1
|
Müller A, Schmidt D, Albrecht JP, Rieckert L, Otto M, Galicia Garcia LE, Fabig G, Solimena M, Weigert M. Modular segmentation, spatial analysis and visualization of volume electron microscopy datasets. Nat Protoc 2024; 19:1436-1466. [PMID: 38424188 DOI: 10.1038/s41596-024-00957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/24/2023] [Indexed: 03/02/2024]
Abstract
Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and spatial analysis is necessary. Here we describe a practical and annotation-efficient pipeline for organelle-specific segmentation, spatial analysis and visualization of large volume electron microscopy datasets using freely available, user-friendly software tools that can be run on a single standard workstation. The procedures are aimed at researchers in the life sciences with modest computational expertise, who use volume electron microscopy and need to generate three-dimensional (3D) segmentation labels for different types of cell organelles while minimizing manual annotation efforts, to analyze the spatial interactions between organelle instances and to visualize the 3D segmentation results. We provide detailed guidelines for choosing well-suited segmentation tools for specific cell organelles, and to bridge compatibility issues between freely available open-source tools, we distribute the critical steps as easily installable Album solutions for deep learning segmentation, spatial analysis and 3D rendering. Our detailed description can serve as a reference for similar projects requiring particular strategies for single- or multiple-organelle analysis, which can be achieved with computational resources commonly available to single-user setups.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Deborah Schmidt
- HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
| | - Jan Philipp Albrecht
- HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Mathematics and Natural Sciences, Berlin, Germany
| | - Lucas Rieckert
- HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Maximilian Otto
- HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Leticia Elizabeth Galicia Garcia
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- DFG Cluster of Excellence 'Physics of Life', TU Dresden, Dresden, Germany
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Dresden, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- DFG Cluster of Excellence 'Physics of Life', TU Dresden, Dresden, Germany
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
McLaughlin MR, Weaver SA, Syed F, Evans-Molina C. Advanced Imaging Techniques for the Characterization of Subcellular Organelle Structure in Pancreatic Islet β Cells. Compr Physiol 2023; 14:5243-5267. [PMID: 38158370 PMCID: PMC11490899 DOI: 10.1002/cphy.c230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic β cell. However, genetic and physiologic data indicate that defects in β cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the β cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the β cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.
Collapse
Affiliation(s)
- Madeline R. McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Staci A. Weaver
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Pittari D, Dalla Torre M, Borini E, Hummel B, Sawarkar R, Semino C, van Anken E, Panina-Bordignon P, Sitia R, Anelli T. CREB3L1 and CREB3L2 control Golgi remodelling during decidualization of endometrial stromal cells. Front Cell Dev Biol 2022; 10:986997. [PMID: 36313580 PMCID: PMC9608648 DOI: 10.3389/fcell.2022.986997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of in vitro decidualizing EnSC. Pathway analysis shows that Gene Ontology terms associated with vesicular trafficking and early secretory pathway compartments are the most represented among those enriched for upregulated genes. Among these, we identified a cluster of co-regulated genes that share CREB3L1 and CREB3L2 binding elements in their promoter regions. Indeed, both CREB3L1 and CREB3L2 transcription factors are up-regulated during decidualization. Simultaneous downregulation of CREB3L1 and CREB3L2 impairs Golgi enlargement, and causes dramatic changes in decidualizing EnSC, including Golgi fragmentation, collagen accumulation in dilated Endoplasmic Reticulum cisternae, and overall decreased protein secretion. Thus, both CREB3L1 and CREB3L2 are required for Golgi reshaping and efficient protein secretion, and, as such, for successful decidualization.
Collapse
Affiliation(s)
- Daniele Pittari
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Dalla Torre
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elena Borini
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, United Kingdom
| | - Claudia Semino
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eelco van Anken
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Sitia
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tiziana Anelli
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
4
|
Sengupta R, Mihelc EM, Angel S, Lanman JK, Kuhn RJ, Stahelin RV. Contribution of the Golgi apparatus in morphogenesis of a virus-induced cytopathic vacuolar system. Life Sci Alliance 2022; 5:5/10/e202000887. [PMID: 36137747 PMCID: PMC9500387 DOI: 10.26508/lsa.202000887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Electron tomography reveals four classes of cytopathic vesicles-II (CPV-II) stemming from the host Golgi apparatus after Venezuelan equine encephalitis virus infection. The Golgi apparatus (GA) in mammalian cells is pericentrosomally anchored and exhibits a stacked architecture. During infections by members of the alphavirus genus, the host cell GA is thought to give rise to distinct mobile pleomorphic vacuoles known as CPV-II (cytopathic vesicle-II) via unknown morphological steps. To dissect this, we adopted a phased electron tomography approach to image multiple overlapping volumes of a cell infected with Venezuelan equine encephalitis virus (VEEV) and complemented it with localization of a peroxidase-tagged Golgi marker. Analysis of the tomograms revealed a pattern of progressive cisternal bending into double-lamellar vesicles as a central process underpinning the biogenesis and the morphological complexity of this vacuolar system. Here, we propose a model for the conversion of the GA to CPV-II that reveals a unique pathway of intracellular virus envelopment. Our results have implications for alphavirus-induced displacement of Golgi cisternae to the plasma membrane to aid viral egress operating late in the infection cycle.
Collapse
Affiliation(s)
- Ranjan Sengupta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA .,Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Elaine M Mihelc
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Stephanie Angel
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Jason K Lanman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA .,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Tran PD, Blanpied TA, Atzberger PJ. Protein drift-diffusion dynamics and phase separation in curved cell membranes and dendritic spines: Hybrid discrete-continuum methods. Phys Rev E 2022; 106:044402. [PMID: 36397472 DOI: 10.1103/physreve.106.044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
We develop methods for investigating protein drift-diffusion dynamics in heterogeneous cell membranes and the roles played by geometry, diffusion, chemical kinetics, and phase separation. Our hybrid stochastic numerical methods combine discrete particle descriptions with continuum-level models for tracking the individual protein drift-diffusion dynamics when coupled to continuum fields. We show how our approaches can be used to investigate phenomena motivated by protein kinetics within dendritic spines. The spine geometry is hypothesized to play an important biological role regulating synaptic strength, protein kinetics, and self-assembly of clusters. We perform simulation studies for model spine geometries varying the neck size to investigate how phase-separation and protein organization is influenced by different shapes. We also show how our methods can be used to study the roles of geometry in reaction-diffusion systems including Turing instabilities. Our methods provide general approaches for investigating protein kinetics and drift-diffusion dynamics within curved membrane structures.
Collapse
Affiliation(s)
- Patrick D Tran
- Physics, College of Creative Studies, University of California, Santa Barbara, Santa Barbara, California 93106-3080, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland, Baltimore, Maryland 21201, USA
| | - Paul J Atzberger
- Department of Mathematics and Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-3080, USA
| |
Collapse
|
6
|
Kreutzberger MAB, Sonani RR, Liu J, Chatterjee S, Wang F, Sebastian AL, Biswas P, Ewing C, Zheng W, Poly F, Frankel G, Luisi BF, Calladine CR, Krupovic M, Scharf BE, Egelman EH. Convergent evolution in the supercoiling of prokaryotic flagellar filaments. Cell 2022; 185:3487-3500.e14. [PMID: 36057255 PMCID: PMC9500442 DOI: 10.1016/j.cell.2022.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023]
Abstract
The supercoiling of bacterial and archaeal flagellar filaments is required for motility. Archaeal flagellar filaments have no homology to their bacterial counterparts and are instead homologs of bacterial type IV pili. How these prokaryotic flagellar filaments, each composed of thousands of copies of identical subunits, can form stable supercoils under torsional stress is a fascinating puzzle for which structural insights have been elusive. Advances in cryoelectron microscopy (cryo-EM) make it now possible to directly visualize the basis for supercoiling, and here, we show the atomic structures of supercoiled bacterial and archaeal flagellar filaments. For the bacterial flagellar filament, we identify 11 distinct protofilament conformations with three broad classes of inter-protomer interface. For the archaeal flagellar filament, 10 protofilaments form a supercoil geometry supported by 10 distinct conformations, with one inter-protomer discontinuity creating a seam inside of the curve. Our results suggest that convergent evolution has yielded stable superhelical geometries that enable microbial locomotion.
Collapse
Affiliation(s)
- Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Junfeng Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Sharanya Chatterjee
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Priyanka Biswas
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Cheryl Ewing
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Frédéric Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - B F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Chris R Calladine
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| |
Collapse
|
7
|
Peck A, Carter SD, Mai H, Chen S, Burt A, Jensen GJ. Montage electron tomography of vitrified specimens. J Struct Biol 2022; 214:107860. [PMID: 35487464 PMCID: PMC10081539 DOI: 10.1016/j.jsb.2022.107860] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Cryo-electron tomography provides detailed views of macromolecules in situ. However, imaging a large field of view to provide more cellular context requires reducing magnification during data collection, which in turn restricts the resolution. To circumvent this trade-off between field of view and resolution, we have developed a montage data collection scheme that uniformly distributes the dose throughout the specimen. In this approach, sets of slightly overlapping circular tiles are collected at high magnification and stitched to form a composite projection image at each tilt angle. These montage tilt-series are then reconstructed into massive tomograms with a small pixel size but a large field of view. For proof-of-principle, we applied this method to the thin edge of HeLa cells. Thon rings to better than 10 Å were detected in the montaged tilt-series, and diverse cellular features were observed in the resulting tomograms. These results indicate that the additional dose required by this technique is not prohibitive to performing structural analysis to intermediate resolution across a large field of view. We anticipate that montage tomography will prove particularly useful for lamellae, increase the likelihood of imaging rare cellular events, and facilitate visual proteomics.
Collapse
Affiliation(s)
- Ariana Peck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Huanghao Mai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alister Burt
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; College of Physical and Mathematical Sciences, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
8
|
Loconte V, Singla J, Li A, Chen JH, Ekman A, McDermott G, Sali A, Le Gros M, White KL, Larabell CA. Soft X-ray tomography to map and quantify organelle interactions at the mesoscale. Structure 2022; 30:510-521.e3. [PMID: 35148829 PMCID: PMC9013509 DOI: 10.1016/j.str.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Inter-organelle interactions are a vital part of normal cellular function; however, these have proven difficult to quantify due to the range of scales encountered in cell biology and the throughput limitations of traditional imaging approaches. Here, we demonstrate that soft X-ray tomography (SXT) can be used to rapidly map ultrastructural reorganization and inter-organelle interactions in intact cells. SXT takes advantage of the naturally occurring, differential X-ray absorption of the carbon-rich compounds in each organelle. Specifically, we use SXT to map the spatiotemporal evolution of insulin vesicles and their co-localization and interaction with mitochondria in pancreatic β cells during insulin secretion and in response to different stimuli. We quantify changes in the morphology, biochemical composition, and relative position of mitochondria and insulin vesicles. These findings highlight the importance of a comprehensive and unbiased mapping at the mesoscale to characterize cell reorganization that would be difficult to detect with other existing methodologies.
Collapse
Affiliation(s)
- Valentina Loconte
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jitin Singla
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Angdi Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian-Hua Chen
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Axel Ekman
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gerry McDermott
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Science, Department of Pharmaceutical Chemistry, California Institute of Quantitative Bioscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mark Le Gros
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L White
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| | - Carolyn A Larabell
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
A new visual design language for biological structures in a cell. Structure 2022; 30:485-497.e3. [DOI: 10.1016/j.str.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 01/04/2022] [Indexed: 01/16/2023]
|
10
|
Johkura K, Usuda N, Tanaka Y, Fukasawa M, Murata K, Noda T, Ohno N. OUP accepted manuscript. Microscopy (Oxf) 2022; 71:262-270. [PMID: 35535544 PMCID: PMC9535788 DOI: 10.1093/jmicro/dfac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kohei Johkura
- Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Nobuteru Usuda
- *To whom correspondence should be addressed. E-mail: (N.U.); (N.O.)
| | - Yoshihiro Tanaka
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Motoaki Fukasawa
- Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Toru Noda
- Department of Occupational Therapy (Anatomy), Biwako Professional University of Rehabilitation, 967 Kitasakacho, Higashiomi, Shiga 527-0145, Japan
- Department of Cell Biology and Anatomy, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Nobuhiko Ohno
- *To whom correspondence should be addressed. E-mail: (N.U.); (N.O.)
| |
Collapse
|
11
|
Loconte V, White KL. The use of soft X-ray tomography to explore mitochondrial structure and function. Mol Metab 2021; 57:101421. [PMID: 34942399 PMCID: PMC8829759 DOI: 10.1016/j.molmet.2021.101421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Mitochondria are cellular organelles responsible for energy production, and dysregulation of the mitochondrial network is associated with many disease states. To fully characterize the mitochondrial network's structure and function, a three-dimensional whole cell mapping technique is required. Scope of review This review highlights the use of soft X-ray tomography (SXT) as a relatively high-throughput approach to quantify mitochondrial structure and function under multiple cellular conditions. Major conclusions The use of SXT opens the door for mapping cellular rearrangements during critical processes such as insulin secretion, stem cell differentiation, or disease progression. SXT provides unique information such as biochemical compositions or molecular densities of organelles and allows for unbiased, label-free imaging of intact whole cells. Mapping mitochondria in the context of the near-native cellular environment will reveal more information regarding mitochondrial network functions within the cell. Soft X-ray tomography (SXT) generates 3D organelle maps of intact cells. 3D maps reveal the positions of mitochondria and their molecular densities. SXT can be used to quantify and compare organelle contacts between conditions. SXT is unbiased imaging that identifies the contents of subcellular neighborhoods. SXT provides an exciting path for exploring metabolic dysfunction.
Collapse
Affiliation(s)
- Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, CA 94143; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
12
|
Lo HP, Lim YW, Xiong Z, Martel N, Ferguson C, Ariotti N, Giacomotto J, Rae J, Floetenmeyer M, Moradi SV, Gao Y, Tillu VA, Xia D, Wang H, Rahnama S, Nixon SJ, Bastiani M, Day RD, Smith KA, Palpant NJ, Johnston WA, Alexandrov K, Collins BM, Hall TE, Parton RG. Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. J Cell Biol 2021; 220:e201905065. [PMID: 34633413 PMCID: PMC8513623 DOI: 10.1083/jcb.201905065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.
Collapse
Affiliation(s)
- Harriet P. Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ye-Wheen Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zherui Xiong
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service and University of Queensland, Brisbane, Queensland, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthias Floetenmeyer
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Shayli Varasteh Moradi
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ya Gao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Vikas A. Tillu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, Brisbane, Queensland, Australia
| | - Huang Wang
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Samira Rahnama
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan J. Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ryan D. Day
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kelly A. Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nathan J. Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Wayne A. Johnston
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kirill Alexandrov
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas E. Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Xu CS, Pang S, Shtengel G, Müller A, Ritter AT, Hoffman HK, Takemura SY, Lu Z, Pasolli HA, Iyer N, Chung J, Bennett D, Weigel AV, Freeman M, van Engelenburg SB, Walther TC, Farese RV, Lippincott-Schwartz J, Mellman I, Solimena M, Hess HF. An open-access volume electron microscopy atlas of whole cells and tissues. Nature 2021; 599:147-151. [PMID: 34616045 PMCID: PMC9004664 DOI: 10.1038/s41586-021-03992-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels1. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle2) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.
Collapse
Affiliation(s)
- C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Huxley K Hoffman
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeeyun Chung
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Davis Bennett
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Advanced Bio-imaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Schuyler B van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
14
|
Anelli T, Dalla Torre M, Borini E, Mangini E, Ulisse A, Semino C, Sitia R, Panina-Bordignon P. Profound architectural and functional readjustments of the secretory pathway in decidualization of endometrial stromal cells. Traffic 2021; 23:4-20. [PMID: 34651407 DOI: 10.1111/tra.12822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/10/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022]
Abstract
Certain cell types must expand their exocytic pathway to guarantee efficiency and fidelity of protein secretion. A spectacular case is offered by decidualizing human endometrial stromal cells (EnSCs). In the midluteal phase of the menstrual cycle, progesterone stimulation induces proliferating EnSCs to differentiate into professional secretors releasing proteins essential for efficient blastocyst implantation. Here, we describe the architectural rearrangements of the secretory pathway of a human EnSC line (TERT-immortalized human endometrial stromal cells (T-HESC)). As in primary cells, decidualization entails proliferation arrest and the coordinated expansion of the entire secretory pathway without detectable activation of unfolded protein response (UPR) pathways. Decidualization proceeds also in the absence of ascorbic acid, an essential cofactor for collagen biogenesis, despite also the secretion of some proteins whose folding does not depend on vitamin C is impaired. However, even in these conditions, no overt UPR induction can be detected. Morphometric analyses reveal that the exocytic pathway does not increase relatively to the volume of the cell. Thus, differently from other cell types, abundant production is guaranteed by a coordinated increase of the cell size following arrest of proliferation.
Collapse
Affiliation(s)
- Tiziana Anelli
- Faculty of Medicine, San Raffaele Vita-Salute University, Milan, Italy.,Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Dalla Torre
- Faculty of Medicine, San Raffaele Vita-Salute University, Milan, Italy
| | - Elena Borini
- Faculty of Medicine, San Raffaele Vita-Salute University, Milan, Italy
| | - Elisabetta Mangini
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Adele Ulisse
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudia Semino
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Sitia
- Faculty of Medicine, San Raffaele Vita-Salute University, Milan, Italy.,Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Faculty of Medicine, San Raffaele Vita-Salute University, Milan, Italy.,Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
15
|
Ngo J, Osto C, Villalobos F, Shirihai OS. Mitochondrial Heterogeneity in Metabolic Diseases. BIOLOGY 2021; 10:biology10090927. [PMID: 34571805 PMCID: PMC8470264 DOI: 10.3390/biology10090927] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Often times mitochondria within a single cell are depicted as homogenous entities both morphologically and functionally. In normal and diseased states, mitochondria are heterogeneous and display distinct functional properties. In both cases, mitochondria exhibit differences in morphology, membrane potential, and mitochondrial calcium levels. However, the degree of heterogeneity is different during disease; or rather, heterogeneity at the physiological state stems from physically distinct mitochondrial subpopulations. Overall, mitochondrial heterogeneity is both beneficial and detrimental to the cellular system; protective in enabling cellular adaptation to biological stress or detrimental in inhibiting protective mechanisms. Abstract Mitochondria have distinct architectural features and biochemical functions consistent with cell-specific bioenergetic needs. However, as imaging and isolation techniques advance, heterogeneity amongst mitochondria has been observed to occur within the same cell. Moreover, mitochondrial heterogeneity is associated with functional differences in metabolic signaling, fuel utilization, and triglyceride synthesis. These phenotypic associations suggest that mitochondrial subpopulations and heterogeneity influence the risk of metabolic diseases. This review examines the current literature regarding mitochondrial heterogeneity in the pancreatic beta-cell and renal proximal tubules as they exist in the pathological and physiological states; specifically, pathological states of glucolipotoxicity, progression of type 2 diabetes, and kidney diseases. Emphasis will be placed on the benefits of balancing mitochondrial heterogeneity and how the disruption of balancing heterogeneity leads to impaired tissue function and disease onset.
Collapse
Affiliation(s)
- Jennifer Ngo
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Corey Osto
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Frankie Villalobos
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
16
|
Raveh B, Sun L, White KL, Sanyal T, Tempkin J, Zheng D, Bharath K, Singla J, Wang C, Zhao J, Li A, Graham NA, Kesselman C, Stevens RC, Sali A. Bayesian metamodeling of complex biological systems across varying representations. Proc Natl Acad Sci U S A 2021; 118:e2104559118. [PMID: 34453000 PMCID: PMC8536362 DOI: 10.1073/pnas.2104559118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.
Collapse
Affiliation(s)
- Barak Raveh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190416, Israel
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kate L White
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Jeremy Tempkin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Dongqing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Kala Bharath
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Jitin Singla
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
- Epstein Department of Industrial and Systems Engineering, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Information Science Institute, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Chenxi Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jihui Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Carl Kesselman
- Epstein Department of Industrial and Systems Engineering, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Information Science Institute, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
17
|
de Boer P, Giepmans BN. State-of-the-art microscopy to understand islets of Langerhans: what to expect next? Immunol Cell Biol 2021; 99:509-520. [PMID: 33667022 PMCID: PMC8252556 DOI: 10.1111/imcb.12450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real‐time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come.
Collapse
Affiliation(s)
- Pascal de Boer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ben Ng Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Shami GJ, Cheng D, Verhaegh P, Koek G, Wisse E, Braet F. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci Rep 2021; 11:3319. [PMID: 33558594 PMCID: PMC7870882 DOI: 10.1038/s41598-021-82884-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Giant mitochondria are peculiarly shaped, extremely large mitochondria in hepatic parenchymal cells, the internal structure of which is characterised by atypically arranged cristae, enlarged matrix granules and crystalline inclusions. The presence of giant mitochondria in human tissue biopsies is often linked with cellular adversity, caused by toxins such as alcohol, xenobiotics, anti-cancer drugs, free-radicals, nutritional deficiencies or as a consequence of high fat Western diets. To date, non-alcoholic fatty liver disease is the most prevalent liver disease in lipid dysmetabolism, in which mitochondrial dysfunction plays a crucial role. It is not well understood whether the morphologic characteristics of giant mitochondria are an adaption or caused by such dysfunction. In the present study, we employ a complementary multimodal imaging approach involving array tomography and transmission electron tomography in order to comparatively analyse the structure and morphometric parameters of thousands of normal- and giant mitochondria in four patients diagnosed with non-alcoholic fatty liver disease. In so doing, we reveal functional alterations associated with mitochondrial gigantism and propose a mechanism for their formation based on our ultrastructural findings.
Collapse
Affiliation(s)
- Gerald J Shami
- School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Pauline Verhaegh
- Department of Internal Medicine Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ger Koek
- Department of Internal Medicine Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eddie Wisse
- Maastricht MultiModal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Camperdown, NSW, 2006, Australia
- Sydney Microscopy & Microanalysis, The University of Sydney, Camperdown, NSW, 2006, Australia
- Cellular Imaging Facility, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
19
|
Müller A, Schmidt D, Xu CS, Pang S, D’Costa JV, Kretschmar S, Münster C, Kurth T, Jug F, Weigert M, Hess HF, Solimena M. 3D FIB-SEM reconstruction of microtubule-organelle interaction in whole primary mouse β cells. J Cell Biol 2021; 220:e202010039. [PMID: 33326005 PMCID: PMC7748794 DOI: 10.1083/jcb.202010039] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Microtubules play a major role in intracellular trafficking of vesicles in endocrine cells. Detailed knowledge of microtubule organization and their relation to other cell constituents is crucial for understanding cell function. However, their role in insulin transport and secretion is under debate. Here, we use FIB-SEM to image islet β cells in their entirety with unprecedented resolution. We reconstruct mitochondria, Golgi apparati, centrioles, insulin secretory granules, and microtubules of seven β cells, and generate a comprehensive spatial map of microtubule-organelle interactions. We find that microtubules form nonradial networks that are predominantly not connected to either centrioles or endomembranes. Microtubule number and length, but not microtubule polymer density, vary with glucose stimulation. Furthermore, insulin secretory granules are enriched near the plasma membrane, where they associate with microtubules. In summary, we provide the first 3D reconstructions of complete microtubule networks in primary mammalian cells together with evidence regarding their importance for insulin secretory granule positioning and thus their supportive role in insulin secretion.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Deborah Schmidt
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - C. Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Joyson Verner D’Costa
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susanne Kretschmar
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Florian Jug
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Fondazione Human Technopole, Milano, Italy
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
20
|
Coronavirus infection induces progressive restructuring of the endoplasmic reticulum involving the formation and degradation of double membrane vesicles. Virology 2020; 556:9-22. [PMID: 33524849 PMCID: PMC7836250 DOI: 10.1016/j.virol.2020.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 01/02/2023]
Abstract
Coronaviruses rearrange endoplasmic reticulum (ER) membranes to form a reticulovesicular network (RVN) comprised predominantly of double membrane vesicles (DMVs) involved in viral replication. While portions of the RVN have been analyzed by electron tomography (ET), the full extent of the RVN is not known, nor how RVN formation affects ER morphology. Additionally the precise mechanism of DMV formation has not been observed. In this work, we examined large volumes of coronavirus-infected cells at multiple timepoints during infection using serial-section ET. We provide a comprehensive 3D analysis of the ER and RVN which gives insight into the formation mechanism of DMVs as well as the first evidence for their lysosomal degradation. We also show that the RVN breaks down late in infection, concurrent with the ER becoming the main budding compartment for new virions. This work provides a broad view of the multifaceted involvement of ER membranes in coronavirus infection.
Collapse
|
21
|
Zhang X, Carter SD, Singla J, White KL, Butler PC, Stevens RC, Jensen GJ. Visualizing insulin vesicle neighborhoods in β cells by cryo-electron tomography. SCIENCE ADVANCES 2020; 6:eabc8258. [PMID: 33298442 PMCID: PMC7725471 DOI: 10.1126/sciadv.abc8258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/22/2020] [Indexed: 05/04/2023]
Abstract
Subcellular neighborhoods, comprising specific ratios of organelles and proteins, serve a multitude of biological functions and are of particular importance in secretory cells. However, the role of subcellular neighborhoods in insulin vesicle maturation is poorly understood. Here, we present single-cell multiple distinct tomogram acquisitions of β cells for in situ visualization of distinct subcellular neighborhoods that are involved in the insulin vesicle secretory pathway. We propose that these neighborhoods play an essential role in the specific function of cellular material. In the regions where we observed insulin vesicles, a measurable increase in both the fraction of cellular volume occupied by vesicles and the average size (diameter) of the vesicles was apparent as sampling moved from the area near the nucleus toward the plasma membrane. These findings describe the important role of the nanometer-scale organization of subcellular neighborhoods on insulin vesicle maturation.
Collapse
Affiliation(s)
- Xianjun Zhang
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jitin Singla
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Kate L White
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter C Butler
- Larry Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Raymond C Stevens
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
- Howard Hughes Medical Institute (HHMI), California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
White KL, Singla J, Loconte V, Chen JH, Ekman A, Sun L, Zhang X, Francis JP, Li A, Lin W, Tseng K, McDermott G, Alber F, Sali A, Larabell C, Stevens RC. Visualizing subcellular rearrangements in intact β cells using soft x-ray tomography. SCIENCE ADVANCES 2020; 6:eabc8262. [PMID: 33298443 PMCID: PMC7725475 DOI: 10.1126/sciadv.abc8262] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/21/2020] [Indexed: 05/21/2023]
Abstract
Characterizing relationships between cell structures and functions requires mesoscale mapping of intact cells showing subcellular rearrangements following stimulation; however, current approaches are limited in this regard. Here, we report a unique application of soft x-ray tomography to generate three-dimensional reconstructions of whole pancreatic β cells at different time points following glucose-stimulated insulin secretion. Reconstructions following stimulation showed distinct insulin vesicle distribution patterns reflective of altered vesicle pool sizes as they travel through the secretory pathway. Our results show that glucose stimulation caused rapid changes in biochemical composition and/or density of insulin packing, increased mitochondrial volume, and closer proximity of insulin vesicles to mitochondria. Costimulation with exendin-4 (a glucagon-like peptide-1 receptor agonist) prolonged these effects and increased insulin packaging efficiency and vesicle maturation. This study provides unique perspectives on the coordinated structural reorganization and interactions of organelles that dictate cell responses.
Collapse
Affiliation(s)
- Kate L White
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jitin Singla
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Valentina Loconte
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian-Hua Chen
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Axel Ekman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Liping Sun
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xianjun Zhang
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - John Paul Francis
- Department of Computer Science, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Angdi Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wen Lin
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaylee Tseng
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Gerry McDermott
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Frank Alber
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrej Sali
- California Institute for Quantitative Biosciences, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Carolyn Larabell
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Raymond C Stevens
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Buerger K, Schmidt KN, Fokkema J, Gerritsen HC, Maier O, de Vries U, Zaytseva Y, Rachel R, Witzgall R. On-section correlative light and electron microscopy of large cellular volumes using STEM tomography. Methods Cell Biol 2020; 162:171-203. [PMID: 33707012 DOI: 10.1016/bs.mcb.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The application of both fluorescence and electron microscopy results in a powerful combination of imaging modalities called "correlative light and electron microscopy" (CLEM). Whereas conventional transmission electron microscopy (TEM) tomography is only able to image sections up to a thickness of ~300nm, scanning transmission electron microscopy (STEM) tomography at 200kV allows the analysis of sections up to a thickness of 900nm in three dimensions. In the current study we have successfully integrated STEM tomography into CLEM as demonstrated for human retinal pigment epithelial 1 (RPE1) cells expressing various fluorescent fusion proteins which were high-pressure frozen and then embedded in Lowicryl HM20. Fluorescently labeled gold nanoparticles were applied onto resin sections and imaged by fluorescence and electron microscopy. STEM tomograms were recorded at regions of interest, and overlays were generated using the eC-CLEM software package. Through the nuclear staining of living cells, the use of fluorescently labeled gold fiducials for the generation of overlays, and the integration of STEM tomography we have markedly extended the application of the Kukulski protocol (Kukulski et al., 2011, 2012). Various fluorescently tagged proteins localizing to different cellular organelles could be assigned to their ultrastructural compartments. By combining STEM tomography with on-section CLEM, fluorescently tagged proteins can be localized in three-dimensional ultrastructural environments with a volume of at least 2.7×2.7×0.5μm.
Collapse
Affiliation(s)
- Korbinian Buerger
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany.
| | - Kerstin N Schmidt
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Jantina Fokkema
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Hans C Gerritsen
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Olga Maier
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Uwe de Vries
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Yulia Zaytseva
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Reinhard Rachel
- Center for Electron Microscopy, University of Regensburg, Regensburg, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
24
|
Choi SH, Kim KY, Perkins GA, Phan S, Edwards G, Xia Y, Kim J, Skowronska-Krawczyk D, Weinreb RN, Ellisman MH, Miller YI, Ju WK. AIBP protects retinal ganglion cells against neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration. Redox Biol 2020; 37:101703. [PMID: 32896719 PMCID: PMC7484594 DOI: 10.1016/j.redox.2020.101703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide in individuals 60 years of age and older. Despite its high prevalence, the factors contributing to glaucoma progression are currently not well characterized. Glia-driven neuroinflammation and mitochondrial dysfunction play critical roles in glaucomatous neurodegeneration. Here, we demonstrated that elevated intraocular pressure (IOP) significantly decreased apolipoprotein A-I binding protein (AIBP; gene name Apoa1bp) in retinal ganglion cells (RGCs), but resulted in upregulation of TLR4 and IL-1β expression in Müller glia endfeet. Apoa1bp-/- mice had impaired visual function and Müller glia characterized by upregulated TLR4 activity, impaired mitochondrial network and function, increased oxidative stress and induced inflammatory responses. We also found that AIBP deficiency compromised mitochondrial network and function in RGCs and exacerbated RGC vulnerability to elevated IOP. Administration of recombinant AIBP prevented RGC death and inhibited inflammatory responses and cytokine production in Müller glia in vivo. These findings indicate that AIBP protects RGCs against glia-driven neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration and suggest that recombinant AIBP may be a potential therapeutic agent for glaucoma.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Genea Edwards
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yining Xia
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology, Biophysics & Ophthalmology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
25
|
Marucci L, Barberis M, Karr J, Ray O, Race PR, de Souza Andrade M, Grierson C, Hoffmann SA, Landon S, Rech E, Rees-Garbutt J, Seabrook R, Shaw W, Woods C. Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology. Front Bioeng Biotechnol 2020; 8:942. [PMID: 32850764 PMCID: PMC7426639 DOI: 10.3389/fbioe.2020.00942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Computer-aided design (CAD) for synthetic biology promises to accelerate the rational and robust engineering of biological systems. It requires both detailed and quantitative mathematical and experimental models of the processes to (re)design biology, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity. CAD strategies require quantitative models of cells that can capture multiscale processes and link genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale models could transform design-build-test-learn cycles in synthetic biology. We show how these models could significantly aid in the design and learn phases while reducing experimental testing by presenting case studies spanning from genome minimization to cell-free systems. We also discuss several challenges for the realization of our vision. The possibility to describe and build whole-cells in silico offers an opportunity to develop increasingly automatized, precise and accessible CAD tools and strategies.
Collapse
Affiliation(s)
- Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan Karr
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oliver Ray
- Department of Computer Science, University of Bristol, Bristol, United Kingdom
| | - Paul R Race
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Miguel de Souza Andrade
- Brazilian Agricultural Research Corporation/National Institute of Science and Technology - Synthetic Biology, Brasília, Brazil.,Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Claire Grierson
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Stefan Andreas Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Sophie Landon
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom
| | - Elibio Rech
- Brazilian Agricultural Research Corporation/National Institute of Science and Technology - Synthetic Biology, Brasília, Brazil
| | - Joshua Rees-Garbutt
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard Seabrook
- Elizabeth Blackwell Institute for Health Research (EBI), University of Bristol, Bristol, United Kingdom
| | - William Shaw
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Christopher Woods
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Steyer AM, Ruhwedel T, Nardis C, Werner HB, Nave KA, Möbius W. Pathology of myelinated axons in the PLP-deficient mouse model of spastic paraplegia type 2 revealed by volume imaging using focused ion beam-scanning electron microscopy. J Struct Biol 2020; 210:107492. [PMID: 32156581 PMCID: PMC7196930 DOI: 10.1016/j.jsb.2020.107492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 11/26/2022]
Abstract
Advances in electron microscopy including improved imaging techniques and state-of-the-art detectors facilitate imaging of larger tissue volumes with electron microscopic resolution. In combination with genetic tools for the generation of mouse mutants this allows assessing the three-dimensional (3D) characteristics of pathological features in disease models. Here we revisited the axonal pathology in the central nervous system of a mouse model of spastic paraplegia type 2, the Plp-/Y mouse. Although PLP is a bona fide myelin protein, the major hallmark of the disease in both SPG2 patients and mouse models are axonal swellings comprising accumulations of numerous organelles including mitochondria, gradually leading to irreversible axonal loss. To assess the number and morphology of axonal mitochondria and the overall myelin preservation we evaluated two sample preparation techniques, chemical fixation or high-pressure freezing and freeze substitution, with respect to the objective of 3D visualization. Both methods allowed visualizing distribution and morphological details of axonal mitochondria. In Plp-/Y mice the number of mitochondria is 2-fold increased along the entire axonal length. Mitochondria are also found in the excessive organelle accumulations within axonal swellings. In addition, organelle accumulations were detected within the myelin sheath and the inner tongue. We find that 3D electron microscopy is required for a comprehensive understanding of the size, content and frequency of axonal swellings, the hallmarks of axonal pathology.
Collapse
Affiliation(s)
- Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christos Nardis
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
27
|
Vasan R, Rowan MP, Lee CT, Johnson GR, Rangamani P, Holst M. Applications and Challenges of Machine Learning to Enable Realistic Cellular Simulations. FRONTIERS IN PHYSICS 2020; 7:247. [PMID: 36188416 PMCID: PMC9521042 DOI: 10.3389/fphy.2019.00247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this perspective, we examine three key aspects of an end-to-end pipeline for realistic cellular simulations: reconstruction and segmentation of cellular structures; generation of cellular structures; and mesh generation, simulation, and data analysis. We highlight some of the relevant prior work in these distinct but overlapping areas, with a particular emphasis on current use of machine learning technologies, as well as on future opportunities.
Collapse
Affiliation(s)
- Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Meagan P. Rowan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | | | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Michael Holst
- Department of Mathematics, University of California San Diego, La Jolla, CA, United States
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Ježek P, Dlasková A. Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells. Mitochondrion 2019; 49:245-258. [DOI: 10.1016/j.mito.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
|
29
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Kizilyaprak C, Stierhof YD, Humbel BM. Volume microscopy in biology: FIB-SEM tomography. Tissue Cell 2019; 57:123-128. [DOI: 10.1016/j.tice.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/30/2018] [Accepted: 09/20/2018] [Indexed: 01/10/2023]
|
31
|
Guerrero-Ferreira RC, Hupfeld M, Nazarov S, Taylor NM, Shneider MM, Obbineni JM, Loessner MJ, Ishikawa T, Klumpp J, Leiman PG. Structure and transformation of bacteriophage A511 baseplate and tail upon infection of Listeria cells. EMBO J 2019; 38:embj.201899455. [PMID: 30606715 DOI: 10.15252/embj.201899455] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Contractile injection systems (bacteriophage tails, type VI secretions system, R-type pyocins, etc.) utilize a rigid tube/contractile sheath assembly for breaching the envelope of bacterial and eukaryotic cells. Among contractile injection systems, bacteriophages that infect Gram-positive bacteria represent the least understood members. Here, we describe the structure of Listeria bacteriophage A511 tail in its pre- and post-host attachment states (extended and contracted, respectively) using cryo-electron microscopy, cryo-electron tomography, and X-ray crystallography. We show that the structure of the tube-baseplate complex of A511 is similar to that of phage T4, but the A511 baseplate is decorated with different receptor-binding proteins, which undergo a large structural transformation upon host attachment and switch the symmetry of the baseplate-tail fiber assembly from threefold to sixfold. For the first time under native conditions, we show that contraction of the phage tail sheath assembly starts at the baseplate and propagates through the sheath in a domino-like motion.
Collapse
Affiliation(s)
- Ricardo C Guerrero-Ferreira
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Hupfeld
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Sergey Nazarov
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicholas Mi Taylor
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mikhail M Shneider
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Molecular Bioengineering, Moscow, Russia
| | - Jagan M Obbineni
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.,Centre for Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Petr G Leiman
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Dufurrena Q, Bäck N, Mains R, Hodgson L, Tanowitz H, Mandela P, Eipper B, Kuliawat R. Kalirin/Trio Rho GDP/GTP exchange factors regulate proinsulin and insulin secretion. J Mol Endocrinol 2018; 62:JME-18-0048.R2. [PMID: 30407917 PMCID: PMC6494717 DOI: 10.1530/jme-18-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
Key features for progression to pancreatic β-cell failure and disease are loss of glucose responsiveness and an increased ratio of secreted proinsulin to insulin. Proinsulin and insulin are stored in secretory granules (SGs) and the fine-tuning of hormone output requires signal mediated recruitment of select SG populations according to intracellular location and age. The GTPase Rac1 coordinates multiple signaling pathways that specify SG release and Rac1 activity is controlled in part by GDP/GTP exchange factors (GEFs). To explore the function of two large multidomain GEFs, Kalirin and Trio in β-cells, we manipulated their Rac1-specific GEF1 domain activity by using small molecule inhibitors and by genetically ablating Kalirin. We examined age related secretory granule behavior employing radiolabeling protocols. Loss of Kalirin/Trio function attenuated radioactive proinsulin release by reducing constitutive-like secretion and exocytosis of 2-hour old granules. At later chase times or at steady state, Kalirin/Trio manipulations decreased glucose stimulated insulin output. Finally, use of a Rac1 FRET biosensor with cultured β-cell lines, demonstrated that Kalirin/Trio GEF1 activity was required for normal rearrangement of Rac1 to the plasma membrane in response to glucose. Rac1 activation can be evoked by both glucose metabolism and signaling through the incretin glucagon-like peptide 1 (GLP-1) receptor. GLP-1 addition restored Rac1 localization/activity and insulin secretion in the absence of Kalirin, thereby assigning Kalirin's participation to stimulatory glucose signaling.
Collapse
Affiliation(s)
- Quinn Dufurrena
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Nils Bäck
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Herbert Tanowitz
- Departments of Pathology, Medicine, Albert Einstein College of Medicine, Bronx, NY
| | | | - Betty Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| | - Regina Kuliawat
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
33
|
Burel A, Lavault MT, Chevalier C, Gnaegi H, Prigent S, Mucciolo A, Dutertre S, Humbel BM, Guillaudeux T, Kolotuev I. A targeted 3D EM and correlative microscopy method using SEM array tomography. Development 2018; 145:dev.160879. [PMID: 29802150 DOI: 10.1242/dev.160879] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Using electron microscopy to localize rare cellular events or structures in complex tissue is challenging. Correlative light and electron microscopy procedures have been developed to link fluorescent protein expression with ultrastructural resolution. Here, we present an optimized scanning electron microscopy (SEM) workflow for volumetric array tomography for asymmetric samples and model organisms (Caenorhabditis elegans, Drosophila melanogaster, Danio rerio). We modified a diamond knife to simplify serial section array acquisition with minimal artifacts. After array acquisition, the arrays were transferred to a glass coverslip or silicon wafer support. Using light microscopy, the arrays were screened rapidly for initial recognition of global anatomical features (organs or body traits). Then, using SEM, an in-depth study of the cells and/or organs of interest was performed. Our manual and automatic data acquisition strategies make 3D data acquisition and correlation simpler and more precise than alternative methods. This method can be used to address questions in cell and developmental biology that require the efficient identification of a labeled cell or organelle.
Collapse
Affiliation(s)
- Agnes Burel
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France
| | | | | | | | - Sylvain Prigent
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France
| | - Antonio Mucciolo
- University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| | | | - Bruno M Humbel
- University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| | | | - Irina Kolotuev
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France .,University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Singla J, McClary KM, White KL, Alber F, Sali A, Stevens RC. Opportunities and Challenges in Building a Spatiotemporal Multi-scale Model of the Human Pancreatic β Cell. Cell 2018; 173:11-19. [PMID: 29570991 PMCID: PMC6014618 DOI: 10.1016/j.cell.2018.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/25/2017] [Accepted: 03/06/2018] [Indexed: 12/25/2022]
Abstract
The construction of a predictive model of an entire eukaryotic cell that describes its dynamic structure from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry, physics, and computer science. Having such a model will open new dimensions in biological research and accelerate healthcare advancements. Developing the necessary experimental and modeling methods presents abundant opportunities for a community effort to realize this goal. Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic β-cell, a relevant target for understanding and modulating the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Jitin Singla
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biological Sciences, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyle M McClary
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Kate L White
- Department of Biological Sciences, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Frank Alber
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biological Sciences, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrej Sali
- California Institute for Quantitative Biosciences, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Raymond C Stevens
- Department of Biological Sciences, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
35
|
Müller-Reichert T, Kiewisz R, Redemann S. Mitotic spindles revisited – new insights from 3D electron microscopy. J Cell Sci 2018; 131:131/3/jcs211383. [DOI: 10.1242/jcs.211383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
The mitotic spindle is a complex three-dimensional (3D) apparatus that functions to ensure the faithful segregation of chromosomes during cell division. Our current understanding of spindle architecture is mainly based on a plethora of information derived from light microscopy with rather few insights about spindle ultrastructure obtained from electron microscopy. In this Review, we will provide insights into the history of imaging of mitotic spindles and highlight recent technological advances in electron tomography and data processing, which have delivered detailed 3D reconstructions of mitotic spindles in the early embryo of the nematode Caenorhabditis elegans. Tomographic reconstructions provide novel views on spindles and will enable us to revisit and address long-standing questions in the field of mitosis.
Collapse
Affiliation(s)
- Thomas Müller-Reichert
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Robert Kiewisz
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stefanie Redemann
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| |
Collapse
|
36
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
37
|
Ali RA, Mehdi AM, Rothnagel R, Hamilton NA, Gerle C, Landsberg MJ, Hankamer B. RAZA: A Rapid 3D z-crossings algorithm to segment electron tomograms and extract organelles and macromolecules. J Struct Biol 2017; 200:73-86. [PMID: 29032142 DOI: 10.1016/j.jsb.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
Resolving the 3D architecture of cells to atomic resolution is one of the most ambitious challenges of cellular and structural biology. Central to this process is the ability to automate tomogram segmentation to identify sub-cellular components, facilitate molecular docking and annotate detected objects with associated metadata. Here we demonstrate that RAZA (Rapid 3D z-crossings algorithm) provides a robust, accurate, intuitive, fast, and generally applicable segmentation algorithm capable of detecting organelles, membranes, macromolecular assemblies and extrinsic membrane protein domains. RAZA defines each continuous contour within a tomogram as a discrete object and extracts a set of 3D structural fingerprints (major, middle and minor axes, surface area and volume), enabling selective, semi-automated segmentation and object extraction. RAZA takes advantage of the fact that the underlying algorithm is a true 3D edge detector, allowing the axes of a detected object to be defined, independent of its random orientation within a cellular tomogram. The selectivity of object segmentation and extraction can be controlled by specifying a user-defined detection tolerance threshold for each fingerprint parameter, within which segmented objects must fall and/or by altering the number of search parameters, to define morphologically similar structures. We demonstrate the capability of RAZA to selectively extract subgroups of organelles (mitochondria) and macromolecular assemblies (ribosomes) from cellular tomograms. Furthermore, the ability of RAZA to define objects and their contours, provides a basis for molecular docking and rapid tomogram annotation.
Collapse
Affiliation(s)
- Rubbiya A Ali
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ahmed M Mehdi
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia; Department of Electrical Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Rosalba Rothnagel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas A Hamilton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Michael J Landsberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
38
|
Cárdenes R, Zhang C, Klementieva O, Werner S, Guttmann P, Pratsch C, Cladera J, Bijnens BH. 3D membrane segmentation and quantification of intact thick cells using cryo soft X-ray transmission microscopy: A pilot study. PLoS One 2017; 12:e0174324. [PMID: 28376110 PMCID: PMC5380311 DOI: 10.1371/journal.pone.0174324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Structural analysis of biological membranes is important for understanding cell and sub-cellular organelle function as well as their interaction with the surrounding environment. Imaging of whole cells in three dimension at high spatial resolution remains a significant challenge, particularly for thick cells. Cryo-transmission soft X-ray microscopy (cryo-TXM) has recently gained popularity to image, in 3D, intact thick cells (∼10μm) with details of sub-cellular architecture and organization in near-native state. This paper reports a new tool to segment and quantify structural changes of biological membranes in 3D from cryo-TXM images by tracking an initial 2D contour along the third axis of the microscope, through a multi-scale ridge detection followed by an active contours-based model, with a subsequent refinement along the other two axes. A quantitative metric that assesses the grayscale profiles perpendicular to the membrane surfaces is introduced and shown to be linearly related to the membrane thickness. Our methodology has been validated on synthetic phantoms using realistic microscope properties and structure dimensions, as well as on real cryo-TXM data. Results demonstrate the validity of our algorithms for cryo-TXM data analysis.
Collapse
Affiliation(s)
| | - Chong Zhang
- Physense, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oxana Klementieva
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, L’Hospitalet de Llobregat, Spain
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Stephan Werner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Berlin, Germany
| | - Peter Guttmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Berlin, Germany
| | - Christoph Pratsch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Berlin, Germany
| | - Josep Cladera
- Biophysics Unit & Centre of Studies in Biophysics, Dept. of Biochemistry & Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bart H. Bijnens
- Physense, Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail:
| |
Collapse
|
39
|
Hoang TV, Kizilyaprak C, Spehner D, Humbel BM, Schultz P. Automatic segmentation of high pressure frozen and freeze-substituted mouse retina nuclei from FIB-SEM tomograms. J Struct Biol 2017; 197:123-134. [DOI: 10.1016/j.jsb.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
|
40
|
Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae. Sci Rep 2016; 6:38840. [PMID: 27991496 PMCID: PMC5171829 DOI: 10.1038/srep38840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022] Open
Abstract
A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.
Collapse
|
41
|
Du W, Zhou M, Zhao W, Cheng D, Wang L, Lu J, Song E, Feng W, Xue Y, Xu P, Xu T. HID-1 is required for homotypic fusion of immature secretory granules during maturation. eLife 2016; 5. [PMID: 27751232 PMCID: PMC5094852 DOI: 10.7554/elife.18134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.
Collapse
Affiliation(s)
- Wen Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Maoge Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongwan Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lifen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingyong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 2016; 197:102-113. [PMID: 27444392 DOI: 10.1016/j.jsb.2016.07.011] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
Automated tomographic reconstruction is now possible in the IMOD software package, including the merging of tomograms taken around two orthogonal axes. Several developments enable the production of high-quality tomograms. When using fiducial markers for alignment, the markers to be tracked through the series are chosen automatically; if there is an excess of markers available, a well-distributed subset is selected that is most likely to track well. Marker positions are refined by applying an edge-enhancing Sobel filter, which results in a 20% improvement in alignment error for plastic-embedded samples and 10% for frozen-hydrated samples. Robust fitting, in which outlying points are given less or no weight in computing the fitting error, is used to obtain an alignment solution, so that aberrant points from the automated tracking can have little effect on the alignment. When merging two dual-axis tomograms, the alignment between them is refined from correlations between local patches; a measure of structure was developed so that patches with insufficient structure to give accurate correlations can now be excluded automatically. We have also developed a script for running all steps in the reconstruction process with a flexible mechanism for setting parameters, and we have added a user interface for batch processing of tilt series to the Etomo program in IMOD. Batch processing is fully compatible with interactive processing and can increase efficiency even when the automation is not fully successful, because users can focus their effort on the steps that require manual intervention.
Collapse
|
43
|
Kittelmann M, Hawes C, Hughes L. Serial block face scanning electron microscopy and the reconstruction of plant cell membrane systems. J Microsc 2016; 263:200-11. [PMID: 27197647 DOI: 10.1111/jmi.12424] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 01/06/2023]
Abstract
Serial block face imaging with the scanning electron microscope has been developed as an alternative to serial sectioning and transmission electron microscopy for the ultrastructural analysis of the three-dimensional organization of cells and tissues. An ultramicrotome within the microscope specimen chamber permits sectioning and imaging to a depth of many microns within resin-embedded specimens. The technology has only recently been adopted by plant microscopists and here we describe some specimen preparation procedures suitable for plant tissue, suggested microscope imaging parameters and discuss the software required for image reconstruction and analysis.
Collapse
Affiliation(s)
- M Kittelmann
- Department of Biological & Medical Science, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - C Hawes
- Department of Biological & Medical Science, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - L Hughes
- Department of Biological & Medical Science, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
44
|
Electron tomography of rabbit cardiomyocyte three-dimensional ultrastructure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:77-84. [PMID: 27210305 PMCID: PMC4959512 DOI: 10.1016/j.pbiomolbio.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/22/2022]
Abstract
The field of cardiovascular research has benefitted from rapid developments in imaging technology over the last few decades. Accordingly, an ever growing number of large, multidimensional data sets have begun to appear, often challenging existing pre-conceptions about structure and function of biological systems. For tissue and cell structure imaging, the move from 2D section-based microscopy to true 3D data collection has been a major driver of new insight. In the sub-cellular domain, electron tomography is a powerful technique for exploration of cellular structures in 3D with unparalleled fidelity at nanometer resolution. Electron tomography is particularly advantageous for studying highly compartmentalised cells such as cardiomyocytes, where elaborate sub-cellular structures play crucial roles in electrophysiology and mechanics. Although the anatomy of specific ultra-structures, such as dyadic couplons, has been extensively explored using 2D electron microscopy of thin sections, we still lack accurate, quantitative knowledge of true individual shape, volume and surface area of sub-cellular domains, as well as their 3D spatial interrelations; let alone of how these are reshaped during the cycle of contraction and relaxation. Here we discuss and illustrate the utility of ET for identification, visualisation, and analysis of 3D cardiomyocyte ultrastructures such as the T-tubular system, sarcoplasmic reticulum, mitochondria and microtubules.
Collapse
|
45
|
Abstract
A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.
Collapse
|
46
|
Alarcon C, Boland BB, Uchizono Y, Moore PC, Peterson B, Rajan S, Rhodes OS, Noske AB, Haataja L, Arvan P, Marsh BJ, Austin J, Rhodes CJ. Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function. Diabetes 2016; 65:438-50. [PMID: 26307586 PMCID: PMC4747460 DOI: 10.2337/db15-0792] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022]
Abstract
Pancreatic β-cells normally produce adequate insulin to control glucose homeostasis, but in obesity-related diabetes, there is a presumed deficit in insulin production and secretory capacity. In this study, insulin production was assessed directly in obese diabetic mouse models, and proinsulin biosynthesis was found to be contrastingly increased, coupled with a significant expansion of the rough endoplasmic reticulum (without endoplasmic reticulum stress) and Golgi apparatus, increased vesicular trafficking, and a depletion of mature β-granules. As such, β-cells have a remarkable capacity to produce substantial quantities of insulin in obesity, which are then made available for immediate secretion to meet increased metabolic demand, but this comes at the price of insulin secretory dysfunction. Notwithstanding, it can be restored. Upon exposing isolated pancreatic islets of obese mice to normal glucose concentrations, β-cells revert back to their typical morphology with restoration of regulated insulin secretion. These data demonstrate an unrealized dynamic adaptive plasticity of pancreatic β-cells and underscore the rationale for transient β-cell rest as a treatment strategy for obesity-linked diabetes.
Collapse
Affiliation(s)
- Cristina Alarcon
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Brandon B Boland
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Yuji Uchizono
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Patrick C Moore
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Bryan Peterson
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Suryalekha Rajan
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Olivia S Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| | - Andrew B Noske
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland, Australia
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Bradly J Marsh
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland, Australia
| | - Jotham Austin
- Advanced Electron Microscope Core Facility, The University of Chicago, Chicago, IL
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL
| |
Collapse
|
47
|
Lo HP, Nixon SJ, Hall TE, Cowling BS, Ferguson C, Morgan GP, Schieber NL, Fernandez-Rojo MA, Bastiani M, Floetenmeyer M, Martel N, Laporte J, Pilch PF, Parton RG. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol 2015; 210:833-49. [PMID: 26323694 PMCID: PMC4555827 DOI: 10.1083/jcb.201501046] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The caveolar membrane microdomain plays an integral role in stabilizing the muscle fiber surface in mice and zebrafish. Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan J Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Belinda S Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique UMR7104, Strasbourg University, Illkirch 67404, France
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Garry P Morgan
- Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole L Schieber
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Manuel A Fernandez-Rojo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthias Floetenmeyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique UMR7104, Strasbourg University, Illkirch 67404, France
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
48
|
Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells. Viruses 2015; 7:6316-45. [PMID: 26633469 PMCID: PMC4690864 DOI: 10.3390/v7122940] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications.
Collapse
|
49
|
Ariotti N, Hall TE, Rae J, Ferguson C, McMahon KA, Martel N, Webb RE, Webb RI, Teasdale RD, Parton RG. Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms. Dev Cell 2015; 35:513-25. [PMID: 26585296 DOI: 10.1016/j.devcel.2015.10.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Reliable and quantifiable high-resolution protein localization is critical for understanding protein function. However, the time required to clone and characterize any protein of interest is a significant bottleneck, especially for electron microscopy (EM). We present a modular system for enzyme-based protein tagging that allows for improved speed and sampling for analysis of subcellular protein distributions using existing clone libraries to EM-resolution. We demonstrate that we can target a modified soybean ascorbate peroxidase (APEX) to any GFP-tagged protein of interest by engineering a GFP-binding peptide (GBP) directly to the APEX-tag. We demonstrate that APEX-GBP (1) significantly reduces the time required to characterize subcellular protein distributions of whole libraries to less than 3 days, (2) provides remarkable high-resolution localization of proteins to organelle subdomains, and (3) allows EM localization of GFP-tagged proteins, including proteins expressed at endogenous levels, in vivo by crossing existing GFP-tagged transgenic zebrafish lines with APEX-GBP transgenic lines.
Collapse
Affiliation(s)
- Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Robyn E Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard I Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia; Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
50
|
Ou HD, Deerinck TJ, Bushong E, Ellisman MH, O'Shea CC. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy. Methods 2015; 90:39-48. [PMID: 26066760 PMCID: PMC4655137 DOI: 10.1016/j.ymeth.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023] Open
Abstract
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark H Ellisman
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|