1
|
Nowak JS, Otzen DE. Helping proteins come in from the cold: 5 burning questions about cold-active enzymes. BBA ADVANCES 2023; 5:100104. [PMID: 38162634 PMCID: PMC10755280 DOI: 10.1016/j.bbadva.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 01/03/2024] Open
Abstract
Enzymes from psychrophilic (cold-loving) organisms have attracted considerable interest over the past decades for their potential in various low-temperature industrial processes. However, we still lack large-scale commercialization of their activities. Here, we review their properties, limitations and potential. Our review is structured around answers to 5 central questions: 1. How do cold-active enzymes achieve high catalytic rates at low temperatures? 2. How is protein flexibility connected to cold-activity? 3. What are the sequence-based and structural determinants for cold-activity? 4. How does the thermodynamic stability of psychrophilic enzymes reflect their cold-active capabilities? 5. How do we effectively identify novel cold-active enzymes, and can we apply them in an industrial context? We conclude that emerging screening technologies combined with big-data handling and analysis make it reasonable to expect a bright future for our understanding and exploitation of cold-active enzymes.
Collapse
Affiliation(s)
- Jan Stanislaw Nowak
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Collins T, Feller G. Psychrophilic enzymes: strategies for cold-adaptation. Essays Biochem 2023; 67:701-713. [PMID: 37021674 DOI: 10.1042/ebc20220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Psychrophilic organisms thriving at near-zero temperatures synthesize cold-adapted enzymes to sustain cell metabolism. These enzymes have overcome the reduced molecular kinetic energy and increased viscosity inherent to their environment and maintained high catalytic rates by development of a diverse range of structural solutions. Most commonly, they are characterized by a high flexibility coupled with an intrinsic structural instability and reduced substrate affinity. However, this paradigm for cold-adaptation is not universal as some cold-active enzymes with high stability and/or high substrate affinity and/or even an unaltered flexibility have been reported, pointing to alternative adaptation strategies. Indeed, cold-adaptation can involve any of a number of a diverse range of structural modifications, or combinations of modifications, depending on the enzyme involved, its function, structure, stability, and evolutionary history. This paper presents the challenges, properties, and adaptation strategies of these enzymes.
Collapse
Affiliation(s)
- Tony Collins
- Department of Biology, Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Georges Feller
- Department of Life Sciences, Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
3
|
Ramasamy KP, Mahawar L, Rajasabapathy R, Rajeshwari K, Miceli C, Pucciarelli S. Comprehensive insights on environmental adaptation strategies in Antarctic bacteria and biotechnological applications of cold adapted molecules. Front Microbiol 2023; 14:1197797. [PMID: 37396361 PMCID: PMC10312091 DOI: 10.3389/fmicb.2023.1197797] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Climate change and the induced environmental disturbances is one of the major threats that have a strong impact on bacterial communities in the Antarctic environment. To cope with the persistent extreme environment and inhospitable conditions, psychrophilic bacteria are thriving and displaying striking adaptive characteristics towards severe external factors including freezing temperature, sea ice, high radiation and salinity which indicates their potential in regulating climate change's environmental impacts. The review illustrates the different adaptation strategies of Antarctic microbes to changing climate factors at the structural, physiological and molecular level. Moreover, we discuss the recent developments in "omics" approaches to reveal polar "blackbox" of psychrophiles in order to gain a comprehensive picture of bacterial communities. The psychrophilic bacteria synthesize distinctive cold-adapted enzymes and molecules that have many more industrial applications than mesophilic ones in biotechnological industries. Hence, the review also emphasizes on the biotechnological potential of psychrophilic enzymes in different sectors and suggests the machine learning approach to study cold-adapted bacteria and engineering the industrially important enzymes for sustainable bioeconomy.
Collapse
Affiliation(s)
| | - Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | | | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
4
|
Jiang F, Bian J, Liu H, Li S, Bai X, Zheng L, Jin S, Liu Z, Yang GY, Hong L. Creatinase: Using Increased Entropy to Improve the Activity and Thermostability. J Phys Chem B 2023; 127:2671-2682. [PMID: 36926920 DOI: 10.1021/acs.jpcb.2c08062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Improving protein thermostability in mutagenesis-based enzyme engineering was often achieved by enhancing interresidue interactions via mutation to increase the enthalpy penalty of unfolding. However, this approach may trade off the functional activity due to the loss of structural flexibility of the biomolecule. Here, by performing X-ray crystallography, enzymatic kinetic experiments, neutron scattering, and thermodynamical measurements, we compared the structures, catalytic behaviors, dynamics, and thermostability between a wild-type creatinase and its four-point mutant. We found that the mutant is an entropy-driven thermostable protein with higher structural flexibility, i.e., higher conformational entropy, in the folded state compared to the wild type. The increased conformational entropy of the mutant in the folded state can reduce the entropy gain during unfolding and thus renders it greater thermostability. Moreover, the increased structural flexibility, particularly around the catalytic site, can broaden the mutant's working temperature range and considerably improve its activity at ambient conditions, which is crucial for its application in diagnosing kidney diseases. Complementary all-atom molecular dynamics simulations indicated that the four mutations replaced several of the strong interresidue interactions (electrostatic interactions and hydrogen bonds) with weak hydrophobic interactions. These substitutions not only release the structural flexibility to promote the thermostability and enzymatic activity of the protein but they also preserve the protein structure from collapsing. Our findings may pave a route for the entropy-driven strategy to design proteins with high thermostability and activity.
Collapse
Affiliation(s)
- Fan Jiang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Bian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Song Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lirong Zheng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Jin
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
5
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
6
|
Marchetti A, Orlando M, Mangiagalli M, Lotti M. A cold‐active esterase enhances mesophilic properties through Mn
2+
binding. FEBS J 2022; 290:2394-2411. [PMID: 36266734 DOI: 10.1111/febs.16661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022]
Abstract
A key aspect of adaptation to cold environments is the production of cold-active enzymes by psychrophilic organisms. These enzymes not only have high activity at low temperatures, but also exhibit remarkable structural flexibility and thermolability. In this context, the role of metal ions has been little explored, and the few available studies seem to suggest that metal binding counteracts structural flexibility. This article reports an investigation into the role of the binding of manganese ion (Mn2+ ) in the thermal adaptation of an esterase (M-Est) of the GDSx family, identified in the genome of the Antarctic bacterium Marinomonas sp. ef1. M-Est is specific for esters containing acetate groups and turned out to be a highly thermolabile cold-active enzyme, with a catalysis optimum temperature of 5 °C and a melting temperature of 31.7 °C. A combination of biochemical and computational analyses, including molecular dynamics simulations, revealed that M-Est binds Mn2+ ions via a single binding site located on the surface of the enzyme, close to the active site. Although the interaction between M-Est and Mn2+ induces only local conformational changes involving the active site, quite surprisingly they trigger an improvement in both thermal stability and catalytic efficiency under mild temperature conditions. These results, together with the conservation of the Mn2+ binding site among psychrophilic and psychrotolerant homologues, suggest that Mn2+ binding may be a useful, albeit atypical, strategy to mitigate the detrimental effects of temperature on true cold-active enzymes.
Collapse
Affiliation(s)
| | - Marco Orlando
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
- Department of Biotechnology and Life Sciences University of Insubria Varese Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| |
Collapse
|
7
|
Noby N, Auhim HS, Winter S, Worthy HL, Embaby AM, Saeed H, Hussein A, Pudney CR, Rizkallah PJ, Wells SA, Jones DD. Structure and in silico simulations of a cold-active esterase reveals its prime cold-adaptation mechanism. Open Biol 2021; 11:210182. [PMID: 34847772 PMCID: PMC8633780 DOI: 10.1098/rsob.210182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Here we determined the structure of a cold active family IV esterase (EstN7) cloned from Bacillus cohnii strain N1. EstN7 is a dimer with a classical α/β hydrolase fold. It has an acidic surface that is thought to play a role in cold-adaption by retaining solvation under changed water solvent entropy at lower temperatures. The conformation of the functionally important cap region is significantly different to EstN7's closest relatives, forming a bridge-like structure with reduced helical content providing greater access to the active site through more than one substrate access tunnel. However, dynamics do not appear to play a major role in cold adaption. Molecular dynamics at different temperatures, rigidity analysis, normal mode analysis and geometric simulations of motion confirm the flexibility of the cap region but suggest that the rest of the protein is largely rigid. Rigidity analysis indicates the distribution of hydrophobic tethers is appropriate to colder conditions, where the hydrophobic effect is weaker than in mesophilic conditions due to reduced water entropy. Thus, it is likely that increased substrate accessibility and tolerance to changes in water entropy are important for of EstN7's cold adaptation rather than changes in dynamics.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt,School of Biosciences, Molecular Biosciences Division, Cardiff University, Cardiff CF10 3AX, UK
| | - Husam Sabah Auhim
- School of Biosciences, Molecular Biosciences Division, Cardiff University, Cardiff CF10 3AX, UK,Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Samuel Winter
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Harley L. Worthy
- School of Biosciences, Molecular Biosciences Division, Cardiff University, Cardiff CF10 3AX, UK
| | - Amira M. Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | | | | | - D. Dafydd Jones
- School of Biosciences, Molecular Biosciences Division, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
8
|
Carugo O. Decline of protein structure rigidity with interatomic distance. BMC Bioinformatics 2021; 22:466. [PMID: 34583630 PMCID: PMC8479892 DOI: 10.1186/s12859-021-04393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Protein structural rigidity was analyzed in a non-redundant ensemble of high-resolution protein crystal structures by means of the Hirshfeld test, according to which the components (uX and uY) of the B-factors of two atoms (X and Y) along the interatomic direction is related to their degree of rigidity: the atoms may move as a rigid body if uX = uY and they cannot if uX ≠ uY. RESULTS It was observed that the rigidity degree diminishes if the number of covalent bonds intercalated between the two atoms (d_seq) increases, while it is rather independent on the Euclidean distance between the two atoms (d): for a given value of d_seq, the difference between uX and uY does not depend on d. No additional rigidity decline is observed when d_seq ≥ ~ 30 and this upper limit is very modest, close to 0.015 Å. CONCLUSIONS This suggests that protein flexibility is not fully described by B-factors that capture only partially the wide range of distortions that proteins can afford.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy.
- Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| |
Collapse
|
9
|
Loreto D, Merlino A. The interaction of rhodium compounds with proteins: A structural overview. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Chen Q, Wu Y, Huang Z, Zhang W, Mu W. Molecular Characterization of a Mesophilic Cellobiose 2-Epimerase That Maintains a High Catalytic Efficiency at Low Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8268-8275. [PMID: 34231359 DOI: 10.1021/acs.jafc.1c02025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cellobiose 2-epimerase (CE) can catalyze bioconversion of lactose to its prebiotic derivative epilactose. The catalytic property of a novel CE from Treponema brennaborense (Trbr-CE) was investigated. Trbr-CE showed the highest catalytic efficiency of epimerization toward lactose among all of the previously reported CEs. This enzyme's specific activity could reach as high as 208.5 ± 5.3 U/mg at its optimum temperature, which is 45 °C. More importantly, this enzyme demonstrated a considerably high activity at low temperatures, suggesting Trbr-CE as a promising enzyme for industrial low-temperature production of epilactose. This structurally flexible enzyme exhibited a comparatively high binding affinity toward substrates, which was confirmed by both experimental verification and computational analysis. Molecular dynamics (MD) simulations and binding free energy calculations were applied to provide insights into molecular recognition upon temperature changes. Compared with thermophilic CEs, Trbr-CE presents a more negative enthalpy change and a higher entropy change when the temperature drops.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanchang Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Casillo A, Fabozzi A, Russo Krauss I, Parrilli E, Biggs CI, Gibson MI, Lanzetta R, Appavou MS, Radulescu A, Tutino ML, Paduano L, Corsaro MM. Physicochemical Approach to Understanding the Structure, Conformation, and Activity of Mannan Polysaccharides. Biomacromolecules 2021; 22:1445-1457. [PMID: 33729771 PMCID: PMC8045027 DOI: 10.1021/acs.biomac.0c01659] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Extracellular
polysaccharides are widely produced by bacteria, yeasts, and algae.
These polymers are involved in several biological functions, such
as bacteria adhesion to surface and biofilm formation, ion sequestering,
protection from desiccation, and cryoprotection. The chemical characterization
of these polymers is the starting point for obtaining relationships
between their structures and their various functions. While this fundamental
correlation is well reported and studied for the proteins, for the
polysaccharides, this relationship is less intuitive. In this paper,
we elucidate the chemical structure and conformational studies of
a mannan exopolysaccharide from the permafrost isolated bacterium Psychrobacter arcticus strain 273-4. The mannan from
the cold-adapted bacterium was compared with its dephosphorylated
derivative and the commercial product from Saccharomyces
cerevisiae. Starting from the chemical structure,
we explored a new approach to deepen the study of the structure/activity
relationship. A pool of physicochemical techniques, ranging from small-angle
neutron scattering (SANS) and dynamic and static light scattering
(DLS and SLS, respectively) to circular dichroism (CD) and cryo-transmission
electron microscopy (cryo-TEM), have been used. Finally, the ice recrystallization
inhibition activity of the polysaccharides was explored. The experimental
evidence suggests that the mannan exopolysaccharide from P. arcticus bacterium has an efficient interaction
with the water molecules, and it is structurally characterized by
rigid-rod regions assuming a 14-helix-type conformation.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Antonio Fabozzi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.,CSGI - Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Florence 50019, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-857478 Garching bei München, Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-857478 Garching bei München, Germany
| | - Maria L Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.,CSGI - Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Florence 50019, Italy
| | - Maria M Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
12
|
Jaafar NR, Mahadi NM, Mackeen MM, Illias RM, Murad AMA, Abu Bakar FD. Structural and functional characterisation of a cold-active yet heat-tolerant dehydroquinase from Glaciozyma antarctica PI12. J Biotechnol 2021; 329:118-127. [PMID: 33539893 DOI: 10.1016/j.jbiotec.2021.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
Dehydroquinase or 3-dehydroquinate dehydratase (DHQD) reversibly cleaves 3-dehydroquinate to form 3-dehydroshikimate. Here, we describe the functional and structural features of a cold active type II 3-dehydroquinate dehydratase from the psychrophilic yeast, Glaciozyma antarctica PI12 (GaDHQD). Functional studies showed that the enzyme was active at low temperatures (10-30 °C), but displayed maximal activity at 40 °C. Yet the enzyme was stable over a wide range of temperatures (10-70 °C) and between pH 6.0-10.0 with an optimum pH of 8.0. Interestingly, the enzyme was highly thermo-tolerant, denaturing only at approximately 84 °C. Three-dimensional structure analyses showed that the G. antarctica dehydroquinase (GaDHQD) possesses psychrophilic features in comparison with its mesophilic and thermophilic counterparts such as higher numbers of non-polar residues on the surface, lower numbers of arginine and higher numbers of glycine-residues with lower numbers of hydrophobic interactions. On the other hand, GaDHQD shares some traits (i.e. total number of hydrogen bonds, number of proline residues and overall folding) with its mesophilic and thermophilic counterparts. Combined, these features contribute synergistically towards the enzyme's ability to function at both low and high temperatures.
Collapse
Affiliation(s)
- Nardiah Rizwana Jaafar
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81210, Skudai, Johor Darul Takzim, Malaysia; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Nor Muhammad Mahadi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Mukram Mohamed Mackeen
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia; Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Rosli Md Illias
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81210, Skudai, Johor Darul Takzim, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Mangiagalli M, Lotti M. Cold-Active β-Galactosidases: Insight into Cold Adaption Mechanisms and Biotechnological Exploitation. Mar Drugs 2021; 19:md19010043. [PMID: 33477853 PMCID: PMC7832830 DOI: 10.3390/md19010043] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/22/2023] Open
Abstract
β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosaccharides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an acceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently low-temperature environments. While mesophilic β-galactosidases are broadly studied and employed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although they may prove very useful in biotechnological processes at low temperature. This review covers several issues related to cold-active β-galactosidases, including their classification, structure and molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on the production of lactose-free dairy products as well as on the valorization of cheese whey and the synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.
Collapse
|
14
|
Hjörleifsson JG, Helland R, Magnúsdóttir M, Ásgeirsson B. The high catalytic rate of the cold-active Vibrio alkaline phosphatase requires a hydrogen bonding network involving a large interface loop. FEBS Open Bio 2020; 11:173-184. [PMID: 33197282 PMCID: PMC7780099 DOI: 10.1002/2211-5463.13041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
The role of surface loops in mediating communication through residue networks is still a relatively poorly understood part in the study of cold adaptation of enzymes, especially in terms of their quaternary interactions. Alkaline phosphatase (AP) from the psychrophilic marine bacterium Vibrio splendidus (VAP) is characterized by an analogous large surface loop in each monomer, referred to as the large loop, that hovers over the active site of the other monomer. It presumably has a role in the high catalytic efficiency of VAP which accompanies its extremely low thermal stability. Here, we designed several different variants of VAP with the aim of removing intersubunit interactions at the dimer interface. Breaking the intersubunit contacts from one residue in particular (Arg336) reduced the temperature stability of the catalytically potent conformation and caused a 40% drop in catalytic rate. The high catalytic rates of enzymes from cold‐adapted organisms are often associated with increased dynamic flexibility. Comparison of the relative B‐factors of the R336L crystal structure to that of the wild‐type confirmed surface flexibility was increased in a loop on the opposite monomer, but not in the large loop. The increase in flexibility resulted in a reduced catalytic rate. The large loop increases the area of the interface between the subunits through its contacts and may facilitate an alternating structural cycle demanded by a half‐of‐sites reaction mechanism through stronger ties, as the dimer oscillates between high affinity (active) or low phosphoryl group affinity (inactive).
Collapse
Affiliation(s)
| | - Ronny Helland
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT, The Arctic University of Tromsø, Norway
| | - Manuela Magnúsdóttir
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
15
|
Loreto D, Ferraro G, Merlino A. Protein-metallodrugs interactions: Effects on the overall protein structure and characterization of Au, Ru and Pt binding sites. Int J Biol Macromol 2020; 163:970-976. [DOI: 10.1016/j.ijbiomac.2020.07.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
|
16
|
Zamora RA, Ramirez-Sarmiento CA, Castro-Fernández V, Villalobos P, Maturana P, Herrera-Morande A, Komives EA, Guixé V. Tuning of Conformational Dynamics Through Evolution-Based Design Modulates the Catalytic Adaptability of an Extremophilic Kinase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Cesar A. Ramirez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile. Avenida Vicuña Mackenna 4860, Macul, Santiago 6904411, Chile
| | - Víctor Castro-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Pablo Maturana
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Alejandra Herrera-Morande
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92092-0378, United States
| | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
17
|
Zhang Y, Li C, Geary T, Simpson BK. Contribution of Special Structural Features to High Thermal Stability of a Cold-Active Transglutaminase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7935-7945. [PMID: 32643372 DOI: 10.1021/acs.jafc.0c03344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A cold-active transglutaminase (TGase, EC 2.3.2.13) that catalyzes the reaction of protein glutamine + protein lysine ↔ protein with γ-glutamyl-ε-lysine cross-link + NH3 at low temperatures was reported previously. This study verified the thermal stability of the TGase from 0-80 °C. Fluorescence and CD spectra studies confirmed tertiary structural damage at 40 °C, α-helix reduction at 60 °C, and refolding during cooling to 20 °C. The TGase sequence was obtained by transcriptomics and used to build its structure. Its catalytic triad was Cys333-His403-Asp426 and its catalytic process was inferred from the model. Molecular dynamics simulation illustrated that its cold activity resulted from its flexible active site, while high thermostability was conferred by an overall rigid structure, a large amount of stable Val and Lys, and strong electrostatic interactions at the N- and C- terminals. This study fills gaps in the correlation of conformational changes with stability and activity of TGase.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Food Science & Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Timothy Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Benjamin Kofi Simpson
- Department of Food Science & Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
18
|
Mangiagalli M, Lapi M, Maione S, Orlando M, Brocca S, Pesce A, Barbiroli A, Camilloni C, Pucciarelli S, Lotti M, Nardini M. The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement. FEBS J 2020; 288:546-565. [PMID: 32363751 DOI: 10.1111/febs.15354] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Abstract
To survive in cold environments, psychrophilic organisms produce enzymes endowed with high specific activity at low temperature. The structure of these enzymes is usually flexible and mostly thermolabile. In this work, we investigate the structural basis of cold adaptation of a GH42 β-galactosidase from the psychrophilic Marinomonas ef1. This enzyme couples cold activity with astonishing robustness for a psychrophilic protein, for it retains 23% of its highest activity at 5 °C and it is stable for several days at 37 °C and even 50 °C. Phylogenetic analyses indicate a close relationship with thermophilic β-galactosidases, suggesting that the present-day enzyme evolved from a thermostable scaffold modeled by environmental selective pressure. The crystallographic structure reveals the overall similarity with GH42 enzymes, along with a hexameric arrangement (dimer of trimers) not found in psychrophilic, mesophilic, and thermophilic homologues. In the quaternary structure, protomers form a large central cavity, whose accessibility to the substrate is promoted by the dynamic behavior of surface loops, even at low temperature. A peculiar cooperative behavior of the enzyme is likely related to the increase of the internal cavity permeability triggered by heating. Overall, our results highlight a novel strategy of enzyme cold adaptation, based on the oligomerization state of the enzyme, which effectively challenges the paradigm of cold activity coupled with intrinsic thermolability. DATABASE: Structural data are available in the Protein Data Bank database under the accession number 6Y2K.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Michela Lapi
- Department of Biosciences, University of Milano, Italy
| | - Serena Maione
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | | | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Italy
| | | | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| |
Collapse
|
19
|
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar Drugs 2019; 17:md17120656. [PMID: 31766541 PMCID: PMC6950199 DOI: 10.3390/md17120656] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yingbao Gai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Xun Guo
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: ; Tel.: +86-592-2195323
| |
Collapse
|
20
|
Effects of the substituted amino acid residues on the thermal properties of monomeric isocitrate dehydrogenases from a psychrophilic bacterium, Psychromonas marina, and a mesophilic bacterium, Azotobacter vinelandii. Extremophiles 2019; 23:809-820. [PMID: 31595369 DOI: 10.1007/s00792-019-01137-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
A cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Psychromonas marina (PmIDH), showed a high degree of amino acid sequential identity (64%) to a mesophilic one from a mesophilic bacterium, Azotobacter vinelandii (AvIDH). In this study, eight corresponding amino acid residues were substituted between them by site-directed mutagenesis, and several thermal properties of the mutated IDHs were examined. In the PmIDH mutants, PmL735F, substituted Leu735 of PmIDH by the corresponding Phe of AvIDH, showed higher specific activity and thermostability of activity than wild-type PmIDH, while the H600Y and N741P mutations of PmIDH resulted in decreased specific activity and thermostability of activity. On the other hand, among the AvIDH mutants, AvP718T showed lower optimum temperature and thermostability of activity than wild-type AvIDH. In PmIDH variously combined the H600Y, L735F and N741P mutations, PmH600YL735F, including the H600Y and L735F mutations, showed higher specific activity than PmH600Y and similar optimum temperature and thermostability of activity to PmH600Y. Furthermore, PmL735FN741P exhibited higher specific activity and thermostability of activity than PmN741P. These results indicated that the effects of the three mutations of PmIDH are additive on the specific activity of both PmH600YL735F and PmL735FN741P and on thermostability of PmL735FN741P.
Collapse
|
21
|
Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar Drugs 2019; 17:md17100544. [PMID: 31547548 PMCID: PMC6835263 DOI: 10.3390/md17100544] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
The microorganisms that evolved at low temperatures express cold-adapted enzymes endowed with unique catalytic properties in comparison to their mesophilic homologues, i.e., higher catalytic efficiency, improved flexibility, and lower thermal stability. Cold environments are therefore an attractive research area for the discovery of enzymes to be used for investigational and industrial applications in which such properties are desirable. In this work, we will review the literature on cold-adapted enzymes specifically focusing on those discovered in the bioprospecting of polar marine environments, so far largely neglected because of their limited accessibility. We will discuss their existing or proposed biotechnological applications within the framework of the more general applications of cold-adapted enzymes.
Collapse
|
22
|
Structural features of cold-adapted dimeric GH2 β-D-galactosidase from Arthrobacter sp. 32cB. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:776-786. [PMID: 31195142 DOI: 10.1016/j.bbapap.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/12/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
Crystal structures of cold-adapted β-d-galactosidase (EC 3.2.1.23) from the Antarctic bacterium Arthrobacter sp. 32cB (ArthβDG) have been determined in an unliganded form resulting from diffraction experiments conducted at 100 K (at resolution 1.8 Å) and at room temperature (at resolution 3.0 Å). A detailed comparison of those two structures of the same enzyme was performed in order to estimate differences in their molecular flexibility and rigidity and to study structural rationalization for the cold-adaptation of the investigated enzyme. Furthermore, a comparative analysis with structures of homologous enzymes from psychrophilic, mesophilic, and thermophilic sources has been discussed to elucidate the relationship between structure and cold-adaptation in a wider context. The performed studies confirm that the structure of cold-adapted ArthβDG maintains balance between molecular stability and structural flexibility, which can be observed independently on the temperature of conducted X-ray diffraction experiments. Obtained information about proper protein function under given conditions provide a guideline for rational engineering of proteins in terms of their temperature optimum and thermal stability.
Collapse
|
23
|
Petruk G, Monti DM, Ferraro G, Pica A, D'Elia L, Pane F, Amoresano A, Furrer J, Kowalski K, Merlino A. Encapsulation of the Dinuclear Trithiolato-Bridged Arene Ruthenium Complex Diruthenium-1 in an Apoferritin Nanocage: Structure and Cytotoxicity. ChemMedChem 2019; 14:594-602. [PMID: 30674089 DOI: 10.1002/cmdc.201800805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Indexed: 12/14/2022]
Abstract
The effects of encapsulating the cytotoxic dinuclear trithiolato-bridged arene ruthenium complex [(η6 -p-MeC6 H4 iPr)2 Ru2 (μ2 -S-p-C6 H4 tBu)3 ]Cl (DiRu-1) within the apoferritin (AFt) nanocage were investigated. The DiRu-1-AFt nanocarrier was characterized by UV/Vis spectroscopy, ICP-MS, CD and X-ray crystallography. In contrast to previously reported Au- and Pt-based drug-loaded AFt carriers, we found no evidence of direct interactions between DiRu-1 and AFt. DiRu-1-AFt is cytotoxic toward immortalized murine BALB/c-3T3 fibroblasts transformed with SV40 virus (SVT2) and human epidermoid carcinoma A431 malignant cells, and exhibits moderate selectivity for these cancer cells over normal BALB/c-3T3 cells. DiRu-1-AFt triggers the production of reactive oxygen species, depolarization of mitochondrial membrane potential, and induces cell death via p53-mediated apoptosis. Comparison between our data and previous results suggests that the presence of specific interactions between a metal-based drug and AFt within the protein cage is not essential for drug encapsulation.
Collapse
Affiliation(s)
- Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Andrea Pica
- EMBL, CS 90181, 71 AV des Martyrs, 38009, Grenoble (38), France
| | - Luigi D'Elia
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Poland
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| |
Collapse
|
24
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
25
|
Raskar T, Koh CY, Niebling S, Kini RM, Hosur MV. X-ray crystallographic analysis of time-dependent binding of guanidine hydrochloride to HEWL: First steps during protein unfolding. Int J Biol Macromol 2018; 122:903-913. [PMID: 30412756 DOI: 10.1016/j.ijbiomac.2018.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
Time-dependent binding of guanidine hydrochloride (GuHCl) to hen egg-white lysozyme (HEWL), and effects of this binding on the protein structure have been investigated by solving X-ray structures of crystalline complexes. The complexes have been prepared by soaking, for different periods of time, native lysozyme crystals in solutions containing 2.5M GuHCl. In the refined structures, the number of water molecules in the protein's first solvent shell has progressively decreased from 152 to 115, showing protein's preference for guanidinium over water. Guanidinium ions preferentially hydrogen bond with the backbone carbonyl oxygen atoms. In their van der Waals interactions, they do not show any preference for apolar residues. Guanidinium ions have replaced water molecules that form cages around exposed hydrophobic residues. Guanidinium binding has decreased the average length of water-water hydrogen bond by 0.1Å. The hydrogen bonds between main chain atoms have been weakened by GuHCl, and this may be the reason for increased potency of GuHCl compared to urea. Guanidinium binding destabilizes the β-domain by causing loss of hydrogen bonds involving Asn 59 side chain. Interestingly, this loss is almost identical to that observed in structures of amyloidogenic variants of human lysozyme. Compounds preventing this loss could be anti-amyloidogenic.
Collapse
Affiliation(s)
- Tushar Raskar
- Ultrafast Molecular Dynamics Group, Centre for Hybrid Nanostructures (ChyN), University of Hamburg, Germany
| | - Cho Yeow Koh
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Stephan Niebling
- Ultrafast Molecular Dynamics Group, Centre for Hybrid Nanostructures (ChyN), University of Hamburg, Germany
| | - R M Kini
- Department of Biological Sciences, National University of Singapore, Singapore
| | - M V Hosur
- National Institute of Advanced Studies, IISc campus, Bengaluru 560012, India.
| |
Collapse
|
26
|
Pischedda A, Ramasamy KP, Mangiagalli M, Chiappori F, Milanesi L, Miceli C, Pucciarelli S, Lotti M. Antarctic marine ciliates under stress: superoxide dismutases from the psychrophilic Euplotes focardii are cold-active yet heat tolerant enzymes. Sci Rep 2018; 8:14721. [PMID: 30283056 PMCID: PMC6170424 DOI: 10.1038/s41598-018-33127-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress is a particularly severe threat to Antarctic marine polar organisms because they are exposed to high dissolved oxygen and to intense UV radiation. This paper reports the features of three superoxide dismutases from the Antarctic psychrophilic ciliate Euplotes focardii that faces two environmental challenges, oxidative stress and low temperature. Two out of these are Cu,Zn superoxide dismutases (named Ef-SOD1a and Ef-SOD1b) and one belongs to the Mn-containing group (Ef-SOD2). Ef-SOD1s and Ef-SOD2 differ in their evolutionary history, expression and overall structural features. Ef-SOD1 genes are expressed at different levels, with Ef-SOD1b mRNA 20-fold higher at the ciliate optimal temperature of growth (4 °C). All Ef-SOD enzymes are active at 4 °C, consistent with the definition of cold-adapted enzymes. At the same time, they display temperatures of melting in the range 50-70 °C and retain residual activity after incubation at 65-75 °C. Supported by data of molecular dynamics simulation, we conclude that the E. focardii SODs combine cold activity, local molecular flexibility and thermo tolerance.
Collapse
Affiliation(s)
- Alessandro Pischedda
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Kesava Priyan Ramasamy
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | | | | | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 1, 62032, Camerino (MC), Italy.
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| |
Collapse
|
27
|
Ke M, Ramesh B, Hang Y, Liu Z. Engineering and characterization of a novel low temperature active and thermo stable esterase from marine Enterobacter cloacae. Int J Biol Macromol 2018; 118:304-310. [DOI: 10.1016/j.ijbiomac.2018.05.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 10/16/2022]
|
28
|
Kashif A, Tran LH, Jang SH, Lee C. Roles of Active-Site Aromatic Residues in Cold Adaptation of Sphingomonas glacialis Esterase EstSP1. ACS OMEGA 2017; 2:8760-8769. [PMID: 31457406 PMCID: PMC6645578 DOI: 10.1021/acsomega.7b01435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/23/2017] [Indexed: 06/10/2023]
Abstract
The aromatic amino acids, Tyr or Trp, which line the active-site walls of esterases, stabilize the catalytic His loop via hydrogen bonding. A Tyr residue is preferred in extremophilic esterases (psychrophilic or hyperthermophilic esterases), whereas a Trp residue is preferred in moderate-temperature esterases. Here, we provide evidence that Tyr and Trp play distinct roles in cold adaptation of the psychrophilic esterase EstSP1 isolated from an Arctic bacterium Sphingomonas glacialis PAMC 26605. Stern-Volmer plots showed that the mutation of Tyr191 to Ala, Phe, Trp, and His resulted in reduced conformational flexibility of the overall protein structure. Interestingly, the Y191W and Y191H mutants showed increased thermal stability at moderate temperatures. All Tyr191 mutants showed reduced catalytic activity relative to wild-type EstSP1. Our results indicate that Tyr with its phenyl hydroxyl group is favored for increased conformational flexibility and high catalytic activity of EstSP1 at low temperatures at the expense of thermal stability. The results of this study suggest that, in the permanently cold Arctic zone, enzyme activity has been selected for psychrophilic enzymes over thermal stability. The results presented herein provide novel insight into the roles of Tyr and Trp residues for temperature adaptation of enzymes that function at low, moderate, and high temperatures.
Collapse
Affiliation(s)
| | | | | | - ChangWoo Lee
- E-mail: . Tel: +82-53-850-6464. Fax: +82-53-850-6469
| |
Collapse
|
29
|
Guan Q, Liao X, He M, Li X, Wang Z, Ma H, Yu S, Liu S. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress. PLoS One 2017; 12:e0186052. [PMID: 29020034 PMCID: PMC5636109 DOI: 10.1371/journal.pone.0186052] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
The 636-bp-long cDNA sequence of OsCu/Zn-SOD (AK059841) was cloned from Oryza sativa var. Longjing11 via reverse transcription polymerase chain reaction (RT-PCR). The encoded protein comprised of 211 amino acids is highly homologous to Cu/Zn-SOD proteins from tuscacera rice and millet. Quantitative RT-PCR revealed that in rice, the level of OsCu/Zn-SOD gene expression was lowest in roots and was highest in petals and during the S5 leaf stage. Moreover, the expression level of OsCu/Zn-SOD gene expression decreased during the L5 leaf stage to maturity. The level of OsCu/Zn-SOD gene expression, however, was increased under saline–sodic stress and NaHCO3 stress. Germination tests under 125, 150, and 175 mM NaCl revealed that OsCu/Zn-SOD-overexpressing lines performed better than the non-transgenic (NT) Longjing11 lines in terms of germination rate and height. Subjecting seedlings to NaHCO3 and water stress revealed that OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of SOD activity, fresh weight, root length, and height. Under simulated NaHCO3 stress, OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of survival rate (25.19% > 6.67%) and yield traits (average grain weight 20.6 > 18.15 g). This study showed that OsCu/Zn-SOD gene overexpression increases the detoxification capacity of reactive oxygen species in O. sativa and reduces salt-induced oxidative damage. We also revealed the regulatory mechanism of OsCu/Zn-SOD enzyme in saline–sodic stress resistance in O. sativa. Moreover, we provided an experimental foundation for studying the mechanism of OsCu/Zn-SOD enzymes in the chloroplast.
Collapse
Affiliation(s)
- Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Xu Liao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Mingliang He
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Xiufeng Li
- Lab of Soybean Molecular Biology and Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin City, Heilongjiang, China
| | - Zhenyu Wang
- Lab of Soybean Molecular Biology and Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin City, Heilongjiang, China
| | - Haiyan Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Song Yu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
- * E-mail:
| |
Collapse
|
30
|
|
31
|
|
32
|
Lorenz C, Lünse CE, Mörl M. tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules 2017; 7:E35. [PMID: 28375166 PMCID: PMC5485724 DOI: 10.3390/biom7020035] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
Transfer RNAs (tRNAs) are central players in translation, functioning as adapter molecules between the informational level of nucleic acids and the functional level of proteins. They show a highly conserved secondary and tertiary structure and the highest density of post-transcriptional modifications among all RNAs. These modifications concentrate in two hotspots-the anticodon loop and the tRNA core region, where the D- and T-loop interact with each other, stabilizing the overall structure of the molecule. These modifications can cause large rearrangements as well as local fine-tuning in the 3D structure of a tRNA. The highly conserved tRNA shape is crucial for the interaction with a variety of proteins and other RNA molecules, but also needs a certain flexibility for a correct interplay. In this context, it was shown that tRNA modifications are important for temperature adaptation in thermophilic as well as psychrophilic organisms, as they modulate rigidity and flexibility of the transcripts, respectively. Here, we give an overview on the impact of modifications on tRNA structure and their importance in thermal adaptation.
Collapse
Affiliation(s)
- Christian Lorenz
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Christina E Lünse
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Mario Mörl
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|
33
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
34
|
Skladnev DA, Mulyukin AL, Filippova SN, Kulikov EE, Letarova MA, Yuzbasheva EA, Karnysheva EA, Brushkov AV, Gal’chenko VF. Modeling of dissemination of microbial cells and phages from the sites of permafrost thawing. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716050167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Dachuri V, Boyineni J, Choi S, Chung HS, Jang SH, Lee C. Organic solvent-tolerant, cold-adapted lipases PML and LipS exhibit increased conformational flexibility in polar organic solvents. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Activity–stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures. Extremophiles 2016; 20:621-9. [DOI: 10.1007/s00792-016-0851-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
|
37
|
Truongvan N, Jang SH, Lee C. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK. Biochemistry 2016; 55:3542-9. [DOI: 10.1021/acs.biochem.6b00177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ngoc Truongvan
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Sei-Heon Jang
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| |
Collapse
|
38
|
Abrashev R, Feller G, Kostadinova N, Krumova E, Alexieva Z, Gerginova M, Spasova B, Miteva-Staleva J, Vassilev S, Angelova M. Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363. Fungal Biol 2016; 120:679-89. [DOI: 10.1016/j.funbio.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
|
39
|
Hunter GJ, Trinh CH, Bonetta R, Stewart EE, Cabelli DE, Hunter T. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex. Protein Sci 2015; 24:1777-88. [PMID: 26257399 PMCID: PMC4622211 DOI: 10.1002/pro.2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 01/18/2023]
Abstract
C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41-54). We have determined the structure of the MnSOD-3-azide complex to 1.77-Å resolution. Analysis of this complex shows that the substrate analog, azide, binds end-on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substrate access funnel. This is the first structure of a eukaryotic MnSOD-azide complex that demonstrates the extended, uninterrupted hydrogen-bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5-6-5 catalytic mechanism for MnSOD. The high product dissociation constant k4 of MnSOD-3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.
Collapse
Affiliation(s)
- Gary J Hunter
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of LeedsLeeds, United Kingdom
| | - Rosalin Bonetta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Emma E Stewart
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of LeedsLeeds, United Kingdom
| | - Diane E Cabelli
- Chemistry Department, Brookhaven National LaboratoryUpton, New York
| | - Therese Hunter
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
40
|
Wang QF, Wang YF, Hou YH, Shi YL, Han H, Miao M, Wu YY, Liu YP, Yue XN, Li YJ. Cloning, expression and biochemical characterization of recombinant superoxide dismutase from Antarctic psychrophilic bacterium Pseudoalteromonas sp. ANT506. J Basic Microbiol 2015; 56:753-61. [PMID: 26422794 DOI: 10.1002/jobm.201500444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023]
Abstract
In this study, a superoxide dismutase gene (PsSOD) from Pseudoalteromonas sp. ANT506 was cloned and over expressed in Escherichia coli. The PsSOD has an open reading frame of 582 bp with a putative product of 193 amino acid residue and an estimated molecular size of 21.4 kDa. His-tagged PsSOD was subsequently purified 12.6-fold by Ni-affinity chromatography and the yield of 22.9%. The characterization of the purified rPsSOD exhibited maximum activity at 30 °C and pH 8.0. The enzyme exhibited 13.9% activity at 0 °C and had high-thermo lability at higher than 50 °C. rPsSOD exhibited well capability to 2.5 M NaCl (62.4%). These results indicated that rPsSOD exhibited special catalytic properties.
Collapse
Affiliation(s)
- Quan-Fu Wang
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Yi-Fan Wang
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Yan-Hua Hou
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Yong-Lei Shi
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Han Han
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Miao Miao
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Ying-Ying Wu
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Yuan-Ping Liu
- Shandong Provincial Engineering Technology Research Center of Marine Health Food, Rongcheng, P.R. China
| | - Xiao-Na Yue
- Shandong Provincial Research Institute of Marine Food Nutrition, Rongcheng, P.R. China
| | - Yu-Jin Li
- National and Local United Engineering Laboratory of Marine Functional Food Development (Shandong), Rongcheng, P.R. China
| |
Collapse
|
41
|
Ding Y, Wang X, Mou Z. Communities in the iron superoxide dismutase amino acid network. J Theor Biol 2015; 367:278-285. [PMID: 25500180 DOI: 10.1016/j.jtbi.2014.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Amino acid networks (AANs) analysis is a new way to reveal the relationship between protein structure and function. We constructed six different types of AANs based on iron superoxide dismutase (Fe-SOD) three-dimensional structure information. These Fe-SOD AANs have clear community structures when they were modularized by different methods. Especially, detected communities are related to Fe-SOD secondary structures. Regular structures show better correlations with detected communities than irregular structures, and loops weaken these correlations, which suggest that secondary structure is the unit element in Fe-SOD folding process. In addition, a comparative analysis of mesophilic and thermophilic Fe-SOD AANs' communities revealed that thermostable Fe-SOD AANs had more highly associated community structures than mesophilic one. Thermophilic Fe-SOD AANs also had more high similarity between communities and secondary structures than mesophilic Fe-SOD AANs. The communities in Fe-SOD AANs show that dense interactions in modules can help to stabilize thermophilic Fe-SOD.
Collapse
Affiliation(s)
- Yanrui Ding
- School of Digital Media, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China; Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Xueqin Wang
- School of Digital Media, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Zhaolin Mou
- School of Digital Media, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
42
|
Russo Krauss I, Merlino A, Pica A, Rullo R, Bertoni A, Capasso A, Amato M, Riccitiello F, De Vendittis E, Sica F. Fine tuning of metal-specific activity in the Mn-like group of cambialistic superoxide dismutases. RSC Adv 2015. [DOI: 10.1039/c5ra13559a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metal-dependent activity and X-ray structures of superoxide dismutase (SOD) fromStreptococcus mutansandStreptococcus thermophilussuggest that they are members of the Mn-like group of cambialistic SODs.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- 80126 Napoli
- Italy
- Istituto di Biostrutture e Bioimmagini
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- 80126 Napoli
- Italy
- Istituto di Biostrutture e Bioimmagini
| | - Andrea Pica
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- 80126 Napoli
- Italy
- Istituto di Biostrutture e Bioimmagini
| | - Rosario Rullo
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo
- CNR
- 80147 Napoli
- Italy
| | - Alessandra Bertoni
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche
- Università degli Studi di Napoli Federico II
- 80131 Napoli
- Italy
| | - Alessandra Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche
- Università degli Studi di Napoli Federico II
- 80131 Napoli
- Italy
| | - Massimo Amato
- Dipartimento di Medicina e Chirurgia
- Università di Salerno
- SA
- Italy
| | - Francesco Riccitiello
- Dipartimento di Neuroscienze
- Scienze Riproduttive e Odontostomatologiche
- Università degli Studi di Napoli Federico II
- 80131 Napoli
- Italy
| | - Emmanuele De Vendittis
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche
- Università degli Studi di Napoli Federico II
- 80131 Napoli
- Italy
| | - Filomena Sica
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- 80126 Napoli
- Italy
- Istituto di Biostrutture e Bioimmagini
| |
Collapse
|
43
|
γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2290-7. [PMID: 25218521 DOI: 10.1016/j.bbapap.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
γ-Glutamyl transpeptidases (γ-GTs, EC 2.3.2.2) are a class of ubiquitous enzymes which initiate the cleavage of extracellular glutathione (γ-Glu-Cys-Gly, GSH) into its constituent glutamate, cysteine, and glycine and catalyze the transfer of its γ-glutamyl group to water (hydrolysis), amino acids or small peptides (transpeptidation). These proteins utilize a conserved Thr residue to process their chains into a large and a small subunit that then form the catalytically competent enzyme. Multiple sequence alignments have shown that some bacterial γ-GTs, including that from Bacillus licheniformis (BlGT), possess an extra sequence at the C-terminal tail of the large subunit, whose role is unknown. Here, autoprocessing, structure, catalytic activity and stability against both temperature and the chemical denaturant guanidinium hydrochloride of six BlGT extra-sequence deletion mutants have been characterized by SDS-PAGE, circular dichroism, intrinsic fluorescence and homology modeling. Data suggest that the extra sequence has a crucial role in enzyme activation and structural stability. Our results assist in the development of a structure-based interpretation of the autoprocessing reaction of γ-GTs and are helpful to unveil the molecular bases of their structural stability.
Collapse
|
44
|
The cold-adapted γ-glutamyl-cysteine ligase from the psychrophile Pseudoalteromonas haloplanktis. Biochimie 2014; 104:50-60. [DOI: 10.1016/j.biochi.2014.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/09/2014] [Indexed: 01/22/2023]
|
45
|
Molecular bases of protein halotolerance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:850-8. [DOI: 10.1016/j.bbapap.2014.02.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 02/04/2023]
|
46
|
Merlino A, Russo Krauss I, Castellano I, Ruocco MR, Capasso A, De Vendittis E, Rossi B, Sica F. Structural and denaturation studies of two mutants of a cold adapted superoxide dismutase point to the importance of electrostatic interactions in protein stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:632-40. [DOI: 10.1016/j.bbapap.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
|
47
|
Nonaka K, Yoon KS, Ogo S. Biochemical characterization of psychrophilic Mn-superoxide dismutase from newly isolated Exiguobacterium sp. OS-77. Extremophiles 2014; 18:363-73. [PMID: 24414928 DOI: 10.1007/s00792-013-0621-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/29/2013] [Indexed: 02/01/2023]
Abstract
Many types of superoxide dismutases have been purified and characterized from various bacteria, however, a psychrophilic Mn-superoxide dismutase (MnSOD) has not yet been reported. Here, we describe the purification and the biochemical characterization of the psychrophilic MnSOD from Exiguobacterium sp. strain OS-77 (EgMnSOD). According to 16S rRNA sequence analysis, a newly isolated bacterium strain OS-77 belongs to the genus Exiguobacterium. The optimum growth temperature of the strain OS-77 is 20 °C. The EgMnSOD is a homodimer of 23.5 kDa polypeptides determined by SDS-PAGE and gel filtration analysis. UV-Vis spectrum and ICP-MS analysis clearly indicated that the homogeneously purified enzyme contains only a Mn ion as a metal cofactor. The optimal reaction pH and temperature of the enzyme were pH 9.0 and 5 °C, respectively. Notably, the purified EgMnSOD was thermostable up to 45 °C and retained 50% activity after 21.2 min at 60 °C. The differential scanning calorimetry also indicated that the EgMnSOD is thermostable, exhibiting two protein denaturation peaks at 65 and 84 °C. The statistical analysis of amino acid sequence and composition of the EgMnSOD suggests that the enzyme retains psychrophilic characteristics.
Collapse
Affiliation(s)
- Kyoshiro Nonaka
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | |
Collapse
|
48
|
Kumar V, Yedavalli P, Gupta V, Rao NM. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Protein Eng Des Sel 2014; 27:73-82. [PMID: 24402332 DOI: 10.1093/protein/gzt064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Loops or unordered regions of a protein are structurally dynamic and are strongly implicated in activity, stability and proteolytic susceptibility of proteins. Diminished activity of proteins at lower temperatures is considered to be due to compromised dynamics of the protein at lower temperatures. To evolve an active mesophilic lipase (Bacillus subtilis) at low temperatures, we subjected all the loop residues (n = 88) to site saturation mutagenesis (SSM). Based on a three-level screening protocol, we identified 14 substitutions, among 16,000 mutant population, which contributed to a substantial increase in activity at 5 °C. Based on the preliminary activity of recombinants at several temperatures, 5 substitutions among the 14 were found to be beneficial. A recombinant of these five mutations, named as 5CR, exhibited 7-fold higher catalytic efficiency than wild-type (WT) lipase at 10 °C. All the mutants, individually and in a recombinant (5CR), were characterized by substrate-binding parameters, melting temperatures and secondary structure. 5CR was similar to WT in substrate preferences and showed a significant improvement in activity at both lower and higher temperatures compared with the WT. To establish the contribution of mutations on the dynamics of the protein, we performed 100-ns molecular dynamics (MD) simulations on the WT and mutant lipase at 10 and 37 °C. The root mean square fluctuations (RMSFs) indeed showed that the mutations enhance the protein dynamics locally in the loop region having a catalytic residue, which may help in improved activities at lower temperatures.
Collapse
Affiliation(s)
- Virender Kumar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | | | | | | |
Collapse
|
49
|
Ronda L, Merlino A, Bettati S, Verde C, Balsamo A, Mazzarella L, Mozzarelli A, Vergara A. Role of tertiary structures on the Root effect in fish hemoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1885-93. [PMID: 23376186 DOI: 10.1016/j.bbapap.2013.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Many fish hemoglobins exhibit a marked dependence of oxygen affinity and cooperativity on proton concentration, called Root effect. Both tertiary and quaternary effects have been evoked to explain the allosteric regulation brought about by protons in fish hemoglobins. However, no general rules have emerged so far. We carried out a complementary crystallographic and microspectroscopic characterization of ligand binding to crystals of deoxy-hemoglobin from the Antarctic fish Trematomus bernacchii (HbTb) at pH6.2 and pH8.4. At low pH ligation has negligible structural effects, correlating with low affinity and absence of cooperativity in oxygen binding. At high pH, ligation causes significant changes at the tertiary structural level, while preserving structural markers of the T state. These changes mainly consist in a marked displacement of the position of the switch region CD corner towards an R-like position. The functional data on T-state crystals validate the relevance of the crystallographic observations, revealing that, differently from mammalian Hbs, in HbTb a significant degree of cooperativity in oxygen binding is due to tertiary conformational changes, in the absence of the T-R quaternary transition. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|