1
|
Gurton WH, King DG, Ranchordas MK, Siegler JC, Gough LA. Enhancing exercise performance and recovery through sodium bicarbonate supplementation: introducing the ingestion recovery framework. Eur J Appl Physiol 2024; 124:3175-3190. [PMID: 39177769 PMCID: PMC11519211 DOI: 10.1007/s00421-024-05578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Sodium bicarbonate (SB) supplementation is an ergogenic strategy for athletes competing in high-intensity exercise, but the efficacy of SB for accelerating recovery from exercise and thus improving performance during repeated bouts of exercise is not fully understood. In a similar fashion to using SB as a pre-exercise buffer, it is possible accelerated restoration of blood pH and bicarbonate following an exercise bout mechanistically underpins the use of SB as a recovery aid. Physiological mechanisms contributing to beneficial effects for SB during repeated bout exercise could be more far-reaching however, as alterations in strong ion difference (SID) and attenuated cellular stress response might also contribute to accelerated recovery from exercise. From inspection of existing literature, ingestion of 0.3 g kg-1 body mass SB ~60-90 min pre-exercise seems to be the most common dosage strategy, but there is evidence emerging for the potential application of post-exercise supplementation timing, gradual SB doses throughout a competition day, or even ingestion during exercise. Based on this review of literature, an SB ingestion recovery framework is proposed to guide athletes and practitioners on the use of SB to enhance performance for multiple bouts of exercise.
Collapse
Affiliation(s)
- William H Gurton
- Sport & Physical Activity Research Centre, Sheffield Hallam University, Sheffield, UK
| | - David G King
- School of Energy, Geoscience, Infrastructure and Society, Institute for Life and Earth Sciences, Heriot Watt University, Edinburgh, Scotland, UK
| | - Mayur K Ranchordas
- Sport & Physical Activity Research Centre, Sheffield Hallam University, Sheffield, UK
- Advanced Wellbeing Research Centre, Sheffield, UK
| | - Jason C Siegler
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Lewis A Gough
- Human Performance and Health Research Group, Centre for Life & Sport Sciences (CLaSS), Birmingham City University, Birmingham, UK.
| |
Collapse
|
2
|
de Oliveira LF, Dolan E, Swinton PA, Durkalec-Michalski K, Artioli GG, McNaughton LR, Saunders B. Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-analysis. Sports Med 2022; 52:505-526. [PMID: 34687438 DOI: 10.1007/s40279-021-01575-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect. OBJECTIVE To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach. METHODS This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses. RESULTS 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L-1 (95% credible interval (CrI) 4.7-5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12-0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5-10 min [ES0.5 = 0.18 (0.13-0.24)] and > 10 min [ES0.5 = 0.22 (0.10-0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4-6 mmol L-1) and large (> 6 mmol L-1) compared with small (≤ 4 mmol L-1) [βSmall:Medium = 0.16 (95% CrI 0.02-0.32), βSmall:Large = 0.13 (95% CrI - 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [βSC:SB = 0.10 (95% CrI - 0.02 to 0.22)]. CONCLUSIONS Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.
Collapse
Affiliation(s)
- Luana Farias de Oliveira
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Guilherme G Artioli
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Bryan Saunders
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland.
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Grgic J, Pedisic Z, Saunders B, Artioli GG, Schoenfeld BJ, McKenna MJ, Bishop DJ, Kreider RB, Stout JR, Kalman DS, Arent SM, VanDusseldorp TA, Lopez HL, Ziegenfuss TN, Burke LM, Antonio J, Campbell BI. International Society of Sports Nutrition position stand: sodium bicarbonate and exercise performance. J Int Soc Sports Nutr 2021; 18:61. [PMID: 34503527 PMCID: PMC8427947 DOI: 10.1186/s12970-021-00458-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Based on a comprehensive review and critical analysis of the literature regarding the effects of sodium bicarbonate supplementation on exercise performance, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Supplementation with sodium bicarbonate (doses from 0.2 to 0.5 g/kg) improves performance in muscular endurance activities, various combat sports, including boxing, judo, karate, taekwondo, and wrestling, and in high-intensity cycling, running, swimming, and rowing. The ergogenic effects of sodium bicarbonate are mostly established for exercise tasks of high-intensity that last between 30 s and 12 min. 2. Sodium bicarbonate improves performance in single- and multiple-bout exercise. 3. Sodium bicarbonate improves exercise performance in both men and women. 4. For single-dose supplementation protocols, 0.2 g/kg of sodium bicarbonate seems to be the minimum dose required to experience improvements in exercise performance. The optimal dose of sodium bicarbonate dose for ergogenic effects seems to be 0.3 g/kg. Higher doses (e.g., 0.4 or 0.5 g/kg) may not be required in single-dose supplementation protocols, because they do not provide additional benefits (compared with 0.3 g/kg) and are associated with a higher incidence and severity of adverse side-effects. 5. For single-dose supplementation protocols, the recommended timing of sodium bicarbonate ingestion is between 60 and 180 min before exercise or competition. 6. Multiple-day protocols of sodium bicarbonate supplementation can be effective in improving exercise performance. The duration of these protocols is generally between 3 and 7 days before the exercise test, and a total sodium bicarbonate dose of 0.4 or 0.5 g/kg per day produces ergogenic effects. The total daily dose is commonly divided into smaller doses, ingested at multiple points throughout the day (e.g., 0.1 to 0.2 g/kg of sodium bicarbonate consumed at breakfast, lunch, and dinner). The benefit of multiple-day protocols is that they could help reduce the risk of sodium bicarbonate-induced side-effects on the day of competition. 7. Long-term use of sodium bicarbonate (e.g., before every exercise training session) may enhance training adaptations, such as increased time to fatigue and power output. 8. The most common side-effects of sodium bicarbonate supplementation are bloating, nausea, vomiting, and abdominal pain. The incidence and severity of side-effects vary between and within individuals, but it is generally low. Nonetheless, these side-effects following sodium bicarbonate supplementation may negatively impact exercise performance. Ingesting sodium bicarbonate (i) in smaller doses (e.g., 0.2 g/kg or 0.3 g/kg), (ii) around 180 min before exercise or adjusting the timing according to individual responses to side-effects, (iii) alongside a high-carbohydrate meal, and (iv) in enteric-coated capsules are possible strategies to minimize the likelihood and severity of these side-effects. 9. Combining sodium bicarbonate with creatine or beta-alanine may produce additive effects on exercise performance. It is unclear whether combining sodium bicarbonate with caffeine or nitrates produces additive benefits. 10. Sodium bicarbonate improves exercise performance primarily due to a range of its physiological effects. Still, a portion of the ergogenic effect of sodium bicarbonate seems to be placebo-driven.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | - Zeljko Pedisic
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, Sao Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Sao Paulo, Brazil
| | - Guilherme G Artioli
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | | | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Jeffrey R Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, USA
- Supplement Safety Solutions, Bedford, MA, 01730, USA
| | | | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
4
|
Lino RS, Lagares LS, Oliveira CVC, Queiroz CO, Pinto LLT, Almeida LAB, Bonfim ES, Santos CPCD. Effect of sodium bicarbonate supplementation on two different performance indicators in sports: a systematic review with meta-analysis. Phys Act Nutr 2021; 25:7-15. [PMID: 33887823 PMCID: PMC8076585 DOI: 10.20463/pan.2021.0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
[Purpose] Sodium bicarbonate shows ergogenic potential in physical exercise and sports activities, although there is no strong evidence which performance markers show the greatest benefit from this supplement. This study evaluated the effects of sodium bicarbonate supplementation on time trial performance and time to exhaustion in athletes and sports practitioners. [Methods] A systematic review was conducted using three databases, including 17 clinical trials. Among these clinical trials, 11 were considered eligible for the meta-analysis according to the criteria for the assessment of methodological quality using the PEDro Scale. Time to exhaustion was assessed in six studies, while time trial performance was evaluated in five studies. [Results] A significant beneficial effect of supplementation on time to exhaustion was found in a random effects model (1.48; 95% confidence interval [CI], 0.49 to 2.48). There was no significant effect of supplementation on time trial performance in a fixed effects model (slope = −0.75; 95% CI, −2.04 to 0.55) relative to a placebo group. [Conclusion] Sodium bicarbonate has the potential to improve sports performance in general, especially in terms of time to exhaustion.
Collapse
Affiliation(s)
- Ramon Souza Lino
- Research and Study Group on Health and Human Performance, Bahian School of Medicine and Public Health, Bahia, Brazil
| | - Laura Souza Lagares
- Research and Study Group on Health and Human Performance, Bahian School of Medicine and Public Health, Bahia, Brazil
| | | | - Ciro Oliveira Queiroz
- Research and Study Group on Health and Human Performance, Bahian School of Medicine and Public Health, Bahia, Brazil
| | - Lélia Lessa Teixeira Pinto
- Research and Study Group on Health and Human Performance, Bahian School of Medicine and Public Health, Bahia, Brazil
| | | | | | | |
Collapse
|
5
|
Calvo JL, Xu H, Mon-López D, Pareja-Galeano H, Jiménez SL. Effect of sodium bicarbonate contribution on energy metabolism during exercise: a systematic review and meta-analysis. J Int Soc Sports Nutr 2021; 18:11. [PMID: 33546730 PMCID: PMC7863495 DOI: 10.1186/s12970-021-00410-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background The effects of sodium bicarbonate (NaHCO3) on anaerobic and aerobic capacity are commonly acknowledged as unclear due to the contrasting evidence thus, the present study analyzes the contribution of NaHCO3 to energy metabolism during exercise. Methods Following a search through five databases, 17 studies were found to meet the inclusion criteria. Meta-analyses of standardized mean differences (SMDs) were performed using a random-effects model to determine the effects of NaHCO3 supplementation on energy metabolism. Subgroup meta-analyses were conducted for the anaerobic-based exercise (assessed by changes in pH, bicarbonate ion [HCO3−], base excess [BE] and blood lactate [BLa]) vs. aerobic-based exercise (assessed by changes in oxygen uptake [VO2], carbon dioxide production [VCO2], partial pressure of oxygen [PO2] and partial pressure of carbon dioxide [PCO2]). Results The meta-analysis indicated that NaHCO3 ingestion improves pH (SMD = 1.38, 95% CI: 0.97 to 1.79, P < 0.001; I2 = 69%), HCO3− (SMD = 1.63, 95% CI: 1.10 to 2.17, P < 0.001; I2 = 80%), BE (SMD = 1.67, 95% CI: 1.16 to 2.19, P < 0.001, I2 = 77%), BLa (SMD = 0.72, 95% CI: 0.34 to 1.11, P < 0.001, I2 = 68%) and PCO2 (SMD = 0.51, 95% CI: 0.13 to 0.90, P = 0.009, I2 = 0%) but there were no differences between VO2, VCO2 and PO2 compared with the placebo condition. Conclusions This meta-analysis has found that the anaerobic metabolism system (AnMS), especially the glycolytic but not the oxidative system during exercise is affected by ingestion of NaHCO3. The ideal way is to ingest it is in a gelatin capsule in the acute mode and to use a dose of 0.3 g•kg− 1 body mass of NaHCO3 90 min before the exercise in which energy is supplied by the glycolytic system.
Collapse
Affiliation(s)
- Jorge Lorenzo Calvo
- Faculty of Physical Activity and Sport science, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Huanteng Xu
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.
| | - Daniel Mon-López
- Faculty of Physical Activity and Sport science, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
6
|
Daneshfar A, Petersen C, Gahreman D. Determinant physiological factors of simulated BMX race. Eur J Sport Sci 2020; 21:1699-1707. [PMID: 33263464 DOI: 10.1080/17461391.2020.1859622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Evaluating the physiological demands of BMX cycling on a track provides coaches with the information required to prescribe more effective training programmes. To determine the relative importance of physiological factors during simulated BMX race, 12 male riders (age 19.2 ± 3.5 years, height 1.76 ± 0.06 m, mass 68.5 ± 4.3 kg) completed a maximum aerobic capacity (V̇O2max) test in a laboratory, and a week later, completed six laps on a BMX track interspersed by 15 min passive recovery. Peak power, immediate post-lap V̇O2peak, blood lactate, and heart rate were measured in each lap. Peak power to weight ratio was significantly correlated with lap time, however, the strength of this association decreased in each subsequent lap. Mean V̇O2peak was greater than 80% of laboratory-measured V̇O2max in every lap, indicating a strong contribution of the aerobic energy system during BMX racing. This study also identified that mean blood lactate was significantly associated with lap time, which showed the importance of the anaerobic energy system contribution to BMX race. Despite the short period of pedalling during BMX racing, both aerobic and anaerobic energy systems are important contributors to lap performance. Coaches should consider maximising both anaerobic power and aerobic capacity to improve riders' overall performance in multiple laps.
Collapse
Affiliation(s)
- Amin Daneshfar
- School of Health Sciences, University of Canterbury, Christchurch, New Zealand
| | - Carl Petersen
- School of Health Sciences, University of Canterbury, Christchurch, New Zealand
| | - Daniel Gahreman
- College of Health & Human Sciences, Charles Darwin University, Casuarina, Australia
| |
Collapse
|
7
|
The Effect of Beta-Alanine versus Alkaline Agent Supplementation Combined with Branched-Chain Amino Acids and Creatine Malate in Highly-Trained Sprinters and Endurance Athletes: A Randomized Double-Blind Crossover Study. Nutrients 2019; 11:nu11091961. [PMID: 31438535 PMCID: PMC6769605 DOI: 10.3390/nu11091961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
The study aimed to verify the effect of intra- (beta-alanine—BA) versus extra- (alkaline agents—ALK) cellular buffering agent supplementation, combined with customarily used branched-chain amino acids (BCAAs) and creatine malate (TCM) treatment in natural training conditions. Thirty-one elite athletes (11 sprinters and 20 endurance athletes) participated in the study. Eight-week randomized double-blind, crossover, combined supplementation with BA-ALKplaBCAA&TCM and ALK-BAplaBCAA&TCM was implemented. In the course of the experiment, body composition, aerobic capacity, and selected blood markers were assayed. After BA-ALKplaBCAA&TCM supplementation, total fat-free mass increased in sprinters (p = 0.009). No other differences were found in body composition, respiratory parameters, aerobic capacity, blood lactate concentration, and hematological indices after BA-ALKplaBCAA&TCM/ALK-BAplaBCAA&TCM supplementation. The maximum post-exercise blood ammonia (NH3) concentration decreased in both groups after BA-ALKplaBCAA&TCM supplementation (endurance, p = 0.002; sprint, p < 0.0001). Also, lower NH3 concentrations were observed in endurance athletes in the post-exercise recovery period. The results of our study indicate that combined BCAA, TCM, and BA supplementation is more effective than combined BCAA, TCM and ALK supplementation for an increase in fat-free mass and exercise adaptation, but not for aerobic capacity improvement. Besides, it seems that specific exercise stimuli and the training status are key factors affecting exercise performance, even in athletes using efficient supplementation.
Collapse
|