1
|
Shuvalova E, Shuvalov A, Al Sheikh W, Ivanov A, Biziaev N, Egorova T, Dmitriev S, Terenin I, Alkalaeva E. Eukaryotic initiation factors eIF4F and eIF4B promote translation termination upon closed-loop formation. Nucleic Acids Res 2025; 53:gkaf161. [PMID: 40066881 PMCID: PMC11894530 DOI: 10.1093/nar/gkaf161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/18/2024] [Indexed: 03/15/2025] Open
Abstract
Eukaryotic translation initiation factor 4F (eIF4F), comprising subunits eIF4G, eIF4E, and eIF4A, plays a pivotal role in the 48S preinitiation complex assembly and ribosomal scanning. Additionally, eIF4B enhances the helicase activity of eIF4A. eIF4F also interacts with poly (A)-binding protein (PABP) bound to the poly (A) tail of messenger RNA (mRNA), thereby forming a closed-loop structure. PABP, in turn, interacts with eukaryotic release factor 3 (eRF3), stimulating translation termination. Here, we employed a reconstituted mammalian system to directly demonstrate that eIF4F potently enhances translation termination. Specifically, eIF4A and eIF4B promote the loading of eRF1 into the A site of the ribosome, while eIF4G1 stimulates the GTPase activity of eRF3 and facilitates the dissociation of release factors following peptide release. We also identified MIF4G as the minimal domain required for this activity and showed that eIF4G2/DAP5 can also promote termination. Our findings provide compelling evidence that the closed-loop mRNA structure facilitates translation termination, with PABP and eIF4F directly involved in this process.
Collapse
Affiliation(s)
- Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Walaa Al Sheikh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana V Egorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Bauer B, Idinger J, Schuschnig M, Ferrari L, Martens S. Recruitment of autophagy initiator TAX1BP1 advances aggrephagy from cargo collection to sequestration. EMBO J 2024; 43:5910-5940. [PMID: 39448883 PMCID: PMC11611905 DOI: 10.1038/s44318-024-00280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy mediates the degradation of harmful material within lysosomes. In aggrephagy, the pathway mediating the degradation of aggregated, ubiquitinated proteins, this cargo material is collected in larger condensates prior to its sequestration by autophagosomes. In this process, the autophagic cargo receptors SQSTM1/p62 and NBR1 drive cargo condensation, while TAX1BP1, which binds to NBR1, recruits the autophagy machinery to facilitate autophagosome biogenesis at the condensates. The mechanistic basis for the TAX1BP1-mediated switch from cargo collection to its sequestration is unclear. Here we show that TAX1BP1 is not a constitutive component of the condensates. Its recruitment correlates with the induction of autophagosome biogenesis. TAX1BP1 is sufficient to recruit the TBK1 kinase via the SINTBAD adapter. We define the NBR1-TAX1BP1-binding site, which is adjacent to the GABARAP/LC3 interaction site, and demonstrate that the recruitment of TAX1BP1 to cargo mimetics can be enhanced by an increased ubiquitin load. Our study suggests that autophagosome biogenesis is initiated once sufficient cargo is collected in the condensates.
Collapse
Affiliation(s)
- Bernd Bauer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical, University of Vienna, A-1030, Vienna, Austria
| | - Jonas Idinger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
3
|
Adriaenssens E, Nguyen TN, Sawa-Makarska J, Khuu G, Schuschnig M, Shoebridge S, Skulsuppaisarn M, Watts EM, Csalyi KD, Padman BS, Lazarou M, Martens S. Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD. Nat Struct Mol Biol 2024; 31:1717-1731. [PMID: 38918639 PMCID: PMC11564117 DOI: 10.1038/s41594-024-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.
Collapse
Affiliation(s)
- Elias Adriaenssens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Thanh Ngoc Nguyen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Justyna Sawa-Makarska
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grace Khuu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Stephen Shoebridge
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily Maria Watts
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Kitti Dora Csalyi
- Max Perutz Labs BioOptics FACS Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus (VBC), Vienna, Austria
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Michael Lazarou
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Adriaenssens E, Schaar S, Cook ASI, Stuke JFM, Sawa-Makarska J, Nguyen TN, Ren X, Schuschnig M, Romanov J, Khuu G, Lazarou M, Hummer G, Hurley JH, Martens S. Reconstitution of BNIP3/NIX-mediated autophagy reveals two pathways and hierarchical flexibility of the initiation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609967. [PMID: 39253418 PMCID: PMC11383309 DOI: 10.1101/2024.08.28.609967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Collapse
|
5
|
Adolf F, Du J, Goodall EA, Walsh RM, Rawson S, von Gronau S, Harper JW, Hanna J, Schulman BA. Visualizing chaperone-mediated multistep assembly of the human 20S proteasome. Nat Struct Mol Biol 2024; 31:1176-1188. [PMID: 38600324 PMCID: PMC11327110 DOI: 10.1038/s41594-024-01268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Dedicated assembly factors orchestrate the stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here we report cryo-electron microscopy reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, as well as how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates and ultimately rearrange to coordinate proteolytic activation with gated access to active sites. This work establishes a methodologic approach for structural analysis of multiprotein complex assembly intermediates, illuminates specific functions of assembly factors and reveals conceptual principles underlying human proteasome biogenesis, thus providing an explanation for many previous biochemical and genetic observations.
Collapse
Affiliation(s)
- Frank Adolf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ellen A Goodall
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Wade Harper
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Adolf F, Du J, Goodall EA, Walsh RM, Rawson S, von Gronau S, Harper JW, Hanna J, Schulman BA. Visualizing chaperone-mediated multistep assembly of the human 20S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577538. [PMID: 38328185 PMCID: PMC10849659 DOI: 10.1101/2024.01.27.577538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Dedicated assembly factors orchestrate stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here, we report cryo-EM reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, and how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates, and ultimately rearrange to coordinate proteolytic activation with gated access to active sites. The structural findings reported here explain many previous biochemical and genetic observations. This work establishes a methodologic approach for structural analysis of multiprotein complex assembly intermediates, illuminates specific functions of assembly factors, and reveals conceptual principles underlying human proteasome biogenesis.
Collapse
Affiliation(s)
- Frank Adolf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ellen A. Goodall
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J. Wade Harper
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
7
|
Deniaud A, Kabasakal BV, Bufton JC, Schaffitzel C. Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:173-190. [PMID: 38507207 DOI: 10.1007/978-3-031-52193-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Burak V Kabasakal
- School of Biochemistry, University of Bristol, Bristol, UK
- Turkish Accelerator and Radiation Laboratory, Gölbaşı, Ankara, Türkiye
| | | | | |
Collapse
|
8
|
Verdaguer N, Ferrer-Orta C, Garriga D. X-Ray Crystallography of Viruses. Subcell Biochem 2024; 105:135-169. [PMID: 39738946 DOI: 10.1007/978-3-031-65187-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX). Landmarks of the structure determination of viral particles, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated with methodological breakthroughs in X-ray crystallography.In recent years, the advent of new detectors with fast frame rate, high sensitivity, and low-noise background has changed the way MX data is collected, enabling new types of studies at X-ray free-electron laser and synchrotron facilities. In parallel, a very high degree of automation has been established at most MX synchrotron beamlines, allowing the screening of large number of crystals with very high throughputs. This has proved crucial for fragment-based drug design projects, of special relevance for the identification of new antiviral drugs.This change in the usage of X-ray crystallography is also mirrored in the recent advances in cryo-electron microscopy (cryo-EM), which can nowadays produce macromolecule structures at resolutions comparable to those obtained by MX. Since this technique is especially amenable for large protein assemblies, cryo-EM has progressively turned into the favored technique to study the structure of large viral particles at high resolution.In this chapter, we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus-related studies.
Collapse
Affiliation(s)
- Núria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain.
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Damià Garriga
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
Nguyen TN, Sawa-Makarska J, Khuu G, Lam WK, Adriaenssens E, Fracchiolla D, Shoebridge S, Bernklau D, Padman BS, Skulsuppaisarn M, Lindblom RSJ, Martens S, Lazarou M. Unconventional initiation of PINK1/Parkin mitophagy by Optineurin. Mol Cell 2023; 83:1693-1709.e9. [PMID: 37207627 DOI: 10.1016/j.molcel.2023.04.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
Cargo sequestration is a fundamental step of selective autophagy in which cells generate a double-membrane structure termed an "autophagosome" on the surface of cargoes. NDP52, TAX1BP1, and p62 bind FIP200, which recruits the ULK1/2 complex to initiate autophagosome formation on cargoes. How OPTN initiates autophagosome formation during selective autophagy remains unknown despite its importance in neurodegeneration. Here, we uncover an unconventional path of PINK1/Parkin mitophagy initiation by OPTN that does not begin with FIP200 binding or require the ULK1/2 kinases. Using gene-edited cell lines and in vitro reconstitutions, we show that OPTN utilizes the kinase TBK1, which binds directly to the class III phosphatidylinositol 3-kinase complex I to initiate mitophagy. During NDP52 mitophagy initiation, TBK1 is functionally redundant with ULK1/2, classifying TBK1's role as a selective autophagy-initiating kinase. Overall, this work reveals that OPTN mitophagy initiation is mechanistically distinct and highlights the mechanistic plasticity of selective autophagy pathways.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Justyna Sawa-Makarska
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Grace Khuu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Wai Kit Lam
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elias Adriaenssens
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dorotea Fracchiolla
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stephen Shoebridge
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Daniel Bernklau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Runa S J Lindblom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sascha Martens
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
10
|
Chari A, Stark H. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. Annu Rev Biophys 2023; 52:391-411. [PMID: 37159297 DOI: 10.1146/annurev-biophys-111622-091300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.
Collapse
Affiliation(s)
- Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
11
|
Drillien R, Pradeau-Aubreton K, Batisse J, Mezher J, Schenckbecher E, Marguin J, Ennifar E, Ruff M. Efficient production of protein complexes in mammalian cells using a poxvirus vector. PLoS One 2022; 17:e0279038. [PMID: 36520869 PMCID: PMC9754296 DOI: 10.1371/journal.pone.0279038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The production of full length, biologically active proteins in mammalian cells is critical for a wide variety of purposes ranging from structural studies to preparation of subunit vaccines. Prior research has shown that Modified vaccinia virus Ankara encoding the bacteriophage T7 RNA polymerase (MVA-T7) is particularly suitable for high level expression of proteins upon infection of mammalian cells. The expression system is safe for users and 10-50 mg of full length, biologically active proteins may be obtained in their native state, from a few litres of infected cell cultures. Here we report further improvements which allow an increase in the ease and speed of recombinant virus isolation, the scale-up of protein production and the simultaneous synthesis of several polypeptides belonging to a protein complex using a single virus vector. Isolation of MVA-T7 viruses encoding foreign proteins was simplified by combining positive selection for virus recombinants and negative selection against parental virus, a process which eliminated the need for tedious plaque purification. Scale-up of protein production was achieved by infecting a BHK 21 suspension cell line and inducing protein expression with previously infected cells instead of virus, thus saving time and effort in handling virus stocks. Protein complexes were produced from infected cells by concatenating the Tobacco Etch Virus (TEV) N1A protease sequence with each of the genes of the complex into a single ORF, each gene being separated from the other by twin TEV protease cleavage sites. We report the application of these methods to the production of a complex formed on the one hand between the HIV-1 integrase and its cell partner LEDGF and on the other between the HIV-1 VIF protein and its cell partners APOBEC3G, CBFβ, Elo B and Elo C. The strategies developed in this study should be valuable for the overexpression and subsequent purification of numerous protein complexes.
Collapse
Affiliation(s)
- Robert Drillien
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
- * E-mail: (RD); (MR)
| | - Karine Pradeau-Aubreton
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
| | - Julien Batisse
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
| | - Joëlle Mezher
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Emma Schenckbecher
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Justine Marguin
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Eric Ennifar
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Marc Ruff
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
- * E-mail: (RD); (MR)
| |
Collapse
|
12
|
Remans K, Lebendiker M, Abreu C, Maffei M, Sellathurai S, May MM, Vaněk O, de Marco A. Protein purification strategies must consider downstream applications and individual biological characteristics. Microb Cell Fact 2022; 21:52. [PMID: 35392897 PMCID: PMC8991485 DOI: 10.1186/s12934-022-01778-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins are used as reagents in a broad range of scientific fields. The reliability and reproducibility of experimental data will largely depend on the quality of the (recombinant) proteins and, consequently, these should undergo thorough structural and functional controls. Depending on the downstream application and the biochemical characteristics of the protein, different sets of specific features will need to be checked. RESULTS A number of examples, representative of recurrent issues and previously published strategies, has been reported that illustrate real cases of recombinant protein production in which careful strategy design at the start of the project combined with quality controls throughout the production process was imperative to obtain high-quality samples compatible with the planned downstream applications. Some proteins possess intrinsic properties (e.g., prone to aggregation, rich in cysteines, or a high affinity for nucleic acids) that require certain precautions during the expression and purification process. For other proteins, the downstream application might demand specific conditions, such as for proteins intended for animal use that need to be endotoxin-free. CONCLUSIONS This review has been designed to act as a practical reference list for researchers who wish to produce and evaluate recombinant proteins with certain specific requirements or that need particular care for their preparation and storage.
Collapse
Affiliation(s)
- Kim Remans
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Mario Lebendiker
- Protein Purification Facility, The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840, Prague, Czech Republic
| | - Mariano Maffei
- Evvivax Biotech, Via di Castel Romano 100, 00128, Rome, Italy
| | | | - Marina M May
- AiCuris Anti-Infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840, Prague, Czech Republic
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000, Rožna Dolina-Nova Gorica, Slovenia.
| |
Collapse
|
13
|
Rashid I, Tsai MS, Sverzhinsky A, Hlaing AS, Shih B, Thwin AC, Lin JG, Maw SS, Pascal JM, Tomkinson AE. Purification and Characterization of Human DNA Ligase IIIα Complexes After Expression in Insect Cells. Methods Mol Biol 2022; 2444:243-269. [PMID: 35290642 PMCID: PMC9278544 DOI: 10.1007/978-1-0716-2063-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With improvements in biophysical approaches, there is growing interest in characterizing large, flexible multi-protein complexes. The use of recombinant baculoviruses to express heterologous genes in cultured insect cells has advantages for the expression of human protein complexes because of the ease of co-expressing multiple proteins in insect cells and the presence of a conserved post-translational machinery that introduces many of the same modifications found in human cells. Here we describe the preparation of recombinant baculoviruses expressing DNA ligase IIIα, XRCC1, and TDP1, their subsequent co-expression in cultured insect cells, the purification of complexes containing DNA ligase IIIα from insect cell lysates, and their characterization by multi-angle light scattering linked to size exclusion chromatography and negative stain electron microscopy.
Collapse
Affiliation(s)
- Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aye Su Hlaing
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian Shih
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aye C Thwin
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Judy G Lin
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Su S Maw
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
14
|
Gorda B, Toelzer C, Aulicino F, Berger I. The MultiBac BEVS: Basics, applications, performance and recent developments. Methods Enzymol 2021; 660:129-154. [PMID: 34742385 DOI: 10.1016/bs.mie.2021.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The baculovirus expression vector system (BEVS) delivers high yield heterologous protein expression and is widely used in academic and industrial R&D. The proteins produced enable many applications including structure/function analysis, drug screening and manufacture of protein therapeutics. Vital cellular functions are controlled by multi-protein complexes, MultiBac, a BEVS specifically designed for heterologous multigene delivery and expression, has unlocked many of these machines to atomic resolution studies. Baculovirus can accommodate very large foreign DNA cargo for faithful delivery into a target host cell, tissue or organism. Engineered MultiBac variants exploit this valuable feature for delivery of customized multifunctional DNA circuitry in mammalian cells and for production of virus-like particles for vaccines manufacture. Here, latest developments and applications of the MultiBac system are reviewed.
Collapse
Affiliation(s)
- Barbara Gorda
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, United Kingdom
| | - Christine Toelzer
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, United Kingdom
| | - Francesco Aulicino
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, United Kingdom
| | - Imre Berger
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, United Kingdom; Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom.
| |
Collapse
|
15
|
Sari‐Ak D, Bufton J, Gupta K, Garzoni F, Fitzgerald D, Schaffitzel C, Berger I. VLP-factory™ and ADDomer © : Self-assembling Virus-Like Particle (VLP) Technologies for Multiple Protein and Peptide Epitope Display. Curr Protoc 2021; 1:e55. [PMID: 33729713 PMCID: PMC9733710 DOI: 10.1002/cpz1.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Virus-like particles (VLPs) play a prominent role in vaccination as safe and highly versatile alternatives to attenuated or inactivated viruses or subunit vaccines. We present here two innovations, VLP-factory™ and ADDomer© , for creating VLPs displaying entire proteins or peptide epitopes as antigens, respectively, to enable efficient vaccination. For producing these VLPs, we use MultiBac, a baculovirus expression vector system (BEVS) that we developed for producing complex protein biologics in insect cells transfected with an engineered baculovirus. VLPs are protein assemblies that share features with viruses but are devoid of genetic material, and thus considered safe. VLP-factory™ represents a customized MultiBac baculovirus tailored to produce enveloped VLPs based on the M1 capsid protein of influenza virus. We apply VLP-factory™ to create an array of influenza-derived VLPs presenting functional mutant influenza hemagglutinin (HA) glycoprotein variants. Moreover, we describe MultiBac-based production of ADDomer© , a synthetic self-assembling adenovirus-derived protein-based VLP platform designed to display multiple copies of pathogenic epitopes at the same time on one particle for highly efficient vaccination. © 2021 The Authors. Basic Protocol 1: VLP-factory™ baculoviral genome generation Basic Protocol 2: Influenza VLP array generation using VLP-factory™ Basic Protocol 3: Influenza VLP purification Basic Protocol 4: ADDomer© BioBrick design, expression, and purification Basic Protocol 5: ADDomer© candidate vaccines against infectious diseases.
Collapse
Affiliation(s)
- Duygu Sari‐Ak
- Department of Medical Biology, School of MedicineUniversity of Health SciencesIstanbulTurkey
| | - Joshua Bufton
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Frederic Garzoni
- Imophoron Ltd, St. Philips CentralSt. PhilipsBristolUnited Kingdom
| | | | - Christiane Schaffitzel
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- School of ChemistryUniversity of BristolBristolUnited Kingdom
- Max Planck Bristol Centre for Minimal BiologyUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
16
|
Mahajan P, Strain-Damerell C, Mukhopadhyay S, Fernandez-Cid A, Gileadi O, Burgess-Brown NA. Screening and Production of Recombinant Human Proteins: Protein Production in Insect Cells. Methods Mol Biol 2021; 2199:67-94. [PMID: 33125645 DOI: 10.1007/978-1-0716-0892-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This chapter describes the step-by-step methods employed by the Structural Genomics Consortium (SGC) for screening and producing proteins in the baculovirus expression vector system (BEVS). This eukaryotic expression system was selected and a screening process established in 2007 as a measure to tackle the more challenging kinase, RNA-DNA processing, and integral membrane protein families on our target list. Here, we discuss our platform for identifying soluble proteins from 3 mL of insect cell culture and describe the procedures involved in producing protein from liter-scale cultures.
Collapse
Affiliation(s)
| | | | | | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | | |
Collapse
|
17
|
Altmannova V, Blaha A, Astrinidis S, Reichle H, Weir JR. InteBac: An integrated bacterial and baculovirus expression vector suite. Protein Sci 2020; 30:108-114. [PMID: 32955754 PMCID: PMC7737779 DOI: 10.1002/pro.3957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022]
Abstract
The successful production of recombinant protein for biochemical, biophysical, and structural biological studies critically depends on the correct expression organism. Currently, the most commonly used expression organisms for structural studies are Escherichia coli (~70% of all PDB structures) and the baculovirus/ insect cell expression system (~5% of all PDB structures). While insect cell expression is frequently successful for large eukaryotic proteins, it is relatively expensive and time-consuming compared to E. coli expression. Frequently the decision to carry out a baculovirus project means restarting cloning from scratch. Here we describe an integrated system that allows simultaneous cloning into E. coli and baculovirus expression vectors using the same PCR products. The system offers a flexible array of N- and C-terminal affinity, solubilization and utility tags, and the speed allows expression screening to be completed in E. coli, before carrying out time and cost-intensive experiments in baculovirus. Importantly, we describe a means of rapidly generating polycistronic bacterial constructs based on the hugely successful biGBac system, making InteBac of particular interest for researchers working on recombinant protein complexes.
Collapse
Affiliation(s)
- Veronika Altmannova
- Friedrich Miescher Laboratory of the Max-Planck-Society, Max-Planck-Ring 9, Tübingen, Germany
| | - Andreas Blaha
- Friedrich Miescher Laboratory of the Max-Planck-Society, Max-Planck-Ring 9, Tübingen, Germany
| | - Susanne Astrinidis
- Friedrich Miescher Laboratory of the Max-Planck-Society, Max-Planck-Ring 9, Tübingen, Germany
| | - Heidi Reichle
- Friedrich Miescher Laboratory of the Max-Planck-Society, Max-Planck-Ring 9, Tübingen, Germany
| | - John R Weir
- Friedrich Miescher Laboratory of the Max-Planck-Society, Max-Planck-Ring 9, Tübingen, Germany
| |
Collapse
|
18
|
Rzechorzek NJ, Hardwick SW, Jatikusumo VA, Chirgadze D, Pellegrini L. CryoEM structures of human CMG-ATPγS-DNA and CMG-AND-1 complexes. Nucleic Acids Res 2020; 48:6980-6995. [PMID: 32453425 PMCID: PMC7337937 DOI: 10.1093/nar/gkaa429] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
DNA unwinding in eukaryotic replication is performed by the Cdc45-MCM-GINS (CMG) helicase. Although the CMG architecture has been elucidated, its mechanism of DNA unwinding and replisome interactions remain poorly understood. Here we report the cryoEM structure at 3.3 Å of human CMG bound to fork DNA and the ATP-analogue ATPγS. Eleven nucleotides of single-stranded (ss) DNA are bound within the C-tier of MCM2-7 AAA+ ATPase domains. All MCM subunits contact DNA, from MCM2 at the 5'-end to MCM5 at the 3'-end of the DNA spiral, but only MCM6, 4, 7 and 3 make a full set of interactions. DNA binding correlates with nucleotide occupancy: five MCM subunits are bound to either ATPγS or ADP, whereas the apo MCM2-5 interface remains open. We further report the cryoEM structure of human CMG bound to the replisome hub AND-1 (CMGA). The AND-1 trimer uses one β-propeller domain of its trimerisation region to dock onto the side of the helicase assembly formed by Cdc45 and GINS. In the resulting CMGA architecture, the AND-1 trimer is closely positioned to the fork DNA while its CIP (Ctf4-interacting peptide)-binding helical domains remain available to recruit partner proteins.
Collapse
Affiliation(s)
- Neil J Rzechorzek
- Department of Biochemistry, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Steven W Hardwick
- Department of Biochemistry, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | - Luca Pellegrini
- Department of Biochemistry, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
19
|
Abstract
Circadian gene expression oscillates over a 24-h period and regulates many genes critical for growth and development in plants. A key component of the circadian clock is the Evening Complex (EC), a transcriptional repressor complex that contains the proteins LUX ARRHYTHMO, EARLY FLOWERING 3, and EARLY FLOWERING 4 (ELF4). By repressing the expression of genes such as PHYTOCHROME INTERACTING FACTOR4 (PIF4), the EC reduces elongation growth. At warmer temperatures, EC activity is lost, promoting thermomorphogenesis via PIF4 expression. The molecular mechanisms underlying EC activity are not well understood. Here, we combined structural studies with extensive in vitro assays to determine the molecular mechanisms of the temperature-dependent EC binding to DNA and demonstrate the critical role of ELF4 in this activity. The Evening Complex (EC), composed of the DNA binding protein LUX ARRHYTHMO (LUX) and two additional proteins EARLY FLOWERING 3 (ELF3) and ELF4, is a transcriptional repressor complex and a core component of the plant circadian clock. In addition to maintaining oscillations in clock gene expression, the EC also participates in temperature and light entrainment, acting as an important environmental sensor and conveying this information to growth and developmental pathways. However, the molecular basis for EC DNA binding specificity and temperature-dependent activity were not known. Here, we solved the structure of the DNA binding domain of LUX in complex with DNA. Residues critical for high-affinity binding and direct base readout were determined and tested via site-directed mutagenesis in vitro and in vivo. Using extensive in vitro DNA binding assays of LUX alone and in complex with ELF3 and ELF4, we demonstrate that, while LUX alone binds DNA with high affinity, the LUX–ELF3 complex is a relatively poor binder of DNA. ELF4 restores binding to the complex. In vitro, the full EC is able to act as a direct thermosensor, with stronger DNA binding at 4 °C and weaker binding at 27 °C. In addition, an excess of ELF4 is able to restore EC binding even at 27 °C. Taken together, these data suggest that ELF4 is a key modulator of thermosensitive EC activity.
Collapse
|
20
|
Klink BU, Gatsogiannis C, Hofnagel O, Wittinghofer A, Raunser S. Structure of the human BBSome core complex. eLife 2020; 9:53910. [PMID: 31951201 PMCID: PMC7018512 DOI: 10.7554/elife.53910] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
The BBSome is a heterooctameric protein complex that plays a central role in primary cilia homeostasis. Its malfunction causes the severe ciliopathy Bardet-Biedl syndrome (BBS). The complex acts as a cargo adapter that recognizes signaling proteins such as GPCRs and links them to the intraflagellar transport machinery. The underlying mechanism is poorly understood. Here we present a high-resolution cryo-EM structure of a human heterohexameric core subcomplex of the BBSome. The structure reveals the architecture of the complex in atomic detail. It explains how the subunits interact with each other and how disease-causing mutations hamper this interaction. The complex adopts a conformation that is open for binding to membrane-associated GTPase Arl6 and a large positively charged patch likely strengthens the interaction with the membrane. A prominent negatively charged cleft at the center of the complex is likely involved in binding of positively charged signaling sequences of cargo proteins.
Collapse
Affiliation(s)
- Björn Udo Klink
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
21
|
The MultiBac system: a perspective. Emerg Top Life Sci 2019; 3:477-482. [PMID: 33523169 DOI: 10.1042/etls20190084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Baculovirus expression is a time-tested technique to produce proteins in insect cells, in high quality and quantity for a range of applications. MultiBac is a baculovirus expression system we developed originally for producing multiprotein complexes comprising many subunits, for structural and mechanistic studies. First introduced in 2004, MultiBac is now in use in many laboratories worldwide, accelerating research programmes in academia and industry. We have continuously optimized our MultiBac system, providing customized reagents and standard operating protocols to facilitate its use also by non-specialists. More recently, we have generated MultiBac genomes tailored for specific purposes, for example, to produce humanized glycoproteins, high-value pharmaceutical targets including kinases, viral polymerases, and virus-like particles (VLPs) as promising vaccine candidates. By altering the host tropism of the baculovirion, we created MultiBacMam, a heterologous DNA delivery toolkit to target mammalian cells, tissues and organisms. Introducing CRISPR/Cas modalities, we set the stage for large-scale genomic engineering applications utilizing this high-capacity DNA delivery tool. Exploiting synthetic biology approaches and bottom-up design, we engage in optimizing the properties of our baculoviral genome, also to improve manufacturing at scale. Here we provide a perspective of our MultiBac system and its developments, past, present and future.
Collapse
|
22
|
Xu J, Kato T, Park EY. Development of SpyTag/SpyCatcher-Bacmid Expression Vector System (SpyBEVS) for Protein Bioconjugations Inside of Silkworms. Int J Mol Sci 2019; 20:ijms20174228. [PMID: 31470538 PMCID: PMC6747175 DOI: 10.3390/ijms20174228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Protein conjugations at post-translational levels are known to be essential to protein stability and function. Recently, it has been proven that the split protein CnaB2 (SpyTag/SpyCatcher, ST/SC) from Streptococcus pyogenes can induce covalent conjugation rapidly and efficiently under various conditions. The protein of interest fused with the split protein SC/ST could be assembled spontaneously. In light of this finding, we introduced the ST/SC protein coupling concept into the silkworm-bacmid protein expression system (SpyBEVS). As a proof of concept, we first examined and confirmed that a competent ligation occurred between ST/SC-fused protein partners in vitro in cultured silkworm cells and in vivo in silkworm larvae by co-infection of several recombinant baculoviruses. The protein conjugation could be also achieved sufficiently by a simple one-step mixture of purified ST/SC-tagged peptide-protein pairs in vitro. Given the flexibility and robustness of silkworm-BEVS, our results on SpyBEVS show an alternative method for enabling the production of protein decorations in vitro and inside of silkworms.
Collapse
Affiliation(s)
- Jian Xu
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Laboratory of Biotechnology, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
23
|
mSphere of Influence: Resolution of the Structure of an Influenza Virus Polymerase Is a Game Changer. mSphere 2019; 4:4/4/e00473-19. [PMID: 31434746 PMCID: PMC6706468 DOI: 10.1128/msphere.00473-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mathilde Richard works in the field of virology, more specifically on the evolution and pathogenesis of influenza viruses. In this mSphere of Influence article, she reflects on how the two articles “Structure of Influenza A Polymerase Bound to the Viral RNA Promoter” by A. Pflug, D. Guilligay, S. Reich, and S. Cusack (Nature 516:355–360, 2014, https://doi.org/10.1038/nature14008) and “Structural Insight into Cap-Snatching and RNA Synthesis by Influenza Polymerase” by S. Reich, D. Guilligay, A. Pflug, H. Malet, I. Berger, et al. (Nature 516:361–366, 2014, https://doi.org/10.1038/nature14009) made an impact on her by providing new grounds to study the influenza virus polymerase and its role in virus biology and evolution. Mathilde Richard works in the field of virology, more specifically on the evolution and pathogenesis of influenza viruses. In this mSphere of Influence article, she reflects on how the two articles “Structure of Influenza A Polymerase Bound to the Viral RNA Promoter” by A. Pflug, D. Guilligay, S. Reich, and S. Cusack (Nature 516:355–360, 2014, https://doi.org/10.1038/nature14008) and “Structural Insight into Cap-Snatching and RNA Synthesis by Influenza Polymerase” by S. Reich, D. Guilligay, A. Pflug, H. Malet, I. Berger, et al. (Nature 516:361–366, 2014, https://doi.org/10.1038/nature14009) made an impact on her by providing new grounds to study the influenza virus polymerase and its role in virus biology and evolution.
Collapse
|
24
|
Fischböck-Halwachs J, Singh S, Potocnjak M, Hagemann G, Solis-Mezarino V, Woike S, Ghodgaonkar-Steger M, Weissmann F, Gallego LD, Rojas J, Andreani J, Köhler A, Herzog F. The COMA complex interacts with Cse4 and positions Sli15/Ipl1 at the budding yeast inner kinetochore. eLife 2019; 8:42879. [PMID: 31112132 PMCID: PMC6546395 DOI: 10.7554/elife.42879] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.
Collapse
Affiliation(s)
- Josef Fischböck-Halwachs
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sylvia Singh
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mia Potocnjak
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Götz Hagemann
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Victor Solis-Mezarino
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Woike
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Medini Ghodgaonkar-Steger
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Laura D Gallego
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alwin Köhler
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Franz Herzog
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
25
|
Gupta K, Tölzer C, Sari-Ak D, Fitzgerald DJ, Schaffitzel C, Berger I. MultiBac: Baculovirus-Mediated Multigene DNA Cargo Delivery in Insect and Mammalian Cells. Viruses 2019; 11:E198. [PMID: 30813511 PMCID: PMC6466381 DOI: 10.3390/v11030198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
The baculovirus/insect cell system (BICS) is widely used in academia and industry to produce eukaryotic proteins for many applications, ranging from structure analysis to drug screening and the provision of protein biologics and therapeutics. Multi-protein complexes have emerged as vital catalysts of cellular function. In order to unlock the structure and mechanism of these essential molecular machines and decipher their function, we developed MultiBac, a BICS particularly tailored for heterologous multigene transfer and multi-protein complex production. Baculovirus is unique among common viral vectors in its capacity to accommodate very large quantities of heterologous DNA and to faithfully deliver this cargo to a host cell of choice. We exploited this beneficial feature to outfit insect cells with synthetic DNA circuitry conferring new functionality during heterologous protein expression, and developing customized MultiBac baculovirus variants in the process. By altering its tropism, recombinant baculovirions can be used for the highly efficient delivery of a customized DNA cargo in mammalian cells and tissues. Current advances in synthetic biology greatly facilitate the construction or recombinant baculoviral genomes for gene editing and genome engineering, mediated by a MultiBac baculovirus tailored to this purpose. Here, recent developments and exploits of the MultiBac system are presented and discussed.
Collapse
Affiliation(s)
- Kapil Gupta
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Christine Tölzer
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Duygu Sari-Ak
- European Molecular Biology Laboratory EMBL, 71 Avenue des Martyrs, 38000 Grenoble, France.
| | | | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| |
Collapse
|
26
|
SmartBac, a new baculovirus system for large protein complex production. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100003. [PMID: 32337507 PMCID: PMC7173262 DOI: 10.1016/j.yjsbx.2019.100003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/28/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022]
Abstract
Recent revolution of cryo-electron microscopy has opened a new door to solve high-resolution structures of macromolecule complexes without crystallization while how to efficiently obtain homogenous macromolecule complex sample is therefore becoming a bottleneck. Here we report SmartBac, an easy and versatile system for constructing large-sized transfer plasmids used to generate recombinant baculoviruses that express large multiprotein complexes in insect cells. The SmartBac system integrates the univector plasmid-fusion system, Gibson assembly method and polyprotein strategy to construct the final transfer plasmid. The fluorescent proteins are designed co-expressed with the target to monitor transfection and expression efficiencies. A scheme of screening an optimal tagged subunit for efficient purification is provided. Six large multiprotein complexes including the human exocyst complex and dynactin complex were successfully expressed and purified, suggesting a great potential of SmartBac system for its wide application in the future.
Collapse
|
27
|
Sari-Ak D, Bahrami S, Laska MJ, Drncova P, Fitzgerald DJ, Schaffitzel C, Garzoni F, Berger I. High-Throughput Production of Influenza Virus-Like Particle (VLP) Array by Using VLP-factory ™, a MultiBac Baculoviral Genome Customized for Enveloped VLP Expression. Methods Mol Biol 2019; 2025:213-226. [PMID: 31267455 DOI: 10.1007/978-1-4939-9624-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Baculovirus-based expression of proteins in insect cell cultures has emerged as a powerful technology to produce complex protein biologics for many applications ranging from multiprotein complex structural biology to manufacturing of therapeutic proteins including virus-like particles (VLPs). VLPs are protein assemblies that mimic live viruses but typically do not contain any genetic material, and therefore are safe and attractive alternatives to life attenuated or inactivated viruses for vaccination purposes. MultiBac is an advanced baculovirus expression vector system (BEVS) which consists of an engineered viral genome that can be customized for tailored applications. Here we describe the creation of a MultiBac-based VLP-factory™, based on the M1 capsid protein from influenza, and its application to produce in a parallelized fashion an array of influenza-derived VLPs containing functional mutations in influenza hemagglutinin (HA) thought to modulate the immune response elicited by the VLP.
Collapse
Affiliation(s)
- Duygu Sari-Ak
- The European Molecular Biology Laboratory (EMBL), Grenoble Cedex 9, France
| | | | - Magdalena J Laska
- Department of Biomedicine, Bartholins Allé 6, University of Aarhus, Aarhus C, Denmark
| | - Petra Drncova
- The European Molecular Biology Laboratory (EMBL), Grenoble Cedex 9, France
| | | | - Christiane Schaffitzel
- School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University Walk, University of Bristol, Clifton, UK
| | | | - Imre Berger
- School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University Walk, University of Bristol, Clifton, UK.
| |
Collapse
|
28
|
Golas MM, Jayaprakash S, Le LTM, Zhao Z, Heras Huertas V, Jensen IS, Yuan J, Sander B. Modulating the Expression Strength of the Baculovirus/Insect Cell Expression System: A Toolbox Applied to the Human Tumor Suppressor SMARCB1/SNF5. Mol Biotechnol 2018; 60:820-832. [DOI: 10.1007/s12033-018-0107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Khan I, Krishnaswamy S, Sabale M, Groth D, Wijaya L, Morici M, Berger I, Schaffitzel C, Fraser PE, Martins RN, Verdile G. Efficient production of a mature and functional gamma secretase protease. Sci Rep 2018; 8:12834. [PMID: 30150752 PMCID: PMC6110731 DOI: 10.1038/s41598-018-30788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Baculoviral protein expression in insect cells has been previously used to generate large quantities of a protein of interest for subsequent use in biochemical and structural analyses. The MultiBac baculovirus protein expression system has enabled, the use of a single baculovirus to reconstitute a protein complex of interest, resulting in a larger protein yield. Using this system, we aimed to reconstruct the gamma (γ)-secretase complex, a multiprotein enzyme complex essential for the production of amyloid-β (Aβ) protein. A MultiBac vector containing all components of the γ-secretase complex was generated and expression was observed for all components. The complex was active in processing APP and Notch derived γ-secretase substrates and proteolysis could be inhibited with γ-secretase inhibitors, confirming specificity of the recombinant γ-secretase enzyme. Finally, affinity purification was used to purify an active recombinant γ-secretase complex. In this study we demonstrated that the MultiBac protein expression system can be used to generate an active γ-secretase complex and provides a new tool to study γ-secretase enzyme and its variants.
Collapse
Affiliation(s)
- Imran Khan
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia. .,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Sudarsan Krishnaswamy
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Miheer Sabale
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Linda Wijaya
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychology and Exercise Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Morici
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Imre Berger
- European Molecular Biology Laboratories, Grenoble, France.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Christiane Schaffitzel
- European Molecular Biology Laboratories, Grenoble, France.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia. .,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| |
Collapse
|
30
|
Petela NJ, Gligoris TG, Metson J, Lee BG, Voulgaris M, Hu B, Kikuchi S, Chapard C, Chen W, Rajendra E, Srinivisan M, Yu H, Löwe J, Nasmyth KA. Scc2 Is a Potent Activator of Cohesin's ATPase that Promotes Loading by Binding Scc1 without Pds5. Mol Cell 2018; 70:1134-1148.e7. [PMID: 29932904 PMCID: PMC6028919 DOI: 10.1016/j.molcel.2018.05.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/10/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023]
Abstract
Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin's ATPase activity and loading. Moreover, Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin's initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2's association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states: one with Pds5 bound that is unable to hydrolyze ATP efficiently but is capable of release from chromosomes and another in which Scc2 replaces Pds5 and stimulates ATP hydrolysis necessary for loading and translocation from loading sites.
Collapse
Affiliation(s)
- Naomi J Petela
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Thomas G Gligoris
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jean Metson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Byung-Gil Lee
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Bin Hu
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Sotaro Kikuchi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Wentao Chen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Eeson Rajendra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
31
|
Svensson O, Gilski M, Nurizzo D, Bowler MW. Multi-position data collection and dynamic beam sizing: recent improvements to the automatic data-collection algorithms on MASSIF-1. Acta Crystallogr D Struct Biol 2018; 74:433-440. [PMID: 29717714 PMCID: PMC5930350 DOI: 10.1107/s2059798318003728] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/03/2018] [Indexed: 12/11/2022] Open
Abstract
Macromolecular crystallography is now a mature and widely used technique that is essential in the understanding of biology and medicine. Increases in computing power combined with robotics have not only enabled large numbers of samples to be screened and characterized but have also enabled better decisions to be taken on data collection itself. This led to the development of MASSIF-1 at the ESRF, the first beamline in the world to run fully automatically while making intelligent decisions taking user requirements into account. Since opening in late 2014, the beamline has processed over 42 000 samples. Improvements have been made to the speed of the sample-handling robotics and error management within the software routines. The workflows initially put into place, while highly innovative at the time, have been expanded to include increased complexity and additional intelligence using the information gathered during characterization; this includes adapting the beam diameter dynamically to match the diffraction volume within the crystal. Complex multi-position and multi-crystal data collections have now also been integrated into the selection of experiments available. This has led to increased data quality and throughput, allowing even the most challenging samples to be treated automatically.
Collapse
Affiliation(s)
- Olof Svensson
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Maciej Gilski
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Didier Nurizzo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Matthew W. Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| |
Collapse
|
32
|
MultiBacMam Bimolecular Fluorescence Complementation (BiFC) tool-kit identifies new small-molecule inhibitors of the CDK5-p25 protein-protein interaction (PPI). Sci Rep 2018; 8:5083. [PMID: 29572554 PMCID: PMC5865166 DOI: 10.1038/s41598-018-23516-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 11/10/2022] Open
Abstract
Protein-protein interactions (PPIs) are at the core of virtually all biological processes in cells. Consequently, targeting PPIs is emerging at the forefront of drug discovery. Cellular assays which closely recapitulate native conditions in vivo are instrumental to understand how small molecule drugs can modulate such interactions. We have integrated MultiBacMam, a baculovirus-based mammalian gene delivery tool we developed, with bimolecular fluorescence complementation (BiFC), giving rise to a highly efficient system for assay development, identification and characterization of PPI modulators. We used our system to analyze compounds impacting on CDK5-p25 PPI, which is implicated in numerous diseases including Alzheimer’s. We evaluated our tool-kit with the known inhibitor p5T, and we established a mini-screen to identify compounds that modulate this PPI in dose-response experiments. Finally, we discovered several compounds disrupting CDK5-p25 PPI, which had not been identified by other screening or structure-based methods before.
Collapse
|
33
|
Kuttappan S, Anitha A, Minsha MG, Menon PM, Sivanarayanan TB, Vijayachandran LS, Nair MB. BMP2 expressing genetically engineered mesenchymal stem cells on composite fibrous scaffolds for enhanced bone regeneration in segmental defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:239-248. [PMID: 29407153 DOI: 10.1016/j.msec.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/23/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
The treatment of critical sized bone defect remains a significant challenge in orthopedics. The objective of the study is to evaluate the effect of the combination of bone morphogenetic protein 2 (BMP2) expressing genetically engineered mesenchymal stem cells (MSCs) [MSCs engineered using a multimam vector, pAceMam1, an emerging gene delivery vector] and an osteoconductive scaffold [silica coated nanohydroxyapatite-gelatin reinforced with fibers] in enhancing bone regeneration in critical sized segmental defects. The scaffold with transfected MSCs showed significantly higher viability, proliferation and osteogenic differentiation in vitro. Further, this group augmented union and new bone formation in critical sized rat femoral segmental defect at 12 weeks when compared to control groups (scaffold with MSCs and scaffold alone). These data demonstrated that the MSCs engineered for transient expression of BMP2 can improve the repair of segmental defects, which paves an avenue for using pAceMam1 as a vector for bone tissue regeneration.
Collapse
Affiliation(s)
- Shruthy Kuttappan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - A Anitha
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M G Minsha
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Parvathy M Menon
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T B Sivanarayanan
- Central Animal Lab Facility, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Lakshmi Sumitra Vijayachandran
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| | - Manitha B Nair
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| |
Collapse
|
34
|
Abstract
The reconstitution of recombinant protein complexes is facilitated by methods that allow coexpression of their subunits from a single vector. Here we describe a detailed step-by-step protocol for the biGBac cloning method which can be used to generate baculoviral transfer vectors coding for up to 25 subunits of a protein complex (Weissmann et al., Proc Natl Acad Sci U S A 113(19):E2564-E2569, 2016). biGBac is based on Gibson assembly reactions, optimized DNA linker sequences, and uses a hierarchical two-step assembly procedure. In the first assembly step, up to five expression cassettes are combined to generate a polygene cassette. In the second step, up to five polygene cassettes can then be combined to generate transfer vectors coding for up to 25 subunits.
Collapse
Affiliation(s)
- Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
35
|
Klink BU, Zent E, Juneja P, Kuhlee A, Raunser S, Wittinghofer A. A recombinant BBSome core complex and how it interacts with ciliary cargo. eLife 2017; 6. [PMID: 29168691 PMCID: PMC5700813 DOI: 10.7554/elife.27434] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023] Open
Abstract
Cilia are small, antenna-like structures on the surface of eukaryotic cells that harbor a unique set of sensory proteins, including GPCRs and other membrane proteins. The transport of these proteins involves the BBSome, an eight-membered protein complex that is recruited to ciliary membranes by the G-protein Arl6. BBSome malfunction leads to Bardet-Biedl syndrome, a ciliopathy with severe consequences. Short ciliary targeting sequences (CTS) have been identified that trigger the transport of ciliary proteins. However, mechanistic studies that relate ciliary targeting to BBSome binding are missing. Here we used heterologously expressed BBSome subcomplexes to analyze the complex architecture and to investigate the binding of GPCRs and other receptors to the BBSome. A stable heterohexameric complex was identified that binds to GPCRs with interactions that only partially overlap with previously described CTS, indicating a more complex recognition than anticipated. Arl6•GTP does not affect these interactions, suggesting no direct involvement in cargo loading/unloading.
Collapse
Affiliation(s)
- Björn Udo Klink
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Eldar Zent
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Puneet Juneja
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Anne Kuhlee
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
36
|
Pelosse M, Crocker H, Gorda B, Lemaire P, Rauch J, Berger I. MultiBac: from protein complex structures to synthetic viral nanosystems. BMC Biol 2017; 15:99. [PMID: 29084535 PMCID: PMC5661938 DOI: 10.1186/s12915-017-0447-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The MultiBac baculovirus/insect cell expression vector system was conceived as a user-friendly, modular tool-kit for producing multiprotein complexes for structural biology applications. MultiBac has allowed the structure and function of many molecular machines to be elucidated, including previously inaccessible high-value drug targets. More recently, MultiBac developments have shifted to customized baculoviral genomes that are tailored for a range of applications, including synthesizing artificial proteins by genetic code expansion. We review some of these developments, including the ongoing rewiring of the MultiBac system for mammalian applications, notably CRISPR/Cas9-mediated gene editing.
Collapse
Affiliation(s)
- Martin Pelosse
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, BS8 1TD, UK
| | - Hannah Crocker
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, BS8 1TD, UK
| | - Barbara Gorda
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, BS8 1TD, UK
| | - Paul Lemaire
- Geneva Biotech SARL, Avenue de la Roseraie 64, 1205, Genève, Switzerland
| | - Jens Rauch
- Systems Biology Ireland, University College Dublin, Belfield Dublin 4, Republic of Ireland
| | - Imre Berger
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, BS8 1TD, UK.
| |
Collapse
|
37
|
de Araujo MEG, Naschberger A, Fürnrohr BG, Stasyk T, Dunzendorfer-Matt T, Lechner S, Welti S, Kremser L, Shivalingaiah G, Offterdinger M, Lindner HH, Huber LA, Scheffzek K. Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science 2017; 358:377-381. [PMID: 28935770 DOI: 10.1126/science.aao1583] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
Abstract
The LAMTOR [late endosomal and lysosomal adaptor and MAPK (mitogen-activated protein kinase) and mTOR (mechanistic target of rapamycin) activator] complex, also known as "Ragulator," controls the activity of mTOR complex 1 (mTORC1) on the lysosome. The crystal structure of LAMTOR consists of two roadblock/LC7 domain-folded heterodimers wrapped and apparently held together by LAMTOR1, which assembles the complex on lysosomes. In addition, the Rag guanosine triphosphatases (GTPases) associated with the pentamer through their carboxyl-terminal domains, predefining the orientation for interaction with mTORC1. In vitro reconstitution and experiments with site-directed mutagenesis defined the physiological importance of LAMTOR1 in assembling the remaining components to ensure fidelity of mTORC1 signaling. Functional data validated the effect of two short LAMTOR1 amino acid regions in recruitment and stabilization of the Rag GTPases.
Collapse
Affiliation(s)
- Mariana E G de Araujo
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Naschberger
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Barbara G Fürnrohr
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Taras Stasyk
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Stefan Lechner
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Welti
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry-Biooptics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert H Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria. .,Austrian Drug Screening Institute, 6020 Innsbruck, Austria
| | - Klaus Scheffzek
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
38
|
Steele KH, Stone BJ, Franklin KM, Fath-Goodin A, Zhang X, Jiang H, Webb BA, Geisler C. Improving the baculovirus expression vector system with vankyrin-enhanced technology. Biotechnol Prog 2017. [PMID: 28649776 PMCID: PMC5786172 DOI: 10.1002/btpr.2516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017
Collapse
Affiliation(s)
| | | | | | | | - Xiufeng Zhang
- Dept. of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma
| | - Haobo Jiang
- Dept. of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma
| | - Bruce A Webb
- ParaTechs Corporation, Lexington Kentucky, Department of Entomology, University of Kentucky, Lexington, KT
| | | |
Collapse
|
39
|
MacroBac: New Technologies for Robust and Efficient Large-Scale Production of Recombinant Multiprotein Complexes. Methods Enzymol 2017; 592:1-26. [PMID: 28668116 DOI: 10.1016/bs.mie.2017.03.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recombinant expression of large, multiprotein complexes is essential and often rate limiting for determining structural, biophysical, and biochemical properties of DNA repair, replication, transcription, and other key cellular processes. Baculovirus-infected insect cell expression systems are especially well suited for producing large, human proteins recombinantly, and multigene baculovirus systems have facilitated studies of multiprotein complexes. In this chapter, we describe a multigene baculovirus system called MacroBac that uses a Biobricks-type assembly method based on restriction and ligation (Series 11) or ligation-independent cloning (Series 438). MacroBac cloning and assembly is efficient and equally well suited for either single subcloning reactions or high-throughput cloning using 96-well plates and liquid handling robotics. MacroBac vectors are polypromoter with each gene flanked by a strong polyhedrin promoter and an SV40 poly(A) termination signal that minimize gene order expression level effects seen in many polycistronic assemblies. Large assemblies are robustly achievable, and we have successfully assembled as many as 10 genes into a single MacroBac vector. Importantly, we have observed significant increases in expression levels and quality of large, multiprotein complexes using a single, multigene, polypromoter virus rather than coinfection with multiple, single-gene viruses. Given the importance of characterizing functional complexes, we believe that MacroBac provides a critical enabling technology that may change the way that structural, biophysical, and biochemical research is done.
Collapse
|
40
|
Adachi N, Aizawa K, Kratzer Y, Saijo S, Shimizu N, Senda T. Improved method for soluble expression and rapid purification of yeast TFIIA. Protein Expr Purif 2017; 133:50-56. [PMID: 28259734 DOI: 10.1016/j.pep.2017.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/28/2017] [Indexed: 12/31/2022]
Abstract
In vitro transcription systems have been utilized to elucidate detailed mechanisms of transcription. Purified RNA polymerase II (pol II) and general transcription factors (GTFs) are required for the in vitro reconstitution of eukaryotic transcription systems. Among GTFs, TFIID and TFIIA play critical roles in the early stage of transcription initiation; TFIID first binds to the DNA in transcription initiation and TFIIA regulates TFIID's DNA binding activity. Despite the important roles of TFIIA, the time-consuming steps required to purify it, such as denaturing and refolding, have hampered the preparation of in vitro transcription systems. Here, we report an improved method for soluble expression and rapid purification of yeast TFIIA. The subunits of TFIIA, TOA1 and TOA2, were bacterially expressed as fusion proteins in soluble form, then processed by the PreScission protease and co-purified. TFIIA's heterodimer formation was confirmed by size exclusion chromatography-multiangle light scattering (SEC-MALS). The hydrodynamic radius (Rh) and radius of gyration (Rg) were measured by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), respectively. The Rg/Rh value implied that the intrinsically disordered region of TOA1 might not have an extended structure in solution. Our improved method provides highly purified TFIIA of sufficient quality for biochemical, biophysical, and structural analyses of eukaryotic transcription systems.
Collapse
Affiliation(s)
- Naruhiko Adachi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
| | - Kyohei Aizawa
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
| | - Yuka Kratzer
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
| | - Shinya Saijo
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
| | - Nobutaka Shimizu
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.
| |
Collapse
|
41
|
Berger I, Jiang Q, Schulze RJ, Collinson I, Schaffitzel C. Multiprotein Complex Production in E. coli: The SecYEG-SecDFYajC-YidC Holotranslocon. Methods Mol Biol 2017; 1586:279-290. [PMID: 28470612 DOI: 10.1007/978-1-4939-6887-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A modular approach for balanced overexpression of recombinant multiprotein complexes in E. coli is described, with the prokaryotic protein secretase/insertase complex, the SecYEG-SecDFYajC-YidC holotranslocon (HTL), used as an example. This procedure has been implemented here in the ACEMBL system. The protocol details the design principles of the monocistronic or polycistronic DNA constructs, the expression and purification of functional HTL and its association with translating ribosome nascent chain (RNC) complexes into a RNC-HTL supercomplex.
Collapse
Affiliation(s)
- Imre Berger
- The School of Biochemistry, University Walk, University of Bristol, Clifton, BS8 1TD, UK.
- The European Molecular Biology Laboratory (EMBL), and Unit of Virus Host Cell Interactions (UVHCI), BP 181, Polygone Scientifique, 6 Rue Jules Horowitz, 38042, Grenoble Cedex 9, France.
| | - Quiyang Jiang
- The European Molecular Biology Laboratory (EMBL), and Unit of Virus Host Cell Interactions (UVHCI), BP 181, Polygone Scientifique, 6 Rue Jules Horowitz, 38042, Grenoble Cedex 9, France
| | - Ryan J Schulze
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ian Collinson
- The School of Biochemistry, University Walk, University of Bristol, Clifton, BS8 1TD, UK
| | - Christiane Schaffitzel
- The School of Biochemistry, University Walk, University of Bristol, Clifton, BS8 1TD, UK
- The European Molecular Biology Laboratory (EMBL), and Unit of Virus Host Cell Interactions (UVHCI), BP 181, Polygone Scientifique, 6 Rue Jules Horowitz, 38042, Grenoble Cedex 9, France
| |
Collapse
|
42
|
Abstract
Since its inception more than 30 years ago, the baculovirus expression vector system (BEVS) has been used prolifically to produce heterologous proteins for research and development. In the cell, a cornerstone of biological activity are multiprotein complexes, catalyzing essential functions. BEVS has been uniquely successful to unlock such complex assemblies for high-resolution structural and functional analysis. Synthetic biology approaches have been implemented to optimize multigene assembly methods, accelerating upstream processes. Specialized baculoviral genomes are being created with functions tailored to enhance production of particular target protein classes. Here we comment on current and emerging developments in the field and their potential to accelerate protein complex research.
Collapse
Affiliation(s)
- Imre Berger
- a The European Molecular Biology Laboratory (EMBL); Grenoble Outstation and Unit of Virus Host-Cell Interactions (UVHCI); Université Grenoble Alpes-EMBL-CNRS ; UMR 5233; Grenoble , France.,b The School of Biochemistry; University of Bristol ; Clifton , United Kingdom
| | - Arnaud Poterszman
- c Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Center for Integrative Biology (CBI) ; Department of Integrated Structural Biology ; Illkirch ; France.,d Center National de la Recherche Scientifique (CNRS) UMR 7104 ; Illkirch , France.,e Institut National de la Santé et de la Recherche Médicale (INSERM) U964 ; Illkirch , France.,f Université de Strasbourg ; Strasbourg , France
| |
Collapse
|
43
|
Mansouri M, Bellon-Echeverria I, Rizk A, Ehsaei Z, Cianciolo Cosentino C, Silva CS, Xie Y, Boyce FM, Davis MW, Neuhauss SCF, Taylor V, Ballmer-Hofer K, Berger I, Berger P. Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat Commun 2016; 7:11529. [PMID: 27143231 PMCID: PMC4857464 DOI: 10.1038/ncomms11529] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022] Open
Abstract
Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. Current viral gene delivery systems are limited in the amount of foreign DNA they can deliver to cells. Here the authors develop MultiPrime, a baculovirus-based vector system capable of multigene delivery into a wide variety of cells, and use Multiprime for genome engineering by CRISPR/Cas9.
Collapse
Affiliation(s)
- Maysam Mansouri
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Itxaso Bellon-Echeverria
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | - Aurélien Rizk
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Zahra Ehsaei
- Department of Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | | | - Catarina S Silva
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | - Ye Xie
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Frederick M Boyce
- Department of Neurology, Massachusetts General Hospital, Cambridge, Massachusetts 02139, USA
| | - M Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | - Kurt Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France.,School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Philipp Berger
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| |
Collapse
|
44
|
biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc Natl Acad Sci U S A 2016; 113:E2564-9. [PMID: 27114506 DOI: 10.1073/pnas.1604935113] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Analyses of protein complexes are facilitated by methods that enable the generation of recombinant complexes via coexpression of their subunits from multigene DNA constructs. However, low experimental throughput limits the generation of such constructs in parallel. Here we describe a method that allows up to 25 cDNAs to be assembled into a single baculoviral expression vector in only two steps. This method, called biGBac, uses computationally optimized DNA linker sequences that enable the efficient assembly of linear DNA fragments, using reactions developed by Gibson for the generation of synthetic genomes. The biGBac method uses a flexible and modular "mix and match" approach and enables the generation of baculoviruses from DNA constructs at any assembly stage. Importantly, it is simple, efficient, and fast enough to allow the manual generation of many multigene expression constructs in parallel. We have used this method to generate and characterize recombinant forms of the anaphase-promoting complex/cyclosome, cohesin, and kinetochore complexes.
Collapse
|
45
|
Bowler MW, Svensson O, Nurizzo D. Fully automatic macromolecular crystallography: the impact of MASSIF-1 on the optimum acquisition and quality of data. CRYSTALLOGR REV 2016. [DOI: 10.1080/0889311x.2016.1155050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Zhang Z, Yang J, Barford D. Recombinant expression and reconstitution of multiprotein complexes by the USER cloning method in the insect cell-baculovirus expression system. Methods 2016; 95:13-25. [PMID: 26454197 DOI: 10.1016/j.ymeth.2015.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023] Open
Abstract
The capacity to reconstitute complex biological processes in vitro is a crucial step in providing a quantitative understanding of these systems. It provides material for structural, biochemical and biophysical analyses and allows the testing of biological hypotheses and the introduction of chemical probes and tags for single molecule analysis. Reconstitution of these systems requires access to homogenous components, usually through their over-production in heterologous over-expression systems. Here we describe the application of the USER (Uracil-Specific Excision Reagent) ligation-free cloning method to assemble recombinant MultiBac transfer vectors for the generation of recombinant baculovirus suitable for the expression of multi-protein complexes in insect cells.
Collapse
Affiliation(s)
- Ziguo Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
47
|
Baser B, Spehr J, Büssow K, van den Heuvel J. A method for specifically targeting two independent genomic integration sites for co-expression of genes in CHO cells. Methods 2016; 95:3-12. [DOI: 10.1016/j.ymeth.2015.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022] Open
|
48
|
Baser B, van den Heuvel J. Assembling Multi-subunit Complexes Using Mammalian Expression. ADVANCED TECHNOLOGIES FOR PROTEIN COMPLEX PRODUCTION AND CHARACTERIZATION 2016; 896:225-38. [DOI: 10.1007/978-3-319-27216-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Vincentelli R, Romier C. Complex Reconstitution and Characterization by Combining Co-expression Techniques in Escherichia coli with High-Throughput. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:43-58. [PMID: 27165318 DOI: 10.1007/978-3-319-27216-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Single protein expression technologies have strongly benefited from the Structural Genomics initiatives that have introduced parallelization at the laboratory level. Specifically, the developments made in the wake of these initiatives have revitalized the use of Escherichia coli as major host for heterologous protein expression. In parallel to these improvements for single expression, technologies for complex reconstitution by co-expression in E. coli have been developed. Assessments of these co-expression technologies have highlighted the need for combinatorial experiments requiring automated protocols. These requirements can be fulfilled by adapting the high-throughput approaches that have been developed for single expression to the co-expression technologies. Yet, challenges are laying ahead that further need to be addressed and that are only starting to be taken into account in the case of single expression. These notably include the biophysical characterization of the samples at the small-scale level. Specifically, these approaches aim at discriminating the samples at an early stage of their production based on various biophysical criteria leading to cost-effectiveness and time-saving. This chapter addresses these various issues to provide the reader with a broad and comprehensive overview of complex reconstitution and characterization by co-expression in E. coli.
Collapse
Affiliation(s)
- Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (A.F.M.B), UMR7257 CNRS, Université Aix-Marseille, Case 932, 163 Avenue de Luminy, 13288, Marseille cedex 9, France.
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Centre de Biologie Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404, Illkirch Cedex, France.
| |
Collapse
|
50
|
ACEMBL Tool-Kits for High-Throughput Multigene Delivery and Expression in Prokaryotic and Eukaryotic Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:27-42. [DOI: 10.1007/978-3-319-27216-0_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|