edwin J.A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
- Corresponding author.
| | - Henk P. Haagsman
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Maaike R. Scheenstra
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Olmos-Ortiz A, Olivares-Huerta A, García-Quiroz J, Avila E, Halhali A, Quesada-Reyna B, Larrea F, Zaga-Clavellina V, Díaz L. Cord Serum Calcitriol Inversely Correlates with Maternal Blood Pressure in Urinary Tract Infection-Affected Pregnancies: Sex-Dependent Immune Implications. Nutrients 2021; 13:3114. [PMID: 34578991 PMCID: PMC8467737 DOI: 10.3390/nu13093114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022] Open
Abstract
Urinary tract infections (UTI) during pregnancy are frequently associated with hypertensive disorders, increasing the risk of perinatal morbidity. Calcitriol, vitamin D3's most active metabolite, has been involved in blood pressure regulation and prevention of UTIs, partially through modulating vasoactive peptides and antimicrobial peptides, like cathelicidin. However, nothing is known regarding the interplay between placental calcitriol, cathelicidin, and maternal blood pressure in UTI-complicated pregnancies. Here, we analyzed the correlation between these parameters in pregnant women with UTI and with normal pregnancy (NP). Umbilical venous serum calcitriol and its precursor calcidiol were significantly elevated in UTI. Regardless of newborn's sex, we found strong negative correlations between calcitriol and maternal systolic and diastolic blood pressure in the UTI cohort (p < 0.002). In NP, this relationship was observed only in female-carrying mothers. UTI-female placentas showed higher expression of cathelicidin and CYP27B1, the calcitriol activating-enzyme, compared to male and NP samples. Accordingly, cord-serum calcitriol from UTI-female neonates negatively correlated with maternal bacteriuria. Cathelicidin gene expression positively correlated with gestational age in UTI and with newborn anthropometric parameters. Our results suggest that vitamin D deficiency might predispose to maternal cardiovascular risk and perinatal infections especially in male-carrying pregnancies, probably due to lower placental CYP27B1 and cathelicidin expression.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas-Virreyes, Lomas de Chapultepec IV Sección, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Alberto Olivares-Huerta
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Ali Halhali
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Braulio Quesada-Reyna
- División de Obstetricia, UMAE Hospital de Gineco-Obstetricia No. 4 “Luis Castelazo Ayala”, IMSS, Rio de la Magdalena 289, Tizapán San Ángel, Progreso Tizapán, Álvaro Obregón, Ciudad de Mexico 01090, Mexico;
| | - Fernando Larrea
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas-Virreyes, Lomas de Chapultepec IV Sección, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| |
Collapse
|
3
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
4
|
Guevara MA, Lu J, Moore RE, Chambers SA, Eastman AJ, Francis JD, Noble KN, Doster RS, Osteen KG, Damo SM, Manning SD, Aronoff DM, Halasa NB, Townsend SD, Gaddy JA. Vitamin D and Streptococci: The Interface of Nutrition, Host Immune Response, and Antimicrobial Activity in Response to Infection. ACS Infect Dis 2020; 6:3131-3140. [PMID: 33170652 DOI: 10.1021/acsinfecdis.0c00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Streptococcus species are common causes of human infection. These Gram-positive, encapsulated bacterial pathogens infect diverse anatomic spaces, leading to infections including skin and soft tissue infection, endocarditis, pneumonia, meningitis, sinusitis, otitis media, chorioamnionitis, sepsis, and even death. Risk for streptococcal infection is highest in low- and middle-income countries where micronutrient deficiency is common. Epidemiological data reveal that vitamin D deficiency is associated with enhanced risk of streptococcal infection and cognate disease outcomes. Additionally, vitamin D improves antibacterial defenses by stimulating innate immune processes such as phagocytosis and enhancing production of reactive oxygen species (oxidative burst) and antimicrobial peptides (including cathelicidin and lactoferrin), which are important for efficient killing of bacteria. This review presents the most recent published work that studies interactions between the micronutrient vitamin D, the host immune system, and pathogenic streptococci as well as comparisons with other relevant infection models.
Collapse
Affiliation(s)
- Miriam A. Guevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Schuyler A. Chambers
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alison J. Eastman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jamisha D. Francis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kristen N. Noble
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ryan S. Doster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kevin G. Osteen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Steven M. Damo
- Department of Chemistry, Fisk University, Nashville, Tennessee 37208, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - David M. Aronoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Natasha B. Halasa
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
| |
Collapse
|
5
|
Patras KA, Coady A, Babu P, Shing SR, Ha AD, Rooholfada E, Brandt SL, Geriak M, Gallo RL, Nizet V. Host Cathelicidin Exacerbates Group B Streptococcus Urinary Tract Infection. mSphere 2020; 5:e00932-19. [PMID: 32321824 PMCID: PMC7178553 DOI: 10.1128/msphere.00932-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) causes frequent urinary tract infection (UTI) in susceptible populations, including individuals with type 2 diabetes and pregnant women; however, specific host factors responsible for increased GBS susceptibility in these populations are not well characterized. Here, we investigate cathelicidin, a cationic antimicrobial peptide, known to be critical for defense during UTI with uropathogenic Escherichia coli (UPEC). We observed a loss of antimicrobial activity of human and mouse cathelicidins against GBS and UPEC in synthetic urine and no evidence for increased cathelicidin resistance in GBS urinary isolates. Furthermore, we found that GBS degrades cathelicidin in a protease-dependent manner. Surprisingly, in a UTI model, cathelicidin-deficient (Camp-/-) mice showed decreased GBS burdens and mast cell recruitment in the bladder compared to levels in wild-type (WT) mice. Pharmacologic inhibition of mast cells reduced GBS burdens and histamine release in WT but not Camp-/- mice. Streptozotocin-induced diabetic mice had increased bladder cathelicidin production and mast cell recruitment at 24 h postinfection with GBS compared to levels in nondiabetic controls. We propose that cathelicidin is an important immune regulator but ineffective antimicrobial peptide against GBS in urine. Combined, our findings may in part explain the increased frequency of GBS UTI in diabetic and pregnant individuals.IMPORTANCE Certain populations such as diabetic individuals are at increased risk for developing urinary tract infections (UTI), although the underlying reasons for this susceptibility are not fully known. Additionally, diabetics are more likely to become infected with certain types of bacteria, such as group B Streptococcus (GBS). In this study, we find that an antimicrobial peptide called cathelicidin, which is thought to protect the bladder from infection, is ineffective in controlling GBS and alters the type of immune cells that migrate to the bladder during infection. Using a mouse model of diabetes, we observe that diabetic mice are more susceptible to GBS infection even though they also have more infiltrating immune cells and increased production of cathelicidin. Taken together, our findings identify this antimicrobial peptide as a potential contributor to increased susceptibility of diabetic individuals to GBS UTI.
Collapse
Affiliation(s)
- Kathryn A Patras
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Alison Coady
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Priyanka Babu
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Samuel R Shing
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Albert D Ha
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Emma Rooholfada
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie L Brandt
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | | | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Furfaro LL, Nathan EA, Chang BJ, Payne MS. Group B streptococcus prevalence, serotype distribution and colonization dynamics in Western Australian pregnant women. J Med Microbiol 2019; 68:728-740. [PMID: 31013212 DOI: 10.1099/jmm.0.000980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Streptococcus agalactiae, or group B streptococcus (GBS), is a leading neonatal pathogen that causes sepsis, meningitis and pneumonia. Globally, strategies have been implemented to address vertical transmission, and in Western Australia (WA), culture-based screening at 35-37 weeks' gestation is part of routine care and guides antibiotic administration. Previous Australian studies have focused on other regions or included low sample-size representatives; we aimed to describe antenatal GBS colonization in WA. METHODOLOGY A cohort of 814 pregnant women attending antenatal clinics (2015-2017) self-collected vaginal and rectal swabs at ≤22 weeks (n=814) and ≥33 weeks' (n=567) gestation. These were assessed for GBS presence using culture and PCR, and serotyping was conducted using molecular methods. Lifestyle questionnaires and medical data were collected. RESULTS We observed an overall GBS colonization rate of 24%, with 10.6 % of positive participants transiently colonized. Ethnicity (Aboriginal, Torres Strait Islander and African), maternal age ≥25 years, vitamin use, frequent sexual intercourse (≥5 times/week) and use of sex toys were associated with GBS colonization. The dominant serotypes identified were Ia (27.9%), III (20.9%), II (16.3%), V (15.8%), Ib (8.4%), VI (5.1%), IV (2.8%), NT (1.9), VIII (0.5%) and IX (0.5%) at visit one, with V (18.9%) preceding serotype II (18.2%) at visit two. Serotype VII was not detected. CONCLUSION This is the first cohort study to assess GBS colonization in Western Australian pregnant women and will be highly beneficial for guiding clinical practice and future therapeutic options, in particular, the selection of suitable vaccine candidates.
Collapse
Affiliation(s)
- Lucy L Furfaro
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Australia
| | - Elizabeth A Nathan
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Australia.,Women and Infants Research Foundation of Western Australia, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Barbara J Chang
- The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Australia
| | - Matthew S Payne
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Australia
| |
Collapse
|
7
|
Olmos-Ortiz A, García-Quiroz J, Halhali A, Avila E, Zaga-Clavellina V, Chavira-Ramírez R, García-Becerra R, Caldiño-Soto F, Larrea F, Díaz L. Negative correlation between testosterone and TNF-α in umbilical cord serum favors a weakened immune milieu in the human male fetoplacental unit. J Steroid Biochem Mol Biol 2019; 186:154-160. [PMID: 30359690 DOI: 10.1016/j.jsbmb.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/10/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022]
Abstract
Clinical and epidemiological evidence supports that pregnancies carrying a male fetus are more vulnerable to infections and preterm birth, probably due to testosterone immunosuppressive properties. In human placentas, testosterone lowers the expression of CYP27B1, the vitamin D (VD)-activating enzyme, diminishing cathelicidin synthesis, a potent VD-dependent antimicrobial peptide (AMP). VD also stimulates other AMPs, including defensins. To get insights into the increased male vulnerability mechanisms, we investigated the relationship between fetal sex and the immunoendocrine milieu at the fetoplacental unit. For this, umbilical vein serum and placental samples were collected from healthy newborns. In males' serum, testosterone levels were significantly higher and negatively associated with TNF-α, a cytokine that strengthens the immune response. Males showed lower serum TNF-α and increased levels and gene expression of the immunosuppressive cytokine IL-10. Only in female samples there was a positive association (P < 0.05) between AMPs and both TNF-α and CYP27B1 and between 25-hydroxyvitamin D3 and IL-1β serum levels. Accordingly, VD-metabolites (25-hydroxyvitamin D3, calcitriol) significantly stimulated IL-1β gene expression in cultured trophoblasts. Interestingly, IL-1β mRNA correlated positively with defensins (P < 0.05) in males, but not with cathelicidin expression, which was significantly diminished in comparison to females. Our data suggest that high umbilical serum testosterone and IL-10 in males could explain reduced TNF-α levels and lack of association between VD-dependent innate immunity markers and proinflammatory cytokines expression in the fetoplacental unit. Altogether, our observations imply a restricted basal immune milieu in males compared to females, which may help understand the higher male susceptibility to adverse perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico; Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales No. 800, Lomas de Virreyes, C.P. 11000, Ciudad de México, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Ali Halhali
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales No. 800, Lomas de Virreyes, C.P. 11000, Ciudad de México, Mexico
| | - Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán 04360, Ciudad de México, Mexico
| | - Felipe Caldiño-Soto
- Jefatura de UTQ, UMAE Hospital de Gineco Obstetricia No. 4 "Luis Castelazo Ayala", IMSS, Av. Río Magdalena No. 289, Tizapán San Angel, C.P. 01090, Ciudad de México, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico.
| |
Collapse
|