1
|
A peroxidase purified from cowpea roots possesses high thermal stability and displays antifungal activity against Colletotrichum gloeosporioides and Fusarium oxysporum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Singh PK, Sharma P, Bhushan A, Kaur P, Sharma S, Singh TP. Structure of a ternary complex of lactoperoxidase with iodide and hydrogen peroxide at 1.77 Å resolution. J Inorg Biochem 2021; 220:111461. [PMID: 33882424 DOI: 10.1016/j.jinorgbio.2021.111461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
Lactoperoxidase (LPO) is a mammalian heme peroxidase which catalyzes the conversion of thiocyanate (SCN¯) and iodide (I-) by hydrogen peroxide (H2O2) into antimicrobial hypothiocyanite (OSCN¯) and hypoiodite (IO-). The prosthetic heme group is covalently attached to LPO through two ester linkages involving conserved glutamate and aspartate residues. On the proximal side, His351 is coordinated to heme iron while His 109 is located in the substrate binding site on the distal heme side. We report here the first structure of the ternary complex of LPO with iodide (I-) and H2O2 at 1.77 Å resolution. LPO was crystallized with ammonium iodide and the crystals were soaked in the reservoir solution containing H2O2. Structure determination showed the presence of an iodide ion and a H2O2 molecule in the substrate binding site. The iodide ion occupied the position which is stabilized by the interactions with heme moiety, His109, Arg255 and Glu258 while H2O2 was held between the heme iron and His109. The presence of I- in the distal heme cavity seems to screen the positive charge of Arg255 thus suppressing the proton transfer from H2O2 to His109. This prevents compound I formation and allows trapping of a stable enzyme-substrate (LPO-I--H2O2) ternary complex. This stable geometrical arrangement of H2O2 in the distal heme cavity of LPO is similar to that of H2O2 in the structure of the transient intermediate of the palm tree heme peroxidase. The biochemical studies showed that the catalytic activity of LPO decreased when the samples of LPO were preincubated with ammonium iodide.
Collapse
Affiliation(s)
- Prashant K Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Asha Bhushan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Comparison of three palm tree peroxidases expressed by Escherichia coli: Uniqueness of African oil palm peroxidase. Protein Expr Purif 2020; 179:105806. [PMID: 33301885 DOI: 10.1016/j.pep.2020.105806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022]
Abstract
Palm tree peroxidase has greater catalytic activity, stability and broad application prospects in comparison with horseradish peroxidase. However, slow growth, ecological destruction and high costs prohibit isolation of native peroxidases directly from palm trees. Bioreactor production of palm tree peroxidases would therefore be preferred to overcome such production limitations. Comparison of different recombinant glycan-free palm tree peroxidases would allow understanding the criticality of total glycans to the functions and characteristics. In the present study, African oil palm tree peroxidase expressed by Escherichia coli showed similar stability and 30-100-fold greater activity than that of recombinant royal palm tree peroxidases, but both of their comprehensive indexes were superior to the commercial, native horseradish peroxidase. Recombinant Chamaerops excelsa peroxidase showed no activity possibly due to incorrect protein folding. The results confirmed that recombinant expression by E. coli is potentially an effective means to obtain a mass of palm peroxidases with high activity and stability.
Collapse
|
4
|
Lüthje S, Ramanathan K. In Silico Analysis of Class III Peroxidases: Hypothetical Structure, Ligand Binding Sites, Posttranslational Modifications, and Interaction with Substrates. Methods Mol Biol 2020; 2139:325-339. [PMID: 32462597 DOI: 10.1007/978-1-0716-0528-8_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functional analyses of peroxidases are a major challenge. In silico analysis appears to be a powerful tool to overcome at least some of the problems that arose from (1) the numerous possible functions of peroxidases, (2) their low substrate specificity, and (3) the compensation of knockout mutants by other isoenzymes. Amino acid sequences and crystal structures of peroxidases were used for the prediction of tertiary structures, posttranslational modifications, ligand and substrate binding sites, and so on of uncharacterized peroxidases. This protocol presents tools and their applications for an in silico analysis of soluble and membrane-bound peroxidases, but it may be used for other proteins, too.
Collapse
Affiliation(s)
- Sabine Lüthje
- Oxidative Stress and Plant Proteomics Group, Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany.
| | - Kalaivani Ramanathan
- Oxidative Stress and Plant Proteomics Group, Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Saud Al-Bagmi M, Shahnawaz Khan M, Alhasan Ismael M, Al-Senaidy AM, Ben Bacha A, Mabood Husain F, Alamery SF. An efficient methodology for the purification of date palm peroxidase: Stability comparison with horseradish peroxidase (HRP). Saudi J Biol Sci 2019; 26:301-307. [PMID: 31485169 PMCID: PMC6717102 DOI: 10.1016/j.sjbs.2018.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/02/2018] [Accepted: 04/01/2018] [Indexed: 11/28/2022] Open
Abstract
In the present study, Peroxidase from date palm (Phoenix dactylifera) leaves was purified to homogeneity by three-step procedure including aqueous two-phase system, hydrophobic and Ion-exchange chromatography. The enzyme migrated as single band on SDS-PAGE giving molecular weight of 68 ± 3 kDa. The purification factor for purified date palm peroxidase was 68 with high 41% yield. Enzymatic assays together with far-UV circular dichroism (CD), intrinsic and extrinsic fluorescence studies were carried out to monitor the structural stability of date palm and horseradish peroxidase (HRP) against various pH and temperatures. Activity measurements illustrated different pH stability for date palm and HRP. Both peroxidases are more susceptible to extreme acidic conditions as suggested by 4 & 15 nm red shift in date palm and HRP, respectively. Secondary structure analysis using far UV-CD exhibited predominance of α-helical (43.8%) structure. Also, pH induces loss in the secondary structure of date palm peroxidase. Thermal stability analysis revealed date palm peroxidase is more stable in comparison to HRP. In summary, date palm peroxidases could be promising enzymes for various applications where extreme pH and temperature is required.
Collapse
Affiliation(s)
- Moneera Saud Al-Bagmi
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad Alhasan Ismael
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman M. Al-Senaidy
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food and Agriculture science, King Saud University, Riyadh, Saudi Arabia
| | - Salman Freeh Alamery
- Center of Excellence in Biotechnology Research, Dept. Of Biochemistry, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
6
|
Zeyadi M. Purification and characterization of peroxidase from date palm cv. Agwa fruits. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1691589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mustafa Zeyadi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Lüthje S, Martinez-Cortes T. Membrane-Bound Class III Peroxidases: Unexpected Enzymes with Exciting Functions. Int J Mol Sci 2018; 19:ijms19102876. [PMID: 30248965 PMCID: PMC6213016 DOI: 10.3390/ijms19102876] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023] Open
Abstract
Class III peroxidases are heme-containing proteins of the secretory pathway with a high redundance and versatile functions. Many soluble peroxidases have been characterized in great detail, whereas only a few studies exist on membrane-bound isoenzymes. Membrane localization of class III peroxidases has been demonstrated for tonoplast, plasma membrane and detergent resistant membrane fractions of different plant species. In silico analysis revealed transmembrane domains for about half of the class III peroxidases that are encoded by the maize (Zea mays) genome. Similar results have been found for other species like thale-cress (Arabidopsis thaliana), barrel medic (Medicago truncatula) and rice (Oryza sativa). Besides this, soluble peroxidases interact with tonoplast and plasma membranes by protein⁻protein interaction. The topology, spatiotemporal organization, molecular and biological functions of membrane-bound class III peroxidases are discussed. Besides a function in membrane protection and/or membrane repair, additional functions have been supported by experimental data and phylogenetics.
Collapse
Affiliation(s)
- Sabine Lüthje
- Oxidative Stress and Plant Proteomics Group, Institute for Plant Science and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany.
| | - Teresa Martinez-Cortes
- Dpto de Biología Animal, Biología Vegetal y Ecología (Lab. Fisiología Vegetal), Facultad de Ciencias-Universidade da Coruña, A Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
8
|
Kohler AC, Simmons BA, Sale KL. Structure-based Engineering of a Plant-Fungal Hybrid Peroxidase for Enhanced Temperature and pH Tolerance. Cell Chem Biol 2018; 25:974-983.e3. [DOI: 10.1016/j.chembiol.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/07/2018] [Accepted: 04/13/2018] [Indexed: 11/24/2022]
|
9
|
Yu M, Ma X, Cao H, Chong B, Lai L, Liu Z. Singular value decomposition for the correlation of atomic fluctuations with arbitrary angle. Proteins 2018; 86:1075-1087. [PMID: 30019778 DOI: 10.1002/prot.25586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 01/21/2023]
Abstract
Many proteins exhibit a critical property called allostery, which enables intra-molecular transmission of information between distal sites. Microscopically, allosteric response is closely related to correlated atomic fluctuations. Conventional correlation analysis correlates the atomic fluctuations at two sites by taking the dot product (DP) between the fluctuations, which accounts only for the parallel and antiparallel components. Here, we present a singular value decomposition (SVD) method that analyzes the correlation coefficient of fluctuation dynamics with an arbitrary angle between the correlated directions. In a model allosteric system, the second PDZ domain (PDZ2) in the human PTP1E protein, approximately one third of the strong correlations have near-perpendicular directions, which are underestimated in the conventional method. The discrimination becomes more prominent for residue pairs with larger separation. The results of the proposed SVD method are more consistent with the experimentally determined PDZ2 dynamics than those of conventional method. In addition, the SVD method improved the prediction accuracy of the allosteric sites in a dataset of 23 known allosteric monomer proteins. The proposed method may inspire extended investigation not only into allostery, but also into protein dynamics and drug design.
Collapse
Affiliation(s)
- Miao Yu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaomin Ma
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Huaiqing Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bin Chong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, and BNLMS, Peking University, Beijing, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Peking University, Beijing, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, and BNLMS, Peking University, Beijing, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Peking University, Beijing, China
| |
Collapse
|
10
|
Jiménez-Arroyo N, Gil-Rodríguez PC, Díaz-Vilchis A, Rojas-Trejo SP, Rudiño-Piñera E. Zo-peroxidase: Crystal structure and sequence of a highly-glycosylated peroxidase resistant to high concentrations of H 2O 2 from Japanese radish. Biochem Biophys Rep 2018; 13:32-38. [PMID: 29556562 PMCID: PMC5857146 DOI: 10.1016/j.bbrep.2017.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 01/07/2023] Open
Abstract
Understanding Peroxidase (PRXs) enzymatic diversity and functional significance from a three-dimensional point of view is a key point for structural and mechanistic studies. In this context, Zo-peroxidase (ZoPrx) a member of the class III peroxidases and secreted by plants, differs from all previously described PRXs because of its remarkable catalytic stability in the presence of hydrogen peroxide. In this work, we present the crystallographic structure of ZoPrx isolated from Japanese radish, at 2.05 Å resolution. The mature enzyme consists of a single monomer of 308 residues exhibiting the same fold as all previously described members of the plant PRXs superfamily. Furthermore, the enzyme contains a heme b group as the prosthetic group and two Ca2+ binding sites. Moreover, seven N-glycosylation sites were found in the structure, and 49 glycans bound to the two ZoPrx molecules found in the asymmetric unit are clearly visible in the electron density map. The comparison of ZoPrx coordinates with homologous enzymes revealed minor structural changes, in which the residue 177 appears to be responsible for enlarging the access to the heme cavity, the only structural finding which may be related to the H2O2 tolerance of ZoPrx and detected by X-ray crystallography. Because of its characteristics, ZoPrx has a broad range of potential applications from chemical synthesis to environmental biocatalysis, thus its aminoacidic sequence, partially completed using the electron density, and the three-dimensional structure itself, become a possible starting point to engineering heme-peroxidases to enhance oxidative stability.
Collapse
Affiliation(s)
| | | | | | | | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
11
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
12
|
Wen B, Baker MR, Zhao H, Cui Z, Li QX. Expression and Characterization of Windmill Palm Tree (Trachycarpus fortunei) Peroxidase by Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4676-4682. [PMID: 28523913 DOI: 10.1021/acs.jafc.7b00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Currently, commercial plant peroxidases are all native and are isolated from plants such as horseradish and soybean. No recombinant plant peroxidase products have been available on the commercial market. The gene encoding peroxidase was cloned from windmill palm tree leaves. The codon-optimized gene was transformed into Pichia pastoris for expression. The recombinant windmill palm tree peroxidase (rWPTP) expressed by P. pastoris showed high stability under pH 2-10 and temperatures up to 70 °C to many metallic salts and organic solvents. The substrate specificity of WPTP was determined, and among the substrates tested, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was most suitable for WPTP. The Michaelis constants with the substrates H2O2 and ABTS were 4.6 × 10-4 and 1.6 × 10-4 M, respectively. The rWPTP expressed in P. pastoris may be a suitable enzyme for the biosynthesis of polymers because of its high stability and activity under acidic conditions.
Collapse
Affiliation(s)
- Boting Wen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
- College of Agronomy and Biotechnology, China Agricultural University , Beijing, China
| | - Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| | - Hongwei Zhao
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University , Beijing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| |
Collapse
|
13
|
O'Rourke KF, Gorman SD, Boehr DD. Biophysical and computational methods to analyze amino acid interaction networks in proteins. Comput Struct Biotechnol J 2016; 14:245-51. [PMID: 27441044 PMCID: PMC4939391 DOI: 10.1016/j.csbj.2016.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Baker MR, Tabb DL, Ching T, Zimmerman LJ, Sakharov IY, Li QX. Site-Specific N-Glycosylation Characterization of Windmill Palm Tree Peroxidase Using Novel Tools for Analysis of Plant Glycopeptide Mass Spectrometry Data. J Proteome Res 2016; 15:2026-38. [DOI: 10.1021/acs.jproteome.6b00205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret R. Baker
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - David L. Tabb
- Department
of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37205, United States
| | - Travers Ching
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Lisa J. Zimmerman
- Department
of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37205, United States
| | - Ivan Y. Sakharov
- Department
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Qing X. Li
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
15
|
Nguyen-Kim H, San Clemente H, Balliau T, Zivy M, Dunand C, Albenne C, Jamet E. Arabidopsis thaliana
root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. Proteomics 2016; 16:491-503. [DOI: 10.1002/pmic.201500129] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Huan Nguyen-Kim
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Thierry Balliau
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
| | - Michel Zivy
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| |
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
17
|
Bernardes A, Textor LC, Santos JC, Cuadrado NH, Kostetsky EY, Roig MG, Bavro VN, Muniz JR, Shnyrov VL, Polikarpov I. Crystal structure analysis of peroxidase from the palm tree Chamaerops excelsa. Biochimie 2015; 111:58-69. [DOI: 10.1016/j.biochi.2015.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/25/2015] [Indexed: 11/24/2022]
|
18
|
Morales A, Barbosa O, Rueda N, Fonseca Z, Torres R, Rodrigues RC, Ortiz C, Fernandez-Lafuente R. Optimization and characterization of CLEAs of the very thermostable dimeric peroxidase from Roystonea regia. RSC Adv 2015. [DOI: 10.1039/c5ra06464c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper describes the optimization of the immobilization of the peroxidase from Roystonea regia (RPTP) using the technique of the crosslinking enzyme aggregates.
Collapse
Affiliation(s)
- Alba Morales
- Escuela de Química
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM)
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - Nazzoly Rueda
- Escuela de Química
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM)
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Zayda Fonseca
- Escuela de Química
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM)
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Rodrigo Torres
- Escuela de Química
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM)
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | | |
Collapse
|
19
|
López-Castillo LM, López-Arciniega JAI, Guerrero-Rangel A, Valdés-Rodríguez S, Brieba LG, García-Lara S, Winkler R. Identification of B6T173 (ZmPrx35) as the prevailing peroxidase in highly insect-resistant maize (Zea mays, p84C3) kernels by activity-directed purification. FRONTIERS IN PLANT SCIENCE 2015; 6:670. [PMID: 26379694 PMCID: PMC4553411 DOI: 10.3389/fpls.2015.00670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/13/2015] [Indexed: 05/03/2023]
Abstract
Plant peroxidases (PODs) are involved in diverse physiological processes, including defense against pathogens and insects. Contrary to their biological importance, only very few plant PODs have been proven on protein level, because their low abundance makes them difficult to detect in standard proteomics work-flows. A statistically significant positive correlation between POD activity and post-harvest insect resistance has been found for maize (Zea mays, p84C3) kernels. In combining activity-directed protein purification, genomic and proteomic tools we found that protein B6T173 (ZmPrx35) is responsible for the majority of the POD activity of the kernel. We successfully produced recombinant ZmPrx35 protein in Escherichia coli and demonstrate both, in vitro activity and the presence of a haem (heme) cofactor of the enzyme. Our findings support the screening for insect resistant maize variants and the construction of genetically optimized maize plants.
Collapse
Affiliation(s)
- Laura M. López-Castillo
- Laboratory of Biochemical and Instrumental Analysis, Department of Biotechnology and Biochemistry, Cinvestav Unidad IrapuatoIrapuato, Mexico
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados – Instituto Politécnico NacionalIrapuato, Mexico
| | - Janet A. I. López-Arciniega
- Laboratory of Biochemical and Instrumental Analysis, Department of Biotechnology and Biochemistry, Cinvestav Unidad IrapuatoIrapuato, Mexico
| | | | | | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados – Instituto Politécnico NacionalIrapuato, Mexico
| | | | - Robert Winkler
- Laboratory of Biochemical and Instrumental Analysis, Department of Biotechnology and Biochemistry, Cinvestav Unidad IrapuatoIrapuato, Mexico
- *Correspondence: Robert Winkler, Laboratory of Biochemical and Instrumental Analysis, Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico,
| |
Collapse
|
20
|
Baker M, Zhao H, Sakharov IY, Li QX. Amino acid sequence of anionic peroxidase from the windmill palm tree Trachycarpus fortunei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11941-8. [PMID: 25383699 PMCID: PMC4334278 DOI: 10.1021/jf504511h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 05/09/2023]
Abstract
Palm peroxidases are extremely stable and have uncommon substrate specificity. This study was designed to fill in the knowledge gap about the structures of a peroxidase from the windmill palm tree Trachycarpus fortunei. The complete amino acid sequence and partial glycosylation were determined by MALDI-top-down sequencing of native windmill palm tree peroxidase (WPTP), MALDI-TOF/TOF MS/MS of WPTP tryptic peptides, and cDNA sequencing. The propeptide of WPTP contained N- and C-terminal signal sequences which contained 21 and 17 amino acid residues, respectively. Mature WPTP was 306 amino acids in length, and its carbohydrate content ranged from 21% to 29%. Comparison to closely related royal palm tree peroxidase revealed structural features that may explain differences in their substrate specificity. The results can be used to guide engineering of WPTP and its novel applications.
Collapse
Affiliation(s)
- Margaret
R. Baker
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Hongwei Zhao
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- School
of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ivan Yu. Sakharov
- Department
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Qing X. Li
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
21
|
Novo-Uzal E, Gutiérrez J, Martínez-Cortés T, Pomar F. Molecular cloning of two novel peroxidases and their response to salt stress and salicylic acid in the living fossil Ginkgo biloba. ANNALS OF BOTANY 2014; 114:923-36. [PMID: 25139427 PMCID: PMC4171070 DOI: 10.1093/aob/mcu160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 06/16/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Peroxidase isoenzymes play diverse roles in plant physiology, such as lignification and defence against pathogens. The actions and regulation of many peroxidases are not known with much accuracy. A number of studies have reported direct involvement of peroxidase isoenzymes in the oxidation of monolignols, which constitutes the last step in the lignin biosynthesis pathway. However, most of the available data concern only peroxidases and lignins from angiosperms. This study describes the molecular cloning of two novel peroxidases from the 'living fossil' Ginkgo biloba and their regulation by salt stress and salicylic acid. METHODS Suspension cell cultures were used to purify peroxidases and to obtain the cDNAs. Treatments with salicylic acid and sodium chloride were performed and peroxidase activity and gene expression were monitored. KEY RESULTS A novel peroxidase was purified, which preferentially used p-hydroxycinnamyl alcohols as substrates and was able to form dehydrogenation polymers in vitro from coniferyl and sinapyl alcohols. Two peroxidase full-length cDNAs, GbPrx09 and GbPrx10, were cloned. Both peroxidases showed high similarity to other basic peroxidases with a putative role in cell wall lignification. Both GbPrx09 and GbPrx10 were expressed in leaves and stems of the plant. Sodium chloride enhanced the gene expression of GbPrx09 but repressed GbPrx10, whereas salicylic acid strongly repressed both GbPrx09 and GbPrx10. CONCLUSIONS Taken together, the data suggest the participation of GbPrx09 and GbPrx10 in the developmental lignification programme of the cell wall. Both peroxidases possess the structural characteristics necessary for sinapyl alcohol oxidation. Moreover, GbPrx09 is also involved in lignification induced by salt stress, while salicylic acid-mediated lignification is not a result of GbPrx09 and GbPrx10 enzymatic activity.
Collapse
Affiliation(s)
- Esther Novo-Uzal
- Department of Plant Biology, University of Murcia, E-30100 Murcia, Spain Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| | - Jorge Gutiérrez
- Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| | - Teresa Martínez-Cortés
- Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| | - Federico Pomar
- Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| |
Collapse
|
22
|
Tamaki FK, Textor LC, Polikarpov I, Marana SR. Sets of covariant residues modulate the activity and thermal stability of GH1 β-glucosidases. PLoS One 2014; 9:e96627. [PMID: 24804841 PMCID: PMC4013033 DOI: 10.1371/journal.pone.0096627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
The statistical coupling analysis of 768 β-glucosidases from the GH1 family revealed 23 positions in which the amino acid frequencies are coupled. The roles of these covariant positions in terms of the properties of β-glucosidases were investigated by alanine-screening mutagenesis using the fall armyworm Spodoptera frugiperda β-glycosidase (Sfβgly) as a model. The effects of the mutations on the Sfβgly kinetic parameters (kcat/Km) for the hydrolysis of three different p-nitrophenyl β-glycosides and structural comparisons of several β-glucosidases showed that eleven covariant positions (54, 98, 143, 188, 195, 196, 203, 398, 451, 452 and 460 in Sfβgly numbering) form a layer surrounding the active site of the β-glucosidases, which modulates their catalytic activity and substrate specificity via direct contact with the active site residues. Moreover, the influence of the mutations on the transition temperature (Tm) of Sfβgly indicated that nine of the coupled positions (49, 62, 143, 188, 223, 278, 309, 452 and 460 in Sfβgly numbering) are related to thermal stability. In addition to being preferentially occupied by prolines, structural comparisons indicated that these positions are concentrated at loop segments of the β-glucosidases. Therefore, due to these common biochemical and structural properties, these nine covariant positions, even without physical contacts among them, seem to jointly modulate the thermal stability of β-glucosidases.
Collapse
Affiliation(s)
- Fábio K. Tamaki
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Sandro R. Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Peroxidase as the major protein constituent in areca nut and identification of its natural substrates. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:412851. [PMID: 24250715 PMCID: PMC3821912 DOI: 10.1155/2013/412851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 01/17/2023]
Abstract
Numerous reports illustrate the diverse effects of chewing the areca nut, most of which are harmful and have been shown to be associated with oral cancer. Nearly all of the studies are focused on the extract and/or low molecular weight ingredients in the areca nut. The purpose of this report is to identify the major protein component in the areca nut. After ammonium sulfate fractionation, the concentrated areca nut extract is subjected to DEAE-cellulose chromatography. A colored protein is eluted at low NaCl concentration and the apparently homogeneous eluent represents the major protein component compared to the areca nut extract. The colored protein shares partial sequence identity with the royal palm tree peroxidase and its peroxidase activity is confirmed using an established assay. In the study, the natural substrates of areca nut peroxidase are identified as catechin, epicatechin, and procyanidin B1. The two former substrates are similarly oxidized to form a 576 Da product with concomitant removal of four hydrogen atoms. Interestingly, oxidation of procyanidin B1 occurs only in the presence of catechin or epicatechin and an additional product with an 864 Da molecular mass. In addition, procyanidin B1 is identified as a peroxidase substrate for the first time.
Collapse
|
24
|
Azimi S, Rauk A. Fe(III)–Heme Complexes with the Amyloid Beta Peptide of Alzheimer’s Disease: QM/MM Investigations of Binding and Redox Properties of Heme Bound to the His Residues of Aβ(1–42). J Chem Theory Comput 2013; 9:4233-42. [DOI: 10.1021/ct400364b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Samira Azimi
- Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Arvi Rauk
- Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
25
|
Zakharova GS, Uporov IV, Tishkov VI. Horseradish peroxidase: modulation of properties by chemical modification of protein and heme. BIOCHEMISTRY (MOSCOW) 2012; 76:1391-401. [PMID: 22339595 DOI: 10.1134/s0006297911130037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Horseradish peroxidase (HRP) is one of the most studied enzymes of the plant peroxidase superfamily. HRP is also widely used in different bioanalytical applications and diagnostic kits. The methods of genetic engineering and protein design are now widely used to study the catalytic mechanism and to improve properties of the enzyme. Here we review the results of another approach to HRP modification-through the chemical modification of amino acids or prosthetic group of the enzyme. Computer models of HRPs with modified hemes are in good agreement with the experimental data.
Collapse
Affiliation(s)
- G S Zakharova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
26
|
Substrate specificity of the Chamaerops excelsa palm tree peroxidase. A steady-state kinetic study. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Zamorano LS, Cuadrado NH, Galende PP, Roig MG, Shnyrov VL. Steady-state kinetics of <i>Roystonea regia</i> palm tree peroxidase. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbpc.2012.31002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Bleicher L, Lemke N, Garratt RC. Using amino acid correlation and community detection algorithms to identify functional determinants in protein families. PLoS One 2011; 6:e27786. [PMID: 22205928 PMCID: PMC3243672 DOI: 10.1371/journal.pone.0027786] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 10/25/2011] [Indexed: 11/21/2022] Open
Abstract
Correlated mutation analysis has a long history of interesting applications, mostly in the detection of contact pairs in protein structures. Based on previous observations that, if properly assessed, amino acid correlation data can also provide insights about functional sub-classes in a protein family, we provide a complete framework devoted to this purpose. An amino acid specific correlation measure is proposed, which can be used to build networks summarizing all correlation and anti-correlation patterns in a protein family. These networks can be submitted to community structure detection algorithms, resulting in subsets of correlated amino acids which can be further assessed by specific parameters and procedures that provide insight into the relationship between different communities, the individual importance of community members and the adherence of a given amino acid sequence to a given community. By applying this framework to three protein families with contrasting characteristics (the Fe/Mn-superoxide dismutases, the peroxidase-catalase family and the C-type lysozyme/α-lactalbumin family), we show how our method and the proposed parameters and procedures are related to biological characteristics observed in these protein families, highlighting their potential use in protein characterization and gene annotation.
Collapse
Affiliation(s)
- Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | |
Collapse
|
29
|
Cuadrado NH, Zhadan GG, Roig MG, Shnyrov VL. Suicide inactivation of peroxidase from Chamaerops excelsa palm tree leaves. Int J Biol Macromol 2011; 49:1078-82. [DOI: 10.1016/j.ijbiomac.2011.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
|
30
|
Textor LC, Santos JC, Hidalgo Cuadrado N, Roig MG, Zhadan GG, Shnyrov VL, Polikarpov I. Purification, crystallization and preliminary crystallographic analysis of peroxidase from the palm tree Chamaerops excelsa. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1641-4. [PMID: 22139187 PMCID: PMC3232160 DOI: 10.1107/s1744309111039030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022]
Abstract
Plant peroxidases are presently used extensively in a wide range of biotechnological applications owing to their high environmental and thermal stability. As part of efforts towards the discovery of appealing new biotechnological enzymes, the peroxidase from leaves of the palm tree Chamaerops excelsa (CEP) was extracted, purified and crystallized in its native form. An X-ray diffraction data set was collected at a synchrotron source and data analysis showed that the CEP crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 70.2, b = 100.7, c = 132.3 Å.
Collapse
Affiliation(s)
- Larissa C. Textor
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13560-970 São Carlos-SP, Brazil
| | - Jademilson C. Santos
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13560-970 São Carlos-SP, Brazil
| | - Nazaret Hidalgo Cuadrado
- Departamento de Química Física, Facultad de Química, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Manuel G. Roig
- Departamento de Química Física, Facultad de Química, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Galina G. Zhadan
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Valery L. Shnyrov
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13560-970 São Carlos-SP, Brazil
| |
Collapse
|
31
|
Jabeen U, Abbasi A, Salim A. Predicting the functionally distinct residues in the heme, cation, and substrate-binding sites of peroxidase from stress-tolerant mangrove specie, Avicennia marina. Cell Stress Chaperones 2011; 16:585-605. [PMID: 21660646 PMCID: PMC3220393 DOI: 10.1007/s12192-011-0269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/25/2011] [Accepted: 05/10/2011] [Indexed: 11/30/2022] Open
Abstract
Recent work was conducted to predict the structure of functionally distinct regions of Avicennia marina peroxidase (AP) by using the structural coordinates of barley grains peroxidase as the template. This enzyme is utilized by all living organisms in many biosynthetic or degradable processes and in defense against oxidative stress. The homology model showed some distinct structural changes in the heme, calcium, and substrate-binding regions. Val53 was found to be an important coordinating residue between distal calcium ion and the distal heme site while Ser176 is coordinated to the proximal histidine through Ala174 and Leu172. Different ionic and hydrogen-bonded interactions were also observed in AP. Analyses of various substrate-enzyme interactions revealed that the substrate-binding pocket is provided by the residues, His41, Phe70, Gly71, Asp138, His139, and Lys176; the later three residues are not conserved in the peroxidase family. We have also performed structural comparison of the A. marina peroxidase with that of two class III salt-sensitive species, peanut and soybean. Four loop regions were found to have largest structural deviation. The overall protein sequence was also analyzed for the presence of probable post-translational modification sites and the functional significance of these sites were outlined.
Collapse
Affiliation(s)
- Uzma Jabeen
- H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270 Pakistan
| | - Atiya Abbasi
- H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270 Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| |
Collapse
|
32
|
Lüthje S, Meisrimler CN, Hopff D, Möller B. Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants. PHYTOCHEMISTRY 2011; 72:1124-1135. [PMID: 21211808 DOI: 10.1016/j.phytochem.2010.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 05/30/2023]
Abstract
Peroxidases are key player in the detoxification of reactive oxygen species during cellular metabolism and oxidative stress. Membrane-bound isoenzymes have been described for peroxidase superfamilies in plants and animals. Recent studies demonstrated a location of peroxidases of the secretory pathway (class III peroxidases) at the tonoplast and the plasma membrane. Proteomic approaches using highly enriched plasma membrane preparations suggest organisation of these peroxidases in microdomains, a developmentally regulation and an induction of isoenzymes by oxidative stress. Phylogenetic relations, topology, putative structures, and physiological function of membrane-bound class III peroxidases will be discussed.
Collapse
Affiliation(s)
- Sabine Lüthje
- University of Hamburg, Biocenter Klein Flottbek, Dept. Plant Physiology, Ohnhorststrasse 18, 22609 Hamburg, Germany.
| | | | | | | |
Collapse
|
33
|
Zazza C, Palma A, Sanna N, Tatoli S, Aschi M. Computational Study on Compound I Redox-Active Species in Horseradish Peroxydase Enzyme: Conformational Fluctuations and Solvation Effects. J Phys Chem B 2010; 114:6817-24. [PMID: 20438084 DOI: 10.1021/jp101033w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Costantino Zazza
- CASPUR, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca, Via dei Tizii, 6/b, 00185 Roma, Italy, Istituto per lo Studio dei Materiali Nanostrutturati, CNR-ISMN, via Salaria Km. 29.3, Sez. Montelibretti, Monterotondo S.(RM), Italy, Dipartimento di Chimica, Università di Roma La Sapienza, P. le A. Moro 00185, Rome, Italy, and Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita di L’Aquila, via Vetoio 67100, L’Aquila, Italy
| | - Amedeo Palma
- CASPUR, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca, Via dei Tizii, 6/b, 00185 Roma, Italy, Istituto per lo Studio dei Materiali Nanostrutturati, CNR-ISMN, via Salaria Km. 29.3, Sez. Montelibretti, Monterotondo S.(RM), Italy, Dipartimento di Chimica, Università di Roma La Sapienza, P. le A. Moro 00185, Rome, Italy, and Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita di L’Aquila, via Vetoio 67100, L’Aquila, Italy
| | - Nico Sanna
- CASPUR, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca, Via dei Tizii, 6/b, 00185 Roma, Italy, Istituto per lo Studio dei Materiali Nanostrutturati, CNR-ISMN, via Salaria Km. 29.3, Sez. Montelibretti, Monterotondo S.(RM), Italy, Dipartimento di Chimica, Università di Roma La Sapienza, P. le A. Moro 00185, Rome, Italy, and Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita di L’Aquila, via Vetoio 67100, L’Aquila, Italy
| | - Simone Tatoli
- CASPUR, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca, Via dei Tizii, 6/b, 00185 Roma, Italy, Istituto per lo Studio dei Materiali Nanostrutturati, CNR-ISMN, via Salaria Km. 29.3, Sez. Montelibretti, Monterotondo S.(RM), Italy, Dipartimento di Chimica, Università di Roma La Sapienza, P. le A. Moro 00185, Rome, Italy, and Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita di L’Aquila, via Vetoio 67100, L’Aquila, Italy
| | - Massimiliano Aschi
- CASPUR, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca, Via dei Tizii, 6/b, 00185 Roma, Italy, Istituto per lo Studio dei Materiali Nanostrutturati, CNR-ISMN, via Salaria Km. 29.3, Sez. Montelibretti, Monterotondo S.(RM), Italy, Dipartimento di Chimica, Università di Roma La Sapienza, P. le A. Moro 00185, Rome, Italy, and Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita di L’Aquila, via Vetoio 67100, L’Aquila, Italy
| |
Collapse
|
34
|
Mathé C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Arch Biochem Biophys 2010; 500:58-65. [PMID: 20398621 DOI: 10.1016/j.abb.2010.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Class III peroxidases are members of a large multigenic family, only detected in the plant kingdom and absent from green algae sensu stricto (chlorophyte algae or Chlorophyta). Their evolution is thought to be related to the emergence of the land plants. However class III peroxidases are present in a lower copy number in some basal Streptophytes (Charapyceae), which predate land colonization. Gene structures are variable among organisms and within species with respect to the number of introns, but their positions are highly conserved. Their high copy number, as well as their conservation could be related to plant complexity and adaptation to increasing stresses. No specific function has been assigned to respective isoforms, but in large multigenic families, particular structure-function relations can be expected. Plant peroxidase sequences contain highly conserved residues and motifs, variable domains surrounded by conserved residues and present a low identity level among their promoter regions, further suggesting the existence of sub-functionalization of the different isoforms.
Collapse
Affiliation(s)
- Catherine Mathé
- Université de Toulouse, UPS, UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|