1
|
Zhang W, Kaufmann B, Chipman PR, Kuhn RJ, Rossmann MG. Membrane curvature in flaviviruses. J Struct Biol 2013; 183:86-94. [PMID: 23602814 DOI: 10.1016/j.jsb.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 11/26/2022]
Abstract
Coordinated interplay between membrane proteins and the lipid bilayer is required for such processes as transporter function and the entrance of enveloped viruses into host cells. In this study, three-dimensional cryo-electron microscopy density maps of mature and immature flaviviruses were analyzed to assess the curvature of the membrane leaflets and its relation to membrane-bound viral glycoproteins. The overall morphology of the viral membrane is determined by the icosahedral scaffold composed of envelope (E) and membrane (M) proteins through interaction of the proteins' stem-anchor regions with the membrane. In localized regions, small membrane areas exhibit convex, concave, flat or saddle-shaped surfaces that are constrained by the specific protein organization within each membrane leaflet. These results suggest that the organization of membrane proteins in small enveloped viruses mediate the formation of membrane curvature.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
2
|
Lai-Kee-Him J, Schellenberger P, Dumas C, Richard E, Trapani S, Komar V, Demangeat G, Ritzenthaler C, Bron P. The backbone model of the Arabis mosaic virus reveals new insights into functional domains of Nepovirus capsid. J Struct Biol 2013; 182:1-9. [DOI: 10.1016/j.jsb.2013.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 01/22/2023]
|
3
|
Chen C, Wang JCY, Zlotnick A. A kinase chaperones hepatitis B virus capsid assembly and captures capsid dynamics in vitro. PLoS Pathog 2011; 7:e1002388. [PMID: 22114561 PMCID: PMC3219723 DOI: 10.1371/journal.ppat.1002388] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/04/2011] [Indexed: 12/14/2022] Open
Abstract
The C-terminal domain (CTD) of Hepatitis B virus (HBV) core protein is involved in regulating multiple stages of the HBV lifecycle. CTD phosphorylation correlates with pregenomic-RNA encapsidation during capsid assembly, reverse transcription, and viral transport, although the mechanisms remain unknown. In vitro, purified HBV core protein (Cp183) binds any RNA and assembles aggressively, independent of phosphorylation, to form empty and RNA-filled capsids. We hypothesize that there must be a chaperone that binds the CTD to prevent self-assembly and nonspecific RNA packaging. Here, we show that HBV capsid assembly is stalled by the Serine Arginine protein kinase (SRPK) binding to the CTD, and reactivated by subsequent phosphorylation. Using the SRPK to probe capsids, solution and structural studies showed that SRPK bound to capsid, though the CTD is sequestered on the capsid interior. This result indicates transient CTD externalization and suggests that capsid dynamics could be crucial for directing HBV intracellular trafficking. Our studies illustrate the stochastic nature of virus capsids and demonstrate the appropriation of a host protein by a virus for a non-canonical function. A virus particle is a molecular machine that has evolved to self-assemble within the confines of a living cell. For hepatitis B virus (HBV), outside of a cell, the self-assembly process is very aggressive and consequently not specific for viral RNA. Here we show that HBV takes advantage of a host protein, SRPK, which acts like a molecular chaperone, to prevent the HBV core protein from binding RNA and to prevent the core protein from assembling at the wrong time and place. At the right time, SRPK can be removed in a regulated reaction to allow assembly. Once a virus is assembled, it must traffic to the right intracellular locale. Using SRPK, we show that HBV cores can transiently expose a segment of protein, normally inside the virus, that carries a signal for transport to the host nucleus. This is the first example we know of where a virus repurposes an enzyme for an alternative function. This sort of interplay between virus and host, where the virus hijacks and repurposes host proteins, is likely to be a common feature of viral infection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Abstract
A universal goal in studying the structures of macromolecules and macromolecular complexes by means of electron cryo-microscopy (cryo-TEM) and three-dimensional (3D) image reconstruction is the derivation of a reliable atomic or pseudoatomic model. Such a model provides the foundation for exploring in detail the mechanisms by which biomolecules function. Though a variety of highly ordered, symmetric specimens such as 2D crystals, helices, and icosahedral virus capsids have been studied by these methods at near-atomic resolution, until recently, numerous challenges have made it difficult to achieve sub-nanometer resolution with large (≥~500Å), asymmetric molecules such as the tailed bacteriophages. After briefly reviewing some of the history behind the development of asymmetric virus reconstructions, we use recent structural studies of the prolate phage ϕ29 as an example to illustrate the step-by-step procedures used to compute an asymmetric reconstruction at sub-nanometer resolution. In contrast to methods that have been employed to study other asymmetric complexes, we demonstrate how symmetries in the head and tail components of the phage can be exploited to obtain the structure of the entire phage in an expedited, stepwise process. Prospects for future enhancements to the procedures currently employed are noted in the concluding section.
Collapse
|
5
|
Tang J, Pan J, Havens WM, Ochoa WF, Guu TSY, Ghabrial SA, Nibert ML, Tao YJ, Baker TS. Backbone trace of partitivirus capsid protein from electron cryomicroscopy and homology modeling. Biophys J 2010; 99:685-94. [PMID: 20643089 DOI: 10.1016/j.bpj.2010.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 11/28/2022] Open
Abstract
Most dsRNA viruses have a genome-enclosing capsid that comprises 120 copies of a single coat protein (CP). These 120 CP subunits are arranged as asymmetrical dimers that surround the icosahedral fivefold axes, forming pentamers of dimers that are thought to be assembly intermediates. This scheme is violated, however, in recent structures of two dsRNA viruses, a fungal virus from family Partitiviridae and a rabbit virus from family Picobirnaviridae, both of which have 120 CP subunits organized as dimers of quasisymmetrical dimers. In this study, we report the CP backbone trace of a second fungal partitivirus, determined in this case by electron cryomicroscopy and homology modeling. This virus also exhibits quasisymmetrical CP dimers that are connected by prominent surface arches and stabilized by domain swapping between the two CP subunits. The CP fold is dominated by alpha-helices, although beta-strands mediate several important contacts. A dimer-of-dimers assembly intermediate is again implicated. The disordered N-terminal tail of each CP subunit protrudes into the particle interior and likely interacts with the genome during packaging and/or transcription. These results broaden our understanding of conserved and variable aspects of partitivirus structure and reflect the growing use of electron cryomicroscopy for atomic modeling of protein folds.
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Xing L, Li TC, Mayazaki N, Simon MN, Wall JS, Moore M, Wang CY, Takeda N, Wakita T, Miyamura T, Cheng RH. Structure of hepatitis E virion-sized particle reveals an RNA-dependent viral assembly pathway. J Biol Chem 2010; 285:33175-33183. [PMID: 20720013 DOI: 10.1074/jbc.m110.106336] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.
Collapse
Affiliation(s)
- Li Xing
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616; Structural Virology Section, Karolinska Institute, Huddinge University Hospital, SE-14186 Stockholm, Sweden
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Naoyuki Mayazaki
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616; Structural Virology Section, Karolinska Institute, Huddinge University Hospital, SE-14186 Stockholm, Sweden
| | - Martha N Simon
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Joseph S Wall
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Mary Moore
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Che-Yen Wang
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Naokazu Takeda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - R Holland Cheng
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616.
| |
Collapse
|
7
|
Structure of the recombinant alphavirus Western equine encephalitis virus revealed by cryoelectron microscopy. J Virol 2010; 84:9775-82. [PMID: 20631130 DOI: 10.1128/jvi.00876-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Western equine encephalitis virus (WEEV; Togaviridae, Alphavirus) is an enveloped RNA virus that is typically transmitted to vertebrate hosts by infected mosquitoes. WEEV is an important cause of viral encephalitis in humans and horses in the Americas, and infection results in a range of disease, from mild flu-like illnesses to encephalitis, coma, and death. In addition to spreading via mosquito vectors, human WEEV infections can potentially occur directly via aerosol transmission. Due to its aerosol infectivity and virulence, WEEV is thus classified as a biological safety level 3 (BSL-3) agent. Because of its highly infectious nature and containment requirements, it has not been possible to investigate WEEV's structure or assembly mechanism using standard structural biology techniques. Thus, to image WEEV and other BSL-3 agents, we have constructed a first-of-its-kind BSL-3 cryoelectron microscopy (cryoEM) containment facility. cryoEM images of WEEV were used to determine the first three-dimensional structure of this important human pathogen. The overall organization of WEEV is similar to those of other alphaviruses, consistent with the high sequence similarity among alphavirus structural proteins. Surprisingly, the nucleocapsid of WEEV, a New World virus, is more similar to the Old World alphavirus Sindbis virus than to other New World alphaviruses.
Collapse
|
8
|
Abstract
Archaea often live in extreme, harsh environments such as acidic hot springs and hypersaline waters. To date, only two icosahedrally symmetric, membrane-containing archaeal viruses, SH1 and Sulfolobus turreted icosahedral virus (STIV), have been described in detail. We report the sequence and three-dimensional structure of a third such virus isolated from a hyperthermoacidophilic crenarchaeon, Sulfolobus strain G4ST-2. Characterization of this new isolate revealed it to be similar to STIV on the levels of genome and structural organization. The genome organization indicates that these two viruses have diverged from a common ancestor. Interestingly, the prominent surface turrets of the two viruses are strikingly different. By sequencing and mass spectrometry, we mapped several large insertions and deletions in the known structural proteins that could account for these differences and showed that both viruses can infect the same host. A combination of genomic and proteomic analyses revealed important new insights into the structural organization of these viruses and added to our limited knowledge of archaeal virus life cycles and host-cell interactions.
Collapse
|
9
|
Kawano MA, Xing L, Tsukamoto H, Inoue T, Handa H, Cheng RH. Calcium bridge triggers capsid disassembly in the cell entry process of simian virus 40. J Biol Chem 2009; 284:34703-12. [PMID: 19822519 DOI: 10.1074/jbc.m109.015107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium bridge between the pentamers of polyoma viruses maintains capsid metastability. It has been shown that viral infection is profoundly inhibited by the substitution of lysine for glutamate in one calcium-binding residue of the SV40 capsid protein, VP1. However, it is unclear how the calcium bridge affects SV40 infectivity. In this in vitro study, we analyzed the influence of host cell components on SV40 capsid stability. We used an SV40 mutant capsid (E330K) in which lysine had been substituted for glutamate 330 in protein VP1. The mutant capsid retained the ability to interact with the SV40 cellular receptor GM1, and the internalized mutant capsid accumulated in caveolin-1-mediated endocytic vesicles and was then translocated to the endoplasmic reticulum (ER) region. However, when placed in ER-rich microsome, the mutant capsid retained its spherical structure in contrast to the wild type, which disassembled. Structural analysis of the mutant capsid with cryo-electron microscopy and image reconstruction revealed altered pentamer coordination, possibly as a result of electrostatic interaction, although its overall structure resembled that of the wild type. These results indicate that the calcium ion serves as a trigger at the pentamer interface, which switches on capsid disassembly, and that the failure of the E330K mutant capsid to disassemble is attributable to an inadequate triggering system. Our data also indicate that calcium depletion-induced SV40 capsid disassembly may occur in the ER region and that this is essential for successful SV40 infection.
Collapse
Affiliation(s)
- Masa-Aki Kawano
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
10
|
Single-particle cryo-electron microscopy of Rift Valley fever virus. Virology 2009; 387:11-5. [PMID: 19304307 DOI: 10.1016/j.virol.2009.02.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/13/2009] [Accepted: 02/25/2009] [Indexed: 11/24/2022]
Abstract
Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.
Collapse
|
11
|
Fernández J. High performance computing in structural determination by electron cryomicroscopy. J Struct Biol 2008; 164:1-6. [DOI: 10.1016/j.jsb.2008.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/04/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
|
12
|
Tang J, Olson N, Jardine PJ, Grimes S, Anderson DL, Baker TS. DNA poised for release in bacteriophage phi29. Structure 2008; 16:935-43. [PMID: 18547525 DOI: 10.1016/j.str.2008.02.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 01/12/2023]
Abstract
We present here the first asymmetric, three-dimensional reconstruction of a tailed dsDNA virus, the mature bacteriophage phi29, at subnanometer resolution. This structure reveals the rich detail of the asymmetric interactions and conformational dynamics of the phi29 protein and DNA components, and provides novel insight into the mechanics of virus assembly. For example, the dodecameric head-tail connector protein undergoes significant rearrangement upon assembly into the virion. Specific interactions occur between the tightly packed dsDNA and the proteins of the head and tail. Of particular interest and novelty, an approximately 60A diameter toroid of dsDNA was observed in the connector-lower collar cavity. The extreme deformation that occurs over a small stretch of DNA is likely a consequence of the high pressure of the packaged genome. This toroid structure may help retain the DNA inside the capsid prior to its injection into the bacterial host.
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
13
|
Jaatinen ST, Happonen LJ, Laurinmäki P, Butcher SJ, Bamford DH. Biochemical and structural characterisation of membrane-containing icosahedral dsDNA bacteriophages infecting thermophilic Thermus thermophilus. Virology 2008; 379:10-9. [PMID: 18657283 DOI: 10.1016/j.virol.2008.06.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/11/2008] [Accepted: 06/08/2008] [Indexed: 10/21/2022]
Abstract
Icosahedral dsDNA viruses isolated from hot springs and proposed to belong to the Tectiviridae family infect the gram-negative thermophilic Thermus thermophilus bacterium. Seven such viruses were obtained from the Promega Corporation collection. The structural protein patterns of three of these viruses, growing to a high titer, appeared very similar but not identical. The most stable virus, P23-77, was chosen for more detailed studies. Analysis of highly purified P23-77 by thin layer chromatography for neutral lipids showed lipid association with the virion. Cryo-EM based three-dimensional image reconstruction of P23-77 to 1.4 nm resolution revealed an icosahedrally-ordered protein coat, with spikes on the vertices, and an internal membrane. The capsid architecture of P23-77 is most similar to that of the archaeal virus SH1. These findings further complicate the grouping of icosahedrally-symmetric viruses containing an inner membrane. We propose a single superfamily or order with members in several viral families.
Collapse
Affiliation(s)
- S T Jaatinen
- Department of Biological and Environmental Sciences and Institute of Biotechnology, Biocenter 2, FIN-00014, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
14
|
Seitsonen JJT, Susi P, Lemmetty A, Butcher SJ. Structure of the mite-transmitted Blackcurrant reversion nepovirus using electron cryo-microscopy. Virology 2008; 378:162-8. [PMID: 18556038 DOI: 10.1016/j.virol.2008.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/21/2008] [Accepted: 05/05/2008] [Indexed: 11/26/2022]
Abstract
Blackcurrant reversion nepovirus (BRV; genus Nepovirus) has a single-stranded, bipartite RNA genome surrounded by 60 copies of a single capsid protein (CP). BRV is the most important mite-transmitted viral pathogen of the Ribes species. It is the causal agent of blackcurrant reversion disease. We determined the structure of BRV to 1.7 nm resolution using electron cryo- microscopy (cryoEM) and image reconstruction. The reconstruction reveals a pseudo T=3 viral capsid similar to that of tobacco ringspot virus (TRSV). We modelled the BRV capsid protein to that of TRSV and fitted it into the cryoEM reconstruction. The fit indicated that the extended C-terminus of BRV-CP is located on the capsid surface and the N-terminus on the interior. We generated peptide antibodies to two putatively exposed C-terminal sequences and these reacted with the virus. Hence homology modelling may be useful for defining epitopes for antibody generation for diagnostic testing of BRV in commercial crops.
Collapse
Affiliation(s)
- Jani J T Seitsonen
- Institute of Biotechnology, P.O. Box 65 (Viikinkaari 1), FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
15
|
Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci U S A 2008; 105:8008-13. [PMID: 18515426 DOI: 10.1073/pnas.0801758105] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Archaea, and the viruses that infect them, are the least well understood of all of the three domains of life. They often grow in extreme conditions such as hypersaline lakes and sulfuric hot springs. Only rare glimpses have been gained into the structures of archaeal viruses. Here, we report the subnanometer resolution structure of a recently isolated, hypersalinic, membrane-containing, euryarchaeal virus, SH1, in which different viral proteins can be localized. The results indicate that SH1 has a complex capsid formed from single beta-barrels, an important missing link in hypotheses on viral capsid protein evolution. Unusual, symmetry-mismatched spikes seem to play a role in host adsorption. They are connected to highly organized membrane proteins providing a platform for capsid assembly and potential machinery for host infection.
Collapse
|
16
|
Estrozi LF, Navaza J. Fast projection matching for cryo-electron microscopy image reconstruction. J Struct Biol 2008; 162:324-34. [PMID: 18353677 DOI: 10.1016/j.jsb.2008.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 01/23/2008] [Accepted: 01/26/2008] [Indexed: 10/22/2022]
Abstract
A new FFT-accelerated projection matching method is presented and tested. The electron microscopy images are represented by their Fourier-Bessel transforms and the 3D model by its expansion in spherical harmonics, or more specifically in terms of symmetry-adapted functions. The rotational and translational properties of these representations are used to quickly access all the possible 2D projections of the 3D model, which allow an exhaustive inspection of the whole five-dimensional domain of parameters associated to each particle.
Collapse
Affiliation(s)
- Leandro Farias Estrozi
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel., CEA, CNRS, Université Joseph Fourier, 41 rue Jules Horowitz, F-38027 Grenoble, France.
| | | |
Collapse
|
17
|
Kaufmann B, López-Bueno A, Mateu MG, Chipman PR, Nelson CDS, Parrish CR, Almendral JM, Rossmann MG. Minute virus of mice, a parvovirus, in complex with the Fab fragment of a neutralizing monoclonal antibody. J Virol 2007; 81:9851-8. [PMID: 17626084 PMCID: PMC2045413 DOI: 10.1128/jvi.00775-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of virus-like particles of the lymphotropic, immunosuppressive strain of minute virus of mice (MVMi) in complex with the neutralizing Fab fragment of the mouse monoclonal antibody (MAb) B7 was determined by cryo-electron microscopy to 7-A resolution. The Fab molecule recognizes a conformational epitope at the vertex of a three-fold protrusion on the viral surface, thereby simultaneously engaging three symmetry-related viral proteins in binding. The location of the epitope close to the three-fold axis is consistent with the previous analysis of MVMi mutants able to escape from the B7 antibody. The binding site close to the symmetry axes sterically forbids the binding of more than one Fab molecule per spike. MAb as well as the Fab molecules inhibits the binding of the minute virus of mice (MVM) to permissive cells but can also neutralize MVM postattachment. This finding suggests that the interaction of B7 with three symmetry-related viral subunits at each spike hinders structural transitions in the viral capsid essential during viral entry.
Collapse
Affiliation(s)
- Bärbel Kaufmann
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, King J, Hatfull GF, Lawrence JG, Hendrix RW. Genomic and structural analysis of Syn9, a cyanophage infecting marineProchlorococcusandSynechococcus. Environ Microbiol 2007; 9:1675-95. [PMID: 17564603 DOI: 10.1111/j.1462-2920.2007.01285.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriophage Syn9 is a large, contractile-tailed bacteriophage infecting the widespread, numerically dominant marine cyanobacteria of the genera Prochlorococcus and Synechococcus. Its 177,300 bp genome sequence encodes 226 putative proteins and six tRNAs. Experimental and computational analyses identified genes likely involved in virion formation, nucleotide synthesis, and DNA replication and repair. Syn9 shows significant mosaicism when compared with related cyanophages S-PM2, P-SSM2 and P-SSM4, although shared genes show strong purifying selection and evidence for large population sizes relative to other phages. Related to coliphage T4 - which shares 19% of Syn9's genes - Syn9 shows evidence for different patterns of DNA replication and uses homologous proteins to assemble capsids with a different overall structure that shares topology with phage SPO1 and herpes virus. Noteworthy bacteria-related sequences in the Syn9 genome potentially encode subunits of the photosynthetic reaction centre, electron transport proteins, three pentose pathway enzymes and two tryptophan halogenases. These genes suggest that Syn9 is well adapted to the physiology of its photosynthetic hosts and may affect the evolution of these sequences within marine cyanobacteria.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Conway JF, Cheng N, Ross PD, Hendrix RW, Duda RL, Steven AC. A thermally induced phase transition in a viral capsid transforms the hexamers, leaving the pentamers unchanged. J Struct Biol 2006; 158:224-32. [PMID: 17188892 PMCID: PMC1978070 DOI: 10.1016/j.jsb.2006.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/21/2006] [Accepted: 11/10/2006] [Indexed: 11/19/2022]
Abstract
Scanning calorimetry combined with cryo-electron microscopy affords a powerful approach to investigating hierarchical interactions in multi-protein complexes. Calorimetry can detect the temperatures at which certain interactions are disrupted and cryo-EM can reveal the accompanying structural changes. The procapsid of bacteriophage HK97 (Prohead I) is a 450A-diameter shell composed of 60 hexamers and 12 pentamers of gp5, organized with icosahedral symmetry. Gp5 consists of the N-terminal Delta-domain (11kDa) and gp5* (31 kDa): gp5* forms the contiguous shell from which clusters of Delta-domains extend inwards. At neutral pH, Prohead I exhibits an endothermic transition at 53 degrees C with an enthalpy change of 14 kcal/mole (of gp5 monomer). We show that this transition is reversible. To capture its structural expression, we incubated Prohead I at 60 degrees C followed by rapid freezing and, by cryo-EM, observed a capsid species 10% larger than Prohead I. At 11A resolution, visible changes are confined to the gp5 hexamers. Their Delta-domain clusters have disappeared and are presumably disordered, either by unfolding or dispersal. The gp5* hexamer rings are thinned and flattened as they assume the conformation observed in Expansion Intermediate I, a transition state of the normal, proteolysis-induced, maturation pathway. We infer that, at ambient temperatures, the hexamer Delta-domains restrain their gp5* rings from switching to a lower free energy, EI-I-like, state; above 53 degrees, this restraint is overcome. Pentamers, on the other hand, are more stably anchored and resist this thermal perturbation.
Collapse
Affiliation(s)
- James F. Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD 20892
| | - Philip D. Ross
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD 20892
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Robert L. Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Alasdair C. Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD 20892
- *Correspondence: Building 50, Room 1517, 50 South Drive MSC 8025, N.I.H., Bethesda, MD 20892, U.S.A., fax 301 443-7651; tel 301 496-0132, E-mail:
| |
Collapse
|
20
|
Yan X, Sinkovits RS, Baker TS. AUTO3DEM--an automated and high throughput program for image reconstruction of icosahedral particles. J Struct Biol 2006; 157:73-82. [PMID: 17029842 PMCID: PMC1847775 DOI: 10.1016/j.jsb.2006.08.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 07/29/2006] [Accepted: 08/01/2006] [Indexed: 11/18/2022]
Abstract
AUTO3DEM is an automation system designed to accelerate the computationally intensive process of three-dimensional structure determination from images of vitrified icosahedral virus particles. With minimal user input and intervention, AUTO3DEM manages the flow of data between the major image reconstruction programs, monitors the progress of the computations, and intelligently updates the input parameters as the resolution of the model is improved. It is designed to be used on any computer running the Linux or UNIX operating systems and can be run in parallel mode on multi-processor systems.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, USA.
| | | | | |
Collapse
|
21
|
Yan X, Dryden KA, Tang J, Baker TS. Ab initio random model method facilitates 3D reconstruction of icosahedral particles. J Struct Biol 2006; 157:211-25. [PMID: 16979906 PMCID: PMC1919437 DOI: 10.1016/j.jsb.2006.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/20/2006] [Accepted: 07/29/2006] [Indexed: 01/01/2023]
Abstract
Model-based, three-dimensional (3D) image reconstruction procedures require a starting model to initiate data analysis. We have designed an ab initio method, which we call the random model (RM) method, that automatically generates models to initiate structural analysis of icosahedral viruses imaged by cryo-electron microscopy. The robustness of the RM procedure was demonstrated on experimental sets of images for five representative viruses. The RM method also provides a straightforward way to generate unbiased starting models to derive independent 3D reconstructions and obtain a more reliable assessment of resolution. The fundamental scheme embodied in the RM method should be relatively easy to integrate into other icosahedral software packages.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, USA.
| | | | | | | |
Collapse
|
22
|
Kaufmann B, Nybakken GE, Chipman PR, Zhang W, Diamond MS, Fremont DH, Kuhn RJ, Rossmann MG. West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc Natl Acad Sci U S A 2006; 103:12400-4. [PMID: 16895988 PMCID: PMC1567891 DOI: 10.1073/pnas.0603488103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Flaviviruses, such as West Nile virus (WNV), are significant human pathogens. The humoral immune response plays an important role in the control of flavivirus infection and disease. The structure of WNV complexed with the Fab fragment of the strongly neutralizing mAb E16 was determined to 14.5-Angstrom resolution with cryo-electron microscopy. E16, an antibody with therapeutic potential, binds to domain III of the WNV envelope glycoprotein. Because of steric hindrance, Fab E16 binds to only 120 of the 180 possible binding sites on the viral surface. Fitting of the previously determined x-ray structure of the Fab-domain III complex into the cryo-electron microscopy density required a change of the elbow angle between the variable and constant domains of the Fab. The structure suggests that the E16 antibody neutralizes WNV by blocking the initial rearrangement of the E glycoprotein before fusion with a cellular membrane.
Collapse
Affiliation(s)
- Bärbel Kaufmann
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and Departments of
| | | | - Paul R. Chipman
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and Departments of
| | - Wei Zhang
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and Departments of
| | | | - Daved H. Fremont
- Pathology and Immunology
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110
| | - Richard J. Kuhn
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and Departments of
| | - Michael G. Rossmann
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054; and Departments of
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Zhang X, Ji Y, Zhang L, Harrison SC, Marinescu DC, Nibert ML, Baker TS. Features of reovirus outer capsid protein mu1 revealed by electron cryomicroscopy and image reconstruction of the virion at 7.0 Angstrom resolution. Structure 2005; 13:1545-57. [PMID: 16216585 PMCID: PMC4126556 DOI: 10.1016/j.str.2005.07.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/14/2005] [Accepted: 07/16/2005] [Indexed: 12/23/2022]
Abstract
Reovirus is a useful model for addressing the molecular basis of membrane penetration by one of the larger nonenveloped animal viruses. We now report the structure of the reovirus virion at approximately 7.0 A resolution as obtained by electron cryomicroscopy and three-dimensional image reconstruction. Several features of the myristoylated outer capsid protein mu1, not seen in a previous X-ray crystal structure of the mu1-sigma3 heterohexamer, are evident in the virion. These features appear to be important for stabilizing the outer capsid, regulating the conformational changes in mu1 that accompany perforation of target membranes, and contributing directly to membrane penetration during cell entry.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | - Yongchang Ji
- Computer Sciences Department University of Central Florida Orlando, Florida 32816
| | - Lan Zhang
- Laboratory of Molecular Medicine, Children’s Hospital Boston, Massachusetts 02115
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Children’s Hospital Boston, Massachusetts 02115
- Howard Hughes Medical Institute Children’s Hospital Boston, Massachusetts 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Massachusetts 02115
| | - Dan C. Marinescu
- Computer Sciences Department University of Central Florida Orlando, Florida 32816
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, Massachusetts 02115
| | - Timothy S. Baker
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
- Department of Chemistry and Biochemistry and Department of Molecular Biology University of California, San Diego La Jolla, California 92093
| |
Collapse
|