1
|
Gelová Z, Ingles-Prieto A, Bohstedt T, Frommelt F, Chi G, Chang YN, Garcia J, Wolf G, Azzollini L, Tremolada S, Scacioc A, Hansen JS, Serrano I, Droce A, Bernal JC, Burgess-Brown NA, Carpenter EP, Dürr KL, Kristensen P, Geertsma ER, Štefanić S, Scarabottolo L, Wiedmer T, Puetter V, Sauer DB, Superti-Furga G. Protein Binder Toolbox for Studies of Solute Carrier Transporters. J Mol Biol 2024; 436:168665. [PMID: 38878854 DOI: 10.1016/j.jmb.2024.168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.
Collapse
Affiliation(s)
- Zuzana Gelová
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tina Bohstedt
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julio Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Andreea Scacioc
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jesper S Hansen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iciar Serrano
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Aida Droce
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elisabeth P Carpenter
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Saša Štefanić
- Nanobody Service Facility, University of Zurich, AgroVet-Strickhof, Eschikon, Switzerland
| | | | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Digles D, Ingles-Prieto A, Dvorak V, Mocking TAM, Goldmann U, Garofoli A, Homan EJ, Di Silvio A, Azzollini L, Sassone F, Fogazza M, Bärenz F, Pommereau A, Zuschlag Y, Ooms JF, Tranberg-Jensen J, Hansen JS, Stanka J, Sijben HJ, Batoulis H, Bender E, Martini R, IJzerman AP, Sauer DB, Heitman LH, Manolova V, Reinhardt J, Ehrmann A, Leippe P, Ecker GF, Huber KVM, Licher T, Scarabottolo L, Wiedmer T, Superti-Furga G. Advancing drug discovery through assay development: a survey of tool compounds within the human solute carrier superfamily. Front Pharmacol 2024; 15:1401599. [PMID: 39050757 PMCID: PMC11267547 DOI: 10.3389/fphar.2024.1401599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
With over 450 genes, solute carriers (SLCs) constitute the largest transporter superfamily responsible for the uptake and efflux of nutrients, metabolites, and xenobiotics in human cells. SLCs are associated with a wide variety of human diseases, including cancer, diabetes, and metabolic and neurological disorders. They represent an important therapeutic target class that remains only partly exploited as therapeutics that target SLCs are scarce. Additionally, many small molecules reported in the literature to target SLCs are poorly characterized. Both features may be due to the difficulty of developing SLC transport assays that fulfill the quality criteria for high-throughput screening. Here, we report one of the main limitations hampering assay development within the RESOLUTE consortium: the lack of a resource providing high-quality information on SLC tool compounds. To address this, we provide a systematic annotation of tool compounds targeting SLCs. We first provide an overview on RESOLUTE assays. Next, we present a list of SLC-targeting compounds collected from the literature and public databases; we found that most data sources lacked specificity data. Finally, we report on experimental tests of 19 selected compounds against a panel of 13 SLCs from seven different families. Except for a few inhibitors, which were active on unrelated SLCs, the tested inhibitors demonstrated high selectivity for their reported targets. To make this knowledge easily accessible to the scientific community, we created an interactive dashboard displaying the collected data in the RESOLUTE web portal (https://re-solute.eu). We anticipate that our open-access resources on assays and compounds will support the development of future drug discovery campaigns for SLCs.
Collapse
Affiliation(s)
- Daniela Digles
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tamara A. M. Mocking
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Garofoli
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Evert J. Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | - Felix Bärenz
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Antje Pommereau
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Yasmin Zuschlag
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Jasper F. Ooms
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Jeppe Tranberg-Jensen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jesper S. Hansen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Josefina Stanka
- Lead Identification and Characterization, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Helena Batoulis
- Lead Identification and Characterization, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Eckhard Bender
- Lead Identification and Characterization, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Riccardo Martini
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - David B. Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | | | | | - Alexander Ehrmann
- Lead Identification and Characterization, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Kilian V. M. Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas Licher
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | | | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Nygaard R, Graham CLB, Belcher Dufrisne M, Colburn JD, Pepe J, Hydorn MA, Corradi S, Brown CM, Ashraf KU, Vickery ON, Briggs NS, Deering JJ, Kloss B, Botta B, Clarke OB, Columbus L, Dworkin J, Stansfeld PJ, Roper DI, Mancia F. Structural basis of peptidoglycan synthesis by E. coli RodA-PBP2 complex. Nat Commun 2023; 14:5151. [PMID: 37620344 PMCID: PMC10449877 DOI: 10.1038/s41467-023-40483-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Peptidoglycan (PG) is an essential structural component of the bacterial cell wall that is synthetized during cell division and elongation. PG forms an extracellular polymer crucial for cellular viability, the synthesis of which is the target of many antibiotics. PG assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Chris L B Graham
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Meagan Belcher Dufrisne
- Department of Chemistry and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jonathan D Colburn
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph Pepe
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Molly A Hydorn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Silvia Corradi
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Chelsea M Brown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas S Briggs
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - John J Deering
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY, 10027, USA
| | - Bruno Botta
- Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Linda Columbus
- Department of Chemistry and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Ashraf KU, Nygaard R, Vickery ON, Erramilli SK, Herrera CM, McConville TH, Petrou VI, Giacometti SI, Dufrisne MB, Nosol K, Zinkle AP, Graham CLB, Loukeris M, Kloss B, Skorupinska-Tudek K, Swiezewska E, Roper DI, Clarke OB, Uhlemann AC, Kossiakoff AA, Trent MS, Stansfeld PJ, Mancia F. Structural basis of lipopolysaccharide maturation by the O-antigen ligase. Nature 2022; 604:371-376. [PMID: 35388216 PMCID: PMC9884178 DOI: 10.1038/s41586-022-04555-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023]
Abstract
The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.
Collapse
Affiliation(s)
- Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Thomas H McConville
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Vasileios I Petrou
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Kamil Nosol
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Allen P Zinkle
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael Loukeris
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - David I Roper
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Moghimianavval H, Hsu YY, Groaz A, Liu AP. In Vitro Reconstitution Platforms of Mammalian Cell-Free Expressed Membrane Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:105-120. [PMID: 34985740 DOI: 10.1007/978-1-0716-1998-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Membrane proteins are essential components in cell membranes and enable cells to communicate with their outside environment and to carry out intracellular signaling. Functional reconstitution of complex membrane proteins using cell-free expression (CFE) systems has been proved to be challenging mainly due to the lack of necessary machinery for proper folding and translocation of nascent membrane proteins and their delivery to the supplied synthetic bilayers. Here, we provide protocols for detergent-free, cell-free reconstitution of functional membrane proteins using HeLa-based CFE system and outline assays for studying their membrane insertion, topology, and their orientation upon incorporation into the supported lipid bilayers or bilayers of giant unilamellar vesicles as well as methods to isolate functional translocated cell-free produced membrane proteins.
Collapse
Affiliation(s)
| | - Yen-Yu Hsu
- University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
6
|
Mouhib M, Benediktsdottir A, Nilsson CS, Chi CN. Influence of Detergent and Lipid Composition on Reconstituted Membrane Proteins for Structural Studies. ACS OMEGA 2021; 6:24377-24381. [PMID: 34604620 PMCID: PMC8482403 DOI: 10.1021/acsomega.1c02542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 05/15/2023]
Abstract
Membrane proteins are frequently reconstituted in different detergents as a prerequisite to create a phospholipid environment reminiscent of their native environment. Different detergent characteristics such as their chain length and bond types could affect the structure and function of proteins. Yet, they are seldom taken into account when choosing a detergent for structural studies. Here, we explore the effect of different detergents and lipids with varying degrees of double- or single-bond composition on 1H-15N transverse relaxation optimized spectroscopy spectra of the outer membrane protein W (OmpW). We observed changes in nuclear magnetic resonance chemical shifts for OmpW reconstituted in micelles, bicelles, and nanodiscs, depending on their detergent/lipid composition. These results suggest that a careful evaluation of detergents is necessary, so as not to jeopardize the structure and function of the protein.
Collapse
Affiliation(s)
- Mohammed Mouhib
- Department
of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Benediktsdottir
- Department
of Medicinal Chemistry, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Caroline Svensson Nilsson
- Department
of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Celestine N. Chi
- Department
of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
7
|
Puthenveetil R, Lee CJ, Banerjee A. Production of Recombinant Transmembrane Proteins from Mammalian Cells for Biochemical and Structural Analyses. ACTA ACUST UNITED AC 2021; 87:e106. [PMID: 32515556 DOI: 10.1002/cpcb.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Eukaryotic integral membrane proteins are key components of various biological processes. Because they are implicated in multiple diseases, it is important to understand their mechanism of action by elucidating their structure and function. Complex technical challenges associated with the generation of recombinant membrane proteins severely impair our ability to understand them using structural and biochemical methods. Here, we provide a detailed procedure to address and mitigate difficulties involved in the large-scale heterologous overexpression and purification of eukaryotic membrane proteins using HEK293S GnTi- cells transduced with baculovirus. Two human proteins, hDHHC15 and hPORCN, are presented as examples, with step-by-step instructions for transient transfection and generation of baculoviruses, followed by overexpression and purification from HEK293S GnTi- cells. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Small-scale protein expression in mammalian HEK293T cells Basic Protocol 2: Generation of baculovirus from Sf9 (insect) cells Alternate Protocol: Enumeration-free method for generating P2 viral stock Support Protocol 1: Small-scale transduction of HEK293T cells with P2 baculovirus Basic Protocol 3: Large-scale viral transduction of HEK293S GnTi- cells Support Protocol 2: Large-scale membrane preparation from HEK293S GnTi- cells Basic Protocol 4: Large-scale purification of membrane proteins from HEK293S GnTi- cells.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division (NCSBD), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Chul-Jin Lee
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division (NCSBD), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Anirban Banerjee
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division (NCSBD), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
8
|
High Throughput Expression Screening of Arabinofuranosyltransferases from Mycobacteria. Processes (Basel) 2021. [DOI: 10.3390/pr9040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies on membrane proteins can help to develop new drug targets and treatments for a variety of diseases. However, membrane proteins continue to be among the most challenging targets in structural biology. This uphill endeavor can be even harder for membrane proteins from Mycobacterium species, which are notoriously difficult to express in heterologous systems. Arabinofuranosyltransferases are involved in mycobacterial cell wall synthesis and thus potential targets for antituberculosis drugs. A set of 96 mycobacterial genes coding for Arabinofuranosyltransferases was selected, of which 17 were successfully expressed in E. coli and purified by metal-affinity chromatography. We herein present an efficient high-throughput strategy to screen in microplates a large number of targets from Mycobacteria and select the best conditions for large-scale protein production to pursue functional and structural studies. This methodology can be applied to other targets, is cost and time effective and can be implemented in common laboratories.
Collapse
|
9
|
Tan YZ, Zhang L, Rodrigues J, Zheng RB, Giacometti SI, Rosário AL, Kloss B, Dandey VP, Wei H, Brunton R, Raczkowski AM, Athayde D, Catalão MJ, Pimentel M, Clarke OB, Lowary TL, Archer M, Niederweis M, Potter CS, Carragher B, Mancia F. Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria. Mol Cell 2020; 78:683-699.e11. [PMID: 32386575 PMCID: PMC7263364 DOI: 10.1016/j.molcel.2020.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/21/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.
Collapse
Affiliation(s)
- Yong Zi Tan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - José Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | | | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ana L Rosário
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY 10027, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Richard Brunton
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ashleigh M Raczkowski
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Diogo Athayde
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128 Nangang, Taipei 11529, Taiwan
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Xiong Y, Shapaval V, Kohler A, From PJ. A Laboratory-Built Fully Automated Ultrasonication Robot for Filamentous Fungi Homogenization. SLAS Technol 2019; 24:583-595. [DOI: 10.1177/2472630319861361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents the design and development of a new hands-free ultrasonication robot for filamentous fungi homogenization. The platform was constructed with a modified inexpensive 3D printer, equipped with an upward-facing camera, a custom-designed wash station, and an add-on sonicator. While machine vision accomplished sample well screening based on image subtraction and color thresholding, it also determined the level of fungi homogeneity using color variance. Model fitting reveals that the process of filamentous fungi homogenization using ultrasonication included a period of significant exponential decay. Therefore, this procedure allowed for the rapid homogenization of the fungal samples during the initial stages of ultrasonication treatment followed by a deceleration in homogenization. Furthermore, a factorial experiment showed that higher sonicator power and temperature accelerated the homogenization process, while the cultivation time exhibited no effect on homogenization. In addition, the model parameters were varied between the wells, even when subjected to the same settings, meaning that the system cannot use the same asymptote of the homogeneity level to establish the termination time for different wells. Therefore, we used the standard deviation of the four most recent homogeneity level values to determine the termination time. This method was used for feedback control, forming a fully automated robot that did not require manual intervention during the experiment. A validation test on filamentous fungi demonstrated that the system was able to provide target quality of samples efficiently.
Collapse
Affiliation(s)
- Ya Xiong
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Pål Johan From
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Perry TN, Souabni H, Rapisarda C, Fronzes R, Giusti F, Popot JL, Zoonens M, Gubellini F. BAmSA: Visualising transmembrane regions in protein complexes using biotinylated amphipols and electron microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:466-477. [DOI: 10.1016/j.bbamem.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
|
12
|
Spherical-supported membranes as platforms for screening against membrane protein targets. Anal Biochem 2018; 549:58-65. [PMID: 29545094 PMCID: PMC5948183 DOI: 10.1016/j.ab.2018.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/23/2022]
Abstract
Screening assays performed against membrane protein targets (e.g. phage display) are hampered by issues arising from protein expression and purification, protein stability in detergent solutions and epitope concealment by detergent micelles. Here, we have studied a fast and simple method to improve screening against membrane proteins: spherical-supported bilayer lipid membranes (“SSBLM”). SSBLMs can be quickly isolated via low-speed centrifugation and redispersed in liquid solutions while presenting the target protein in a native-like lipid environment. To provide proof-of-concept, SSBLMs embedding the polytopic bacterial nucleoside transporter NupC were assembled on 100- and 200 nm silica particles. To test specific binding of antibodies, NupC was tagged with a poly-histidine epitope in one of its central loops between two transmembrane helices. Fluorescent labelling, small angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM) were used to monitor formation of the SSBLMs. Specific binding of an anti-his antibody and a gold-nitrilotriacetic acid (NTA) conjugate probe was confirmed with ELISAs and cryo-EM. SSBLMs for screening could be made with purified and lipid reconstituted NupC, as well as crude bacterial membrane extracts. We conclude that SSBLMs are a promising new means of presenting membrane protein targets for (biomimetic) antibody screening in a native-like lipid environment.
Collapse
|
13
|
Love JD. Expression of Prokaryotic Integral Membrane Proteins in E. coli. Methods Mol Biol 2017; 1586:265-278. [PMID: 28470611 DOI: 10.1007/978-1-4939-6887-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Production of prokaryotic membrane proteins for structural and functional studies in E. coli can be parallelized and miniaturized. All stages from cloning, expression, purification to detergent selection can be investigated using high-throughput techniques to rapidly and economically find tractable targets.
Collapse
Affiliation(s)
- James D Love
- Department of Biochemistry, Albert Einstein College of Medicine at Yeshiva University, Bronx, NY, USA.
- ATUM, 37950 Central Court, Newark, CA, 94560, USA.
| |
Collapse
|
14
|
Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J, Tomasek D, Banerjee S, Rajashankar KR, Belcher Dufrisne M, Kloss B, Kloppmann E, Rost B, Klug CS, Trent MS, Shapiro L, Mancia F. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science 2016; 351:608-12. [PMID: 26912703 DOI: 10.1126/science.aad1172] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.
Collapse
Affiliation(s)
- Vasileios I Petrou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jérémie Vendome
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA
| | - Kanagalaghatta R Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany. Institute for Advanced Study (TUM-IAS), Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Ardiccioni C, Clarke OB, Tomasek D, Issa HA, von Alpen DC, Pond HL, Banerjee S, Rajashankar KR, Liu Q, Guan Z, Li C, Kloss B, Bruni R, Kloppmann E, Rost B, Manzini MC, Shapiro L, Mancia F. Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nat Commun 2016; 7:10175. [PMID: 26729507 PMCID: PMC4728340 DOI: 10.1038/ncomms10175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022] Open
Abstract
The attachment of a sugar to a hydrophobic polyisoprenyl carrier is the first step for all extracellular glycosylation processes. The enzymes that perform these reactions, polyisoprenyl-glycosyltransferases (PI-GTs) include dolichol phosphate mannose synthase (DPMS), which generates the mannose donor for glycosylation in the endoplasmic reticulum. Here we report the 3.0 Å resolution crystal structure of GtrB, a glucose-specific PI-GT from Synechocystis, showing a tetramer in which each protomer contributes two helices to a membrane-spanning bundle. The active site is 15 Å from the membrane, raising the question of how water-soluble and membrane-embedded substrates are brought into apposition for catalysis. A conserved juxtamembrane domain harbours disease mutations, which compromised activity in GtrB in vitro and in human DPM1 tested in zebrafish. We hypothesize a role of this domain in shielding the polyisoprenyl-phosphate for transport to the active site. Our results reveal the basis of PI-GT function, and provide a potential molecular explanation for DPM1-related disease.
Collapse
Affiliation(s)
- Chiara Ardiccioni
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Oliver B. Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Habon A. Issa
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Desiree C. von Alpen
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Heather L. Pond
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Surajit Banerjee
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Qun Liu
- New York Structural Biology Center, X4 Beamlines, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chijun Li
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA
| | - Renato Bruni
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics and Computational Biology, Garching 85748, Germany
- Institute for Advanced Study (TUM-IAS), TUM (Technische Universität München), Garching 85748, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, Garching 85748, Germany
- Institute for Advanced Study (TUM-IAS), TUM (Technische Universität München), Garching 85748, Germany
| | - M. Chiara Manzini
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
16
|
Johnson JL, Kalyoncu S, Lieberman RL. Lessons from an α-Helical Membrane Enzyme: Expression, Purification, and Detergent Optimization for Biophysical and Structural Characterization. Methods Mol Biol 2016; 1432:281-301. [PMID: 27485343 DOI: 10.1007/978-1-4939-3637-3_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This chapter outlines the protocol developed in our lab to produce a multipass α-helical membrane protein. We present our work flow, from ortholog selection to protein purification, including molecular biology for plasmid construction, protein expression in E. coli, membrane isolation and detergent solubilization, protein purification and tag removal, biophysical assessment of protein stability in different detergents, and detergent concentration determination using thin-layer chromatography. We focus on results from our ongoing work with intramembrane aspartyl proteases from archaeal organisms.
Collapse
Affiliation(s)
- Jennifer L Johnson
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA
| | - Sibel Kalyoncu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
17
|
Hattab G, Warschawski DE, Moncoq K, Miroux B. Escherichia coli as host for membrane protein structure determination: a global analysis. Sci Rep 2015; 5:12097. [PMID: 26160693 PMCID: PMC4498379 DOI: 10.1038/srep12097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/11/2015] [Indexed: 11/13/2022] Open
Abstract
The structural biology of membrane proteins (MP) is hampered by the difficulty in producing and purifying them. A comprehensive analysis of protein databases revealed that 213 unique membrane protein structures have been obtained after production of the target protein in E. coli. The primary expression system used was the one based on the T7 RNA polymerase, followed by the arabinose and T5 promoter based expression systems. The C41λ(DE3) and C43λ(DE3) bacterial mutant hosts have contributed to 28% of non E. coli membrane protein structures. A large scale analysis of expression protocols demonstrated a preference for a combination of bacterial host-vector together with a bimodal distribution of induction temperature and of inducer concentration. Altogether our analysis provides a set of rules for the optimal use of bacterial expression systems in membrane protein production.
Collapse
Affiliation(s)
- Georges Hattab
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL research university, Paris, France
| | - Dror E Warschawski
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL research university, Paris, France
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL research university, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL research university, Paris, France
| |
Collapse
|
18
|
Vetting MW, Al-Obaidi N, Zhao S, San Francisco B, Kim J, Wichelecki DJ, Bouvier JT, Solbiati JO, Vu H, Zhang X, Rodionov DA, Love JD, Hillerich BS, Seidel RD, Quinn RJ, Osterman AL, Cronan JE, Jacobson MP, Gerlt JA, Almo SC. Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes. Biochemistry 2015; 54:909-31. [PMID: 25540822 PMCID: PMC4310620 DOI: 10.1021/bi501388y] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The
rate at which genome sequencing data is accruing demands enhanced
methods for functional annotation and metabolism discovery. Solute
binding proteins (SBPs) facilitate the transport of the first reactant
in a metabolic pathway, thereby constraining the regions of chemical
space and the chemistries that must be considered for pathway reconstruction.
We describe high-throughput protein production and differential scanning
fluorimetry platforms, which enabled the screening of 158 SBPs against
a 189 component library specifically tailored for this class of proteins.
Like all screening efforts, this approach is limited by the practical
constraints imposed by construction of the library, i.e., we can study
only those metabolites that are known to exist and which can be made
in sufficient quantities for experimentation. To move beyond these
inherent limitations, we illustrate the promise of crystallographic-
and mass spectrometric-based approaches for the unbiased use of entire
metabolomes as screening libraries. Together, our approaches identified
40 new SBP ligands, generated experiment-based annotations for 2084
SBPs in 71 isofunctional clusters, and defined numerous metabolic
pathways, including novel catabolic pathways for the utilization of
ethanolamine as sole nitrogen source and the use of d-Ala-d-Ala as sole carbon source. These efforts begin to define an
integrated strategy for realizing the full value of amassing genome
sequence data.
Collapse
Affiliation(s)
- Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lantez V, Nikolaidis I, Rechenmann M, Vernet T, Noirclerc-Savoye M. Rapid automated detergent screening for the solubilization and purification of membrane proteins and complexes. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Violaine Lantez
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | - Ioulia Nikolaidis
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
- Department of Biochemistry of Membranes; Bijvoet Center for Biomolecular Research, Utrecht University; The Netherlands
| | - Mathias Rechenmann
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | - Thierry Vernet
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | | |
Collapse
|
20
|
L. Pollock N, Moran O, Baroni D, Zegarra-Moran O, C. Ford R. Characterisation of the salmon cystic fibrosis transmembrane conductance regulator protein for structural studies. AIMS MOLECULAR SCIENCE 2014. [DOI: 10.3934/molsci.2014.4.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Bruni R, Kloss B. High-throughput cloning and expression of integral membrane proteins in Escherichia coli. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2013; 74:29.6.1-29.6.34. [PMID: 24510647 PMCID: PMC3920300 DOI: 10.1002/0471140864.ps2906s74] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high-throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression, and screening of membrane proteins using high-throughput methodologies developed in the laboratory. Basic Protocol 1 describes cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that do express on the miniscale, Basic Protocols 3 and 4 outline the methods employed for the expression and purification of targets on a midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable.
Collapse
Affiliation(s)
- Renato Bruni
- New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center (NYSBC), New York
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center (NYSBC), New York
| |
Collapse
|
22
|
Perry SL, Guha S, Pawate AS, Bhaskarla A, Agarwal V, Nair SK, Kenis PJ. A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. LAB ON A CHIP 2013; 13:3183-7. [PMID: 23828485 PMCID: PMC3755953 DOI: 10.1039/c3lc50276g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a microfluidic approach for de novo protein structure determination via crystallization screening and optimization, as well as on-chip X-ray diffraction data collection. The structure of phosphonoacetate hydrolase (PhnA) has been solved to 2.11 Åvia on-chip collection of anomalous data that has an order of magnitude lower mosaicity than what is typical for traditional structure determination methods.
Collapse
Affiliation(s)
- Sarah L. Perry
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, USA
| | - Sudipto Guha
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, USA
| | - Ashtamurthy S. Pawate
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, USA
| | - Amrit Bhaskarla
- School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, USA
| | - Vinayak Agarwal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, USA
| | - Paul J.A. Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
23
|
Goulah CC, Zhu G, Koszelak-Rosenblum M, Malkowski MG. The crystal structure of α-Dioxygenase provides insight into diversity in the cyclooxygenase-peroxidase superfamily. Biochemistry 2013; 52:1364-72. [PMID: 23373518 PMCID: PMC3589821 DOI: 10.1021/bi400013k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
α-Dioxygenases (α-DOX) oxygenate fatty acids into 2(R)-hydroperoxides. Despite the low level of sequence identity, α-DOX share common catalytic features with cyclooxygenases (COX), including the use of a tyrosyl radical during catalysis. We determined the X-ray crystal structure of Arabidopsis thaliana α-DOX to 1.5 Å resolution. The α-DOX structure is monomeric, predominantly α-helical, and comprised of two domains. The base domain exhibits a low degree of structural homology with the membrane-binding domain of COX but lies in a similar position with respect to the catalytic domain. The catalytic domain shows the highest degree of similarity with the COX catalytic domain, where 21 of the 22 α-helical elements are conserved. Helices H2, H6, H8, and H17 form the heme binding cleft and walls of the active site channel. His-318, Thr-323, and Arg-566 are located near the catalytic tyrosine, Tyr-386, at the apex of the channel, where they interact with a chloride ion. Substitutions at these positions coupled with kinetic analyses confirm previous hypotheses that implicate these residues as being involved in binding and orienting the carboxylate group of the fatty acid for optimal catalysis. Unique to α-DOX is the presence of two extended inserts on the surface of the enzyme that restrict access to the distal face of the heme, providing an explanation for the observed reduced peroxidase activity of the enzyme. The α-DOX structure represents the first member of the α-DOX subfamily to be structurally characterized within the cyclooxygenase-peroxidase family of heme-containing proteins.
Collapse
Affiliation(s)
| | - Guangyu Zhu
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, 14203
| | - Mary Koszelak-Rosenblum
- Department of Structural Biology, The State University of New York at Buffalo, Buffalo, NY, 14203
| | - Michael G. Malkowski
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, 14203,Department of Structural Biology, The State University of New York at Buffalo, Buffalo, NY, 14203,To whom correspondence should be addressed: Michael G. Malkowski, Ph.D., Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203. Tel: (716) 898-8624; Fax: (716) 898-8660;
| |
Collapse
|
24
|
Abstract
The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems.
Collapse
Affiliation(s)
- Juni Andréll
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
25
|
Abstract
Membrane proteins (MPs) mediate important physiological processes for the cell via extracellular and intracellular interactions. To better understand the biochemical and structural bases of these interactions, well-characterized preparations of purified MPs are required. This introduction reviews common problems encountered in MP preparation.
Collapse
Affiliation(s)
- Mark L Chiu
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, Radnor, Pennsylvania, USA
| |
Collapse
|
26
|
High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol 2011; 21:517-22. [PMID: 21807498 DOI: 10.1016/j.sbi.2011.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 11/20/2022]
Abstract
Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules.
Collapse
|
27
|
Tait AR, Straus SK. Overexpression and purification of U24 from human herpesvirus type-6 in E. coli: unconventional use of oxidizing environments with a maltose binding protein-hexahistine dual tag to enhance membrane protein yield. Microb Cell Fact 2011; 10:51. [PMID: 21714924 PMCID: PMC3155487 DOI: 10.1186/1475-2859-10-51] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obtaining membrane proteins in sufficient quantity for biophysical study and biotechnological applications has been a difficult task. Use of the maltose binding protein/hexahistidine dual tag system with E.coli as an expression host is emerging as a high throughput method to enhance membrane protein yield, solubility, and purity, but fails to be effective for certain proteins. Optimizing the variables in this system to fine-tune for efficiency can ultimately be a daunting task. To identify factors critical to success in this expression system, we have selected to study U24, a novel membrane protein from Human Herpesvirus type-6 with potent immunosuppressive ability and a possible role in the pathogenesis of the disease multiple sclerosis. RESULTS We expressed full-length U24 as a C-terminal fusion to a maltose binding protein/hexahistidine tag and examined the effects of temperature, growth medium type, cell strain type, oxidizing vs. reducing conditions and periplasmic vs. cytoplasmic expression location. Temperature appeared to have the greatest effect on yield; at 37°C full-length protein was either poorly expressed (periplasm) or degraded (cytoplasm) whereas at 18°C, expression was improved especially in the periplasm of C41(DE3) cells and in the cytoplasm of oxidizing Δtrx/Δgor mutant strains, Origami 2 and SHuffle. Expression of the fusion protein in these strains were estimated to be 3.2, 5.3 and 4.3 times greater, respectively, compared to commonly-used BL21(DE3) cells. We found that U24 is isolated with an intramolecular disulfide bond under these conditions, and we probed whether this disulfide bond was critical to high yield expression of full-length protein. Expression analysis of a C21SC37S cysteine-free mutant U24 demonstrated that this disulfide was not critical for full-length protein expression, but it is more likely that strained metabolic conditions favour factors which promote protein expression. This hypothesis is supported by the fact that use of minimal media could enhance protein production compared to nutrient-rich LB media. CONCLUSIONS We have found optimal conditions for heterologous expression of U24 from Human Herpesvirus type-6 in E.coli and have demonstrated that milligram quantities of pure protein can be obtained. Strained metabolic conditions such as low temperature, minimal media and an oxidizing environment appeared essential for high-level, full-length protein production and this information may be useful for expressing other membrane proteins of interest.
Collapse
Affiliation(s)
- Andrew R Tait
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | | |
Collapse
|
28
|
Berridge G, Chalk R, D’Avanzo N, Dong L, Doyle D, Kim JI, Xia X, Burgess-Brown N, deRiso A, Carpenter EP, Gileadi O. High-performance liquid chromatography separation and intact mass analysis of detergent-solubilized integral membrane proteins. Anal Biochem 2011; 410:272-80. [PMID: 21093405 PMCID: PMC3041925 DOI: 10.1016/j.ab.2010.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/17/2022]
Abstract
We have developed a method for intact mass analysis of detergent-solubilized and purified integral membrane proteins using liquid chromatography-mass spectrometry (LC-MS) with methanol as the organic mobile phase. Membrane proteins and detergents are separated chromatographically during the isocratic stage of the gradient profile from a 150-mm C3 reversed-phase column. The mass accuracy is comparable to standard methods employed for soluble proteins; the sensitivity is 10-fold lower, requiring 0.2-5 μg of protein. The method is also compatible with our standard LC-MS method used for intact mass analysis of soluble proteins and may therefore be applied on a multiuser instrument or in a high-throughput environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
29
|
Fan J, Heng J, Dai S, Shaw N, Zhou B, Huang B, He Z, Wang Y, Jiang T, Li X, Liu Z, Wang X, Zhang XC. An efficient strategy for high throughput screening of recombinant integral membrane protein expression and stability. Protein Expr Purif 2011; 78:6-13. [PMID: 21354311 DOI: 10.1016/j.pep.2011.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/14/2011] [Accepted: 02/18/2011] [Indexed: 02/05/2023]
Abstract
Membrane proteins account for about 30% of the genomes sequenced to date and play important roles in a variety of cellular functions. However, determining the three-dimensional structures of membrane proteins continues to pose a major challenge for structural biologists due to difficulties in recombinant expression and purification. We describe here a high throughput pipeline for Escherichia coli based membrane protein expression and purification. A ligation-independent cloning (LIC)-based vector encoding a C-terminal green fluorescence protein (GFP) tag was used for cloning in a high throughput mode. The GFP tag facilitated expression screening in E. coli through both cell culture fluorescence measurements and in-gel fluorescence imaging. Positive candidates from the GFP screening were subsequently sub-cloned into a LIC-based, GFP free vector for further expression and purification. The expressed, C-terminal His-tagged membrane proteins were purified via membrane enrichment and Ni-affinity chromatography. Thermofluor technique was applied to screen optimal buffers and detergents for the purified membrane proteins. This pipeline has been successfully tested for membrane proteins from E. coli and can be potentially expanded to other prokaryotes.
Collapse
Affiliation(s)
- Junping Fan
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Qureshi T, Goto NK. Contemporary methods in structure determination of membrane proteins by solution NMR. Top Curr Chem (Cham) 2011; 326:123-85. [PMID: 22160391 DOI: 10.1007/128_2011_306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Integral membrane proteins are vital to life, being responsible for information and material exchange between a cell and its environment. Although high-resolution structural information is needed to understand how these functions are achieved, membrane proteins remain an under-represented subset of the protein structure databank. Solution NMR is increasingly demonstrating its ability to help address this knowledge shortfall, with the development of a diverse array of techniques to counter the challenges presented by membrane proteins. Here we document the advances that are helping to define solution NMR as an effective tool for membrane protein structure determination. Developments introduced over the last decade in the production of isotope-labeled samples, reconstitution of these samples into the growing selection of NMR-compatible membrane-mimetic systems, and the approaches used for the acquisition and application of structural restraints from these complexes are reviewed.
Collapse
Affiliation(s)
- Tabussom Qureshi
- Department of Chemistry, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
31
|
Lin W, Chai J, Love J, Fu D. Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB. J Biol Chem 2010; 285:39013-20. [PMID: 20876577 DOI: 10.1074/jbc.m110.180620] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstrated that ZIPB is selective for two group 12 transition metal ions, Zn(2+) and Cd(2+), whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.
Collapse
Affiliation(s)
- Wei Lin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | |
Collapse
|