1
|
Yan H, Zhu X, Liu Z, Jin S, Liu J, Han Z, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Zhao Y, Waheed J, Zhao H. Co-removal and recycling of Ba 2+ and Ca 2+ in hypersaline wastewater based on the microbially induced carbonate precipitation technique: Overlooked Ba 2+ in extracellular and intracellular vaterite. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134923. [PMID: 38889469 DOI: 10.1016/j.jhazmat.2024.134923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
This study investigates the co-precipitation of calcium and barium ions in hypersaline wastewater under the action of Bacillus licheniformis using microbially induced carbonate precipitation (MICP) technology, as well as the bactericidal properties of the biomineralized product vaterite. The changes in carbonic anhydrase activity, pH, carbonate and bicarbonate concentrations in different biomineralization systems were negatively correlated with variations in metal ion concentrations, while the changes in polysaccharides and protein contents in bacterial extracellular polymers were positively correlated with variations in barium concentrations. In the mixed calcium and barium systems, the harvested minerals were vaterite containing barium. The increasing concentrations of calcium promoted the incorporation and adsorption of barium onto vaterite. The presence of barium significantly increased the contents of O-CO, N-CO, and Ba-O in vaterite. Calcium promoted barium precipitation, but barium inhibited calcium precipitation. After being treated by immobilized bacteria, the concentrations of calcium and barium ions decreased from 400 and 274 to 1.72 and 0 mg/L (GB/T15454-2009 and GB8978-1996). Intracellular minerals were also vaterite containing barium. Extracellular vaterite exhibited bactericidal properties. This research presents a promising technique for simultaneously removing and recycling hazardous heavy metals and calcium in hypersaline wastewater.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaofei Zhu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiyong Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jilai Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK; Cabot Institute, University of Bristol, Cantock's Close, Bristol BS8 1UJ, UK
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao 266555, China
| | - Junaid Waheed
- University of Azad Jammu and Kashmir, Muzaffarabad, Azad Jammu and Kashmir, 13110, Pakistan
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
2
|
Antreich SJ, Permann C, Xiao N, Tiloca G, Holzinger A. Zygospore development of Spirogyra (Charophyta) investigated by serial block-face scanning electron microscopy and 3D reconstructions. FRONTIERS IN PLANT SCIENCE 2024; 15:1358974. [PMID: 38559764 PMCID: PMC10978657 DOI: 10.3389/fpls.2024.1358974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Sexual reproduction of Zygnematophyceae by conjugation is a less investigated topic due to the difficulties of the induction of this process and zygospore ripening under laboratory conditions. For this study, we collected field sampled zygospores of Spirogyra mirabilis and three additional Spirogyra strains in Austria and Greece. Serial block-face scanning electron microscopy was performed on high pressure frozen and freeze substituted zygospores and 3D reconstructions were generated, allowing a comprehensive insight into the process of zygospore maturation, involving storage compound and organelle rearrangements. Chloroplasts are drastically changed, while young stages contain both parental chloroplasts, the male chloroplasts are aborted and reorganised as 'secondary vacuoles' which initially contain plastoglobules and remnants of thylakoid membranes. The originally large pyrenoids and the volume of starch granules is significantly reduced during maturation (young: 8 ± 5 µm³, mature: 0.2 ± 0.2 µm³). In contrast, lipid droplets (LDs) increase significantly in number upon zygospore maturation, while simultaneously getting smaller (young: 21 ± 18 µm³, mature: 0.1 ± 0.2 and 0.5 ± 0.9 µm³). Only in S. mirabilis the LD volume increases (34 ± 29 µm³), occupying ~50% of the zygospore volume. Mature zygospores contain barite crystals as confirmed by Raman spectroscopy with a size of 0.02 - 0.05 µm³. The initially thin zygospore cell wall (~0.5 µm endospore, ~0.8 µm exospore) increases in thickness and develops a distinct, electron dense mesospore, which has a reticulate appearance (~1.4 µm) in Spirogyra sp. from Greece. The exo- and endospore show cellulose microfibrils in a helicoidal pattern. In the denser endospore, pitch angles of the microfibril layers were calculated: ~18 ± 3° in S. mirabilis, ~20 ± 3° in Spirogyra sp. from Austria and ~38 ± 8° in Spirogyra sp. from Greece. Overall this study gives new insights into Spirogyra sp. zygospore development, crucial for survival during dry periods and dispersal of this genus.
Collapse
Affiliation(s)
- Sebastian J. Antreich
- Department of Bionanosciences, University of Natural Resource and Life Sciences, Vienna, Austria
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | - Nannan Xiao
- Department of Bionanosciences, University of Natural Resource and Life Sciences, Vienna, Austria
| | - Giuseppe Tiloca
- Department of Bionanosciences, University of Natural Resource and Life Sciences, Vienna, Austria
| | | |
Collapse
|
3
|
Massive Accumulation of Strontium and Barium in Diplonemid Protists. mBio 2023; 14:e0327922. [PMID: 36645306 PMCID: PMC9972996 DOI: 10.1128/mbio.03279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Barium and strontium are often used as proxies of marine productivity in palaeoceanographic reconstructions of global climate. However, long-searched biological drivers for such correlations remain unknown. Here, we report that taxa within one of the most abundant groups of marine planktonic protists, diplonemids (Euglenozoa), are potent accumulators of intracellular barite (BaSO4), celestite (SrSO4), and strontiobarite (Ba,Sr)SO4. In culture, Namystinia karyoxenos accumulates Ba2+ and Sr2+ 42,000 and 10,000 times higher than the surrounding medium, forming barite and celestite representing 90% of the dry weight, the greatest concentration in biomass known to date. As heterotrophs, diplonemids are not restricted to the photic zone, and they are widespread in the oceans in astonishing abundance and diversity, as their distribution correlates with environmental particulate barite and celestite, prevailing in the mesopelagic zone. We found diplonemid predators, the filter-feeding zooplankton that produces fecal pellets containing the undigested celestite from diplonemids, facilitating its deposition on the seafloor. To the best of our knowledge, evidence for diplonemid biomineralization presents the strongest explanation for the occurrence of particulate barite and celestite in the marine environment. Both structures of the crystals and their variable chemical compositions found in diplonemids fit the properties of environmentally sampled particulate barite and celestite. Finally, we propose that diplonemids, which emerged during the Neoproterozoic era, qualify as impactful players in Ba2+/Sr2+ cycling in the ocean that has possibly contributed to sedimentary rock formation over long geological periods. IMPORTANCE We have identified that diplonemids, an abundant group of marine planktonic protists, accumulate conspicuous amounts of Sr2+ and Ba2+ in the form of intracellular barite and celestite crystals, in concentrations that greatly exceed those of the most efficient Ba/Sr-accumulating organisms known to date. We propose that diplonemids are potential players in Ba2+/Sr2+ cycling in the ocean and have possibly contributed to sedimentary rock formation over long geological periods. These organisms emerged during the Neoproterozoic era (590 to 900 million years ago), prior to known coccolithophore carbonate biomineralization (~200 million years ago). Based on reported data, the distribution of diplonemids in the oceans is correlated with the occurrence of particulate barite and celestite. Finally, diplonemids may provide new insights into the long-questioned biogenic origin of particulate barite and celestite and bring more understanding of the observed spatial-temporal correlation of the minerals with marine productivity used in reconstructions of past global climate.
Collapse
|
4
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
5
|
Naimark EB. Geochemical and Evolutionary Prerequisites for the Cambrian Skeletal Revolution. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
7
|
Barbosa N, Jaquet JM, Urquidi O, Adachi TBM, Filella M. Combined in vitro and in vivo investigation of barite microcrystals in Spirogyra (Zygnematophyceae, Charophyta). JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153769. [PMID: 35939894 DOI: 10.1016/j.jplph.2022.153769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
We have investigated the biomineralisation of barite ‒a useful proxy for reconstructing paleoproductivity‒ in a freshwater alga, Spirogyra, by combining in vitro and in vivo approaches to unveil the nature of its barite microcrystals. Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDXS) observations on simply dried samples revealed that the number and size of barite crystals were related to the barium concentration in the media. Additionally, their morphology showed a crystallographic face (011), which is not normally observed, suggesting the influence of organic molecules on the growth kinetics. The critical point drying method was used to preserve the internal and external structures of Spirogyra cells for SEM imaging. Crystals were found adjacent to the cytoplasmic membrane, near chloroplasts and fibrillary network. In vivo optical microscopy and Raman tweezer microspectroscopy in living cells showed that barite microcrystals are optically visible and follow cytoplasmic streaming. These results led us to propose that barite formation in Spirogyra occurs in the cytoplasm where barium and sulphate are both available: barium supplied non-selectively through the active transport of the divalent cations needed for actin polymerisation, and sulphate because necessary for amino acid biosynthesis in chloroplasts.
Collapse
Affiliation(s)
- Natercia Barbosa
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland; Department of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1205 Geneva, Switzerland
| | - Jean-Michel Jaquet
- Department Earth Sciences, University of Geneva, Rue des Maraîchers 13, CH-1205 Geneva, Switzerland
| | - Oscar Urquidi
- Department of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1205 Geneva, Switzerland
| | - Takuji B M Adachi
- Department of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1205 Geneva, Switzerland.
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| |
Collapse
|
8
|
Environmental barium: potential exposure and health-hazards. Arch Toxicol 2021; 95:2605-2612. [PMID: 33870439 DOI: 10.1007/s00204-021-03049-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/03/2023]
Abstract
The relatively widespread presence of environmental barium is raising a growing public awareness as it can lead to different health conditions. Its presence in humans may produce several effects, especially among those chronically exposed from low to moderate doses. Barium accumulation can mainly occur by exposure in the workplace or from drinking contaminated water. However, this element is also assumed with the diet, mainly from plant foods. The average amount of barium intake worldwide and its geographical variation is little known due to the lack of research attention. Barium was never considered as an essential nutrient for humans, although it is undoubtedly naturally abundant enough and distinctive in its chemical properties that it might well have some biochemical function, e.g., for regulatory purposes, both in animals and plants. The information on the potential health effects of barium exposure is primarily based on animal studies and reported as comprising kidney diseases, neurological, cardiovascular, mental, and metabolic disorders. The present paper considers exposure and potential health concerns on environmental barium, giving evidence to information that can be used in future epidemiological and experimental studies.
Collapse
|
9
|
Segovia-Campos I, Martignier A, Filella M, Jaquet JM, Ariztegui D. Micropearls and other intracellular inclusions of amorphous calcium carbonate: an unsuspected biomineralization capacity shared by diverse microorganisms. Environ Microbiol 2021; 24:537-550. [PMID: 33817930 PMCID: PMC9292747 DOI: 10.1111/1462-2920.15498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
An unsuspected biomineralization process, which produces intracellular inclusions of amorphous calcium carbonate (ACC), was recently discovered in unicellular eukaryotes. These mineral inclusions, called micropearls, can be highly enriched with other alkaline‐earth metals (AEM) such as Sr and Ba. Similar intracellular inclusions of ACC have also been observed in prokaryotic organisms. These comparable biomineralization processes involving phylogenetically distant microorganisms are not entirely understood yet. This review gives a broad vision of the topic in order to establish a basis for discussion on the possible molecular processes behind the formation of the inclusions, their physiological role, the impact of these microorganisms on the geochemical cycles of AEM and their evolutionary relationship. Finally, some insights are provided to guide future research.
Collapse
Affiliation(s)
- Inés Segovia-Campos
- Department of Earth Sciences, University of Geneva, Geneva, CH-1205, Switzerland
| | - Agathe Martignier
- Department of Earth Sciences, University of Geneva, Geneva, CH-1205, Switzerland
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Geneva, CH-1205, Switzerland
| | - Jean-Michel Jaquet
- Department of Earth Sciences, University of Geneva, Geneva, CH-1205, Switzerland
| | - Daniel Ariztegui
- Department of Earth Sciences, University of Geneva, Geneva, CH-1205, Switzerland
| |
Collapse
|
10
|
Mineralogy and Zn Chemical Speciation in a Soil-Plant System from a Metal-Extreme Environment: A Study on Helichrysum microphyllum subsp. tyrrhenicum (Campo Pisano Mine, SW Sardinia, Italy). MINERALS 2020. [DOI: 10.3390/min10030259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Environmental contamination due to human activities is a worldwide problem that has led to the development of different remediation techniques, including biotechnological approaches such as phytoextraction and phytostabilization. These techniques take advantage of pioneer plants that naturally develop tolerance mechanisms to survive in extreme environments. A multi-technique and multi-disciplinary approach was applied for the investigation of Helichrysum microphyllum subsp. tyrrhenicum samples, bulk soil, and rhizospheres collected from a metal-extreme environment (Zn-Pb mine of Campo Pisano, SW Sardinia, Italy). Zinc, Pb, and Cd are the most abundant metals, with Zn attaining 3 w/w% in the rhizosphere solid materials, inducing oxidative stress in the roots as revealed by infrared microspectroscopy (IR). X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis coupled with synchrotron radiation-based (SR) techniques demonstrate that quartz, dolomite, and weddellite biominerals precipitate in roots, stems, and leaves, likely as a response to environmental stress. In the rhizosphere, Zn chemical speciation is mainly related to the Zn ore minerals (smithsonite and hydrozincite) whereas, in plant tissues, Zn is primarily bound to organic compounds such as malate, cysteine, and histidine molecules that act as metal binders and, eventually, detoxification agents for the Zn excess. These findings suggest that H. microphyllum subsp. tyrrhenicum has developed its own adaptation strategy to survive in polluted substrates, making it a potential candidate for phytostabilization aimed at mitigating the dispersion of metals in the surrounding areas.
Collapse
|
11
|
Burger A, Lichtscheidl I. Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1458-1512. [PMID: 30759584 DOI: 10.1016/j.scitotenv.2018.10.312] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Radiostrontium is released to the environment from routine and accidental discharge and acts on living organisms either from external sources or after absorption. When incorporated by plants, it enters the food chain and causes primary threat to human health and the environment. Understanding the mechanisms of plants for strontium uptake and retention is therefore essential for decision making concerning agriculture: are uptake rates low enough so that plants can serve as food? Or is radiostrontium accumulated so that plants should not be eaten but could be probably used for extracting strontium from water and soil in hot spots of pollution? The review presents a summary of studies about the origin of stable and radioactive strontium in the environment and effects coming from both internal and external exposure of plants. Mobility and availability of strontium to plant roots in soil are controlled by external factors such as chemical composition of the soil and pH, temperature and agricultural soil cultivation as well as soil biological networks built by microbial communities. Plant surfaces may receive input of strontium from deposition induced by atmospheric pollution or by acquisition from water through the whole immersed surface. Cells have entry mechanisms for strontium such as plasma membrane transporters for calcium and potassium. Part of absorbed strontium can be lost via processes discussed in this review. We give examples on strontium transfer factors for 149 plants to estimate plant absorption capacity for strontium from soil, water and air. Uptake efficiency of terrestrial and aquatic plants is deciding about their remediation potential to either remove radiostrontium by accumulation and rhizofiltration or to retain it in roots or aerial parts. Data of strontium content in soils after fallout and edible plants from long-term monitoring support the evaluation of the potential hazards posed by strontium input to the food chain.
Collapse
Affiliation(s)
- Anna Burger
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Irene Lichtscheidl
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
12
|
Niedermeier M, Gierlinger N, Lütz-Meindl U. Biomineralization of strontium and barium contributes to detoxification in the freshwater alga Micrasterias. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:80-91. [PMID: 30195163 DOI: 10.1016/j.jplph.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
The unicellular model alga Micrasterias denticulata inhabits acid peat bogs that are highly endangered by pollutants due to their high humidity. As it was known from earlier studies that algae like Micrasterias are capable of storing barium naturally in form of BaSO4 crystals, it was interesting to experimentally investigate distribution and sequestration of barium and the chemically similar alkaline earth metal strontium. Additionally, we intended to analyze whether biomineralization by crystal formation contributes to diminution of the generally toxic effects of these minerals to physiology and structure of this alga which is closely related to higher plants. The results show that depending on the treatment differently shaped crystals are formed in BaCl2 and Cl2Sr exposed Micrasterias cells. Modern microscopic techniques such as analytical TEM by electron energy loss spectroscopy and Raman microscopy provide evidence for the chemical composition of these crystals. It is shown that barium treatment results in the formation of insoluble BaSO4 crystals that develop within distinct compartments. During strontium exposure long rod-like crystals are formed and are surrounded by membranes. Based on the Raman signature of these crystals their composition is attributed to strontium citrate. These crystals are instable and are dissolved during cell death. During strontium as well as barium treatment cell division rates and photosynthetic oxygen production decreased in dependence of the concentration, whereas cell vitality was reduced only slightly. Together with the fact that TEM analyses revealed only minor ultrastructural alterations as consequence of relatively high concentrated BaCl2 and Cl2Sr exposure, this indicates that biomineralization of Sr and Ba protects the cells from severe damage or cell death at least within a particular concentration range and time period. In the case of Sr treatment where ROS levels were found to be elevated, hallmarks for autophagy of single organelles were observed by TEM, indicating beginning degradation processes.
Collapse
Affiliation(s)
- Martin Niedermeier
- University of Salzburg, Department of Biosciences, Hellbrunner Straße 34, 5020 Salzburg, Austria.
| | - Notburga Gierlinger
- BOKU-University of Natural Resources and Life Sciences, Department of Nanobiotechnology, Muthgasse 11/II, 1190 Vienna, Austria.
| | - Ursula Lütz-Meindl
- University of Salzburg, Department of Biosciences, Hellbrunner Straße 34, 5020 Salzburg, Austria.
| |
Collapse
|
13
|
Tsyrenova DD, Barkhutova DD, Buryukhaev SP, Lazareva EV, Bryanskaya AV, Zamana LV. Cyanobacterial Diversity and the Role of Cyanobacteria in Formation of Minerals in the Baunt Group Hydrotherms (Baikal Rift Zone). Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Studying biomineralization pathways in a 3D culture model of breast cancer microcalcifications. Biomaterials 2018; 179:71-82. [PMID: 29980076 DOI: 10.1016/j.biomaterials.2018.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Microcalcifications serve as diagnostic markers for breast cancer, yet their formation pathway(s) and role in cancer progression are debated due in part to a lack of relevant 3D culture models that allow studying the extent of cellular regulation over mineralization. Previous studies have suggested processes ranging from dystrophic mineralization associated with cell death to bone-like mineral deposition. Here, we evaluated microcalcification formation in 3D multicellular spheroids, generated from non-malignant, pre-cancer, and invasive cell lines from the MCF10A human breast tumor progression series. The spheroids with greater malignancy potential developed necrotic cores, thus recapitulating spatially distinct viable and non-viable areas known to regulate cellular behavior in tumors in vivo. The spatial distribution of the microcalcifications, as well as their compositions, were characterized using nanoCT, electron-microscopy, and X-ray spectroscopy. Apatite microcalcifications were primarily detected within the viable cell regions and their number and size increased with malignancy potential of the spheroids. Levels of alkaline phosphatase decreased with malignancy potential, whereas levels of osteopontin increased. These findings support a mineralization pathway in which cancer cells induce mineralization in a manner that is linked to their malignancy potential, but that is distinct from physiological osteogenic mineralization.
Collapse
|
15
|
Thyssen GM, Holtkamp M, Kaulfürst-Soboll H, Wehe CA, Sperling M, von Schaewen A, Karst U. Elemental bioimaging by means of LA-ICP-OES: investigation of the calcium, sodium and potassium distribution in tobacco plant stems and leaf petioles. Metallomics 2017; 9:676-684. [PMID: 28504297 DOI: 10.1039/c7mt00003k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) is presented as a valuable tool for elemental bioimaging of alkali and earth alkali elements in plants. Whereas LA-ICP-OES is commonly used for micro analysis of solid samples, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advanced to the gold standard for bioimaging. However, especially for easily excitable and ubiquitous elements such as alkali and earth alkali elements, LA-ICP-OES holds some advantages regarding simultaneous detection, costs, contamination, and user-friendliness. This is demonstrated by determining the calcium, sodium and potassium distribution in tobacco plant stem and leaf petiole tissues. A quantification of the calcium contents in a concentration range up to 1000 μg g-1 using matrix-matched standards is presented as well. The method is directly compared to a LA-ICP-MS approach by analyzing parallel slices of the same samples.
Collapse
Affiliation(s)
- G M Thyssen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Martignier A, Pacton M, Filella M, Jaquet JM, Barja F, Pollok K, Langenhorst F, Lavigne S, Guagliardo P, Kilburn MR, Thomas C, Martini R, Ariztegui D. Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes. GEOBIOLOGY 2017; 15:240-253. [PMID: 27696636 DOI: 10.1111/gbi.12213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Until now, descriptions of intracellular biomineralization of amorphous inclusions involving alkaline-earth metal (AEM) carbonates other than calcium have been confined exclusively to cyanobacteria (Couradeau et al., 2012). Here, we report the first evidence of the presence of intracellular amorphous granules of AEM carbonates (calcium, strontium, and barium) in unicellular eukaryotes. These inclusions, which we have named micropearls, show concentric and oscillatory zoning on a nanometric scale. They are widespread in certain eukaryote phytoplankters of Lake Geneva (Switzerland) and represent a previously unknown type of non-skeletal biomineralization, revealing an unexpected pathway in the geochemical cycle of AEMs. We have identified Tetraselmis cf. cordiformis (Chlorophyta, Prasinophyceae) as being responsible for the formation of one micropearl type containing strontium ([Ca,Sr]CO3 ), which we also found in a cultured strain of Tetraselmis cordiformis. A different flagellated eukaryotic cell forms barium-rich micropearls [(Ca,Ba)CO3 ]. The strontium and barium concentrations of both micropearl types are extremely high compared with the undersaturated water of Lake Geneva (the Ba/Ca ratio of the micropearls is up to 800,000 times higher than in the water). This can only be explained by a high biological pre-concentration of these elements. The particular characteristics of the micropearls, along with the presence of organic sulfur-containing compounds-associated with and surrounding the micropearls-strongly suggest the existence of a yet-unreported intracellular biomineralization pathway in eukaryotic micro-organisms.
Collapse
Affiliation(s)
- A Martignier
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - M Pacton
- Laboratoire de Géologie de Lyon, Lyon 1 University, Villeurbanne, France
| | - M Filella
- Institute F.-A. Forel, University of Geneva, Geneva, Switzerland
| | - J-M Jaquet
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - F Barja
- Microbiology unit, University of Geneva, Geneva, Switzerland
| | - K Pollok
- Institute of Geosciences, Friedrich Schiller University Jena, Jena, Germany
| | - F Langenhorst
- Institute of Geosciences, Friedrich Schiller University Jena, Jena, Germany
| | - S Lavigne
- Service de l'Ecologie de l'Eau (SECOE), Geneva, Switzerland
| | - P Guagliardo
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - M R Kilburn
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - C Thomas
- CARRTEL of Thonon-les-Bains, INRA, Thonon-les-Bains, France
| | - R Martini
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - D Ariztegui
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Liu M, Dong F, Zhang W, Nie X, Wei H, Sun S, Zhong X, Liu Y, Wang D. Contribution of surface functional groups and interface interaction to biosorption of strontium ions by Saccharomyces cerevisiae under culture conditions. RSC Adv 2017. [DOI: 10.1039/c7ra08416a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface functional group contributions to biosorption of strontium ions bySaccharomyces cerevisiaeas well as interface interactions were elucidated.
Collapse
Affiliation(s)
- Mingxue Liu
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle
- Ministry of Education of China
- Mianyang 621010
- China
| | - Wei Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle
- Ministry of Education of China
- Mianyang 621010
- China
| | - Xiaoqin Nie
- China Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Hongfu Wei
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Shiyong Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle
- Ministry of Education of China
- Mianyang 621010
- China
| | - Xiaomei Zhong
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Yuqi Liu
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Danni Wang
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| |
Collapse
|
18
|
Cam N, Benzerara K, Georgelin T, Jaber M, Lambert JF, Poinsot M, Skouri-Panet F, Cordier L. Selective Uptake of Alkaline Earth Metals by Cyanobacteria Forming Intracellular Carbonates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11654-11662. [PMID: 27712057 DOI: 10.1021/acs.est.6b02872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The uptakes of calcium (Ca), strontium (Sr), and barium (Ba) by two cyanobacterial strains, Cyanothece sp. PCC7425 and Gloeomargarita lithophora, both forming intracellular carbonates, were investigated in laboratory cultures. In the culture medium BG-11 amended with 250 μM Ca and 50 or 250 μM Sr and Ba, G. lithophora accumulated first Ba, then Sr, and finally Ca. Sr and Ba were completely accumulated by G. lithophora cells at rates between 0.02 and 0.10 fmol h-1 cell-1 and down to extracellular concentrations below the detection limits of inductively coupled plasma atomic emission spectroscopy. Accumulation of Sr and Ba did not affect the growth rate of the strain. This sequential accumulation occurred mostly intracellularly within polyphosphate and carbonate granules and resulted in the formation of core-shell structures in carbonates. In contrast, Cyanothece sp. PCC7425 showed neither a preferential accumulation of heavier alkaline earth metals nor core-shell structures in the carbonates. This indicated that fractionation between alkaline earth metals was not inherent to intracellularly calcifying cyanobacteria but was likely a genetically based trait of G. lithophora. Overall, the capability of G. lithophora to sequester preferentially Sr and Ba at high rates may be of considerable interest for designing new remediation strategies and better understanding the geochemical cycles of these elements.
Collapse
Affiliation(s)
- Nithavong Cam
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Institut de Recherche pour le Développement (IRD) Unité Mixte de Recherche (UMR) 206, Muséum National d'Histoire Naturelle, UMR Centre National de la Recherche Scientifique (CNRS) 7590, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
- Laboratoire de Réactivité de Surface (LRS), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7197, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Institut de Recherche pour le Développement (IRD) Unité Mixte de Recherche (UMR) 206, Muséum National d'Histoire Naturelle, UMR Centre National de la Recherche Scientifique (CNRS) 7590, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
| | - Thomas Georgelin
- Laboratoire de Réactivité de Surface (LRS), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7197, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
| | - Maguy Jaber
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 8220, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
| | - Jean-François Lambert
- Laboratoire de Réactivité de Surface (LRS), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7197, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
| | - Mélanie Poinsot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Institut de Recherche pour le Développement (IRD) Unité Mixte de Recherche (UMR) 206, Muséum National d'Histoire Naturelle, UMR Centre National de la Recherche Scientifique (CNRS) 7590, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
- Laboratoire de Réactivité de Surface (LRS), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7197, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Institut de Recherche pour le Développement (IRD) Unité Mixte de Recherche (UMR) 206, Muséum National d'Histoire Naturelle, UMR Centre National de la Recherche Scientifique (CNRS) 7590, Université Pierre et Marie Curie (UPMC) Université Paris 06, Sorbonne Universités , 4 Place Jussieu, 75005 Paris, France
| | - Laure Cordier
- Institut de Physique du Globe de Paris (IPGP), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7154, Université Paris Diderot, Sorbonne Paris Cité , 1 Rue Jussieu, 75238 Paris Cedex 05, France
| |
Collapse
|
19
|
Gehl A, Dietzsch M, Mondeshki M, Bach S, Häger T, Panthöfer M, Barton B, Kolb U, Tremel W. Anhydrous Amorphous Calcium Oxalate Nanoparticles from Ionic Liquids: Stable Crystallization Intermediates in the Formation of Whewellite. Chemistry 2015; 21:18192-201. [DOI: 10.1002/chem.201502229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Indexed: 11/08/2022]
|
20
|
Takahashi S, Aizawa K, Nakamura S, Nakayama K, Fujisaki S, Watanabe S, Satoh H. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima. Biometals 2015; 28:391-400. [DOI: 10.1007/s10534-015-9843-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
|
21
|
Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics. PLANTS 2014; 3:543-58. [PMID: 27135519 PMCID: PMC4844280 DOI: 10.3390/plants3040543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/16/2014] [Accepted: 11/06/2014] [Indexed: 11/17/2022]
Abstract
Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies raised against polymers of higher plant cell walls. Immunofluorescence-based labeling is easily performed using live cells that subsequently can be returned to culture and monitored. This feature allows for rapid assessment of wall expansion rates and identification of multiple polymer types in the wall microarchitecture during the cell cycle. Cryofixation by means of spray freezing provides excellent transmission electron microscopy imaging of the cell, including its elaborate endomembrane and cytoskeletal systems, both integral to cell wall development. Penium’s fast growth rate allows for convenient microarray screening of various agents that alter wall biosynthesis and metabolism. Finally, recent successful development of transformed cell lines has allowed for non-invasive imaging of proteins in cells and for RNAi reverse genetics that can be used for cell wall biosynthesis studies.
Collapse
|
22
|
Lee SY, Jung KH, Lee JE, Lee KA, Lee SH, Lee JY, Lee JK, Jeong JT, Lee SY. Photosynthetic biomineralization of radioactive Sr via microalgal CO2 absorption. BIORESOURCE TECHNOLOGY 2014; 172:449-452. [PMID: 25262456 DOI: 10.1016/j.biortech.2014.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Water-soluble radiostrontium ((90)Sr) was efficiently removed as a carbonate form through microalgal photosynthetic process. The immobilization of soluble (90)Sr radionuclide and production of highly-precipitable radio-strontianite ((90)SrCO3) biomineral are achieved by using Chlorella vulgaris, and the biologically induced mineralization drastically decreased the (90)Sr radioactivity in water to make the highest (90)Sr removal ever reported. The high-resolution microscopy revealed that the short-term removal of soluble (90)Sr by C. vulgaris was attributable to the rapid and selective carbonation of (90)Sr together with the consumption of dissolved CO2 during photosynthesis. A small amount of carbonate in water could act as Sr(2+) sinks through the particular ability of the microalga to make the carbonate mineral of Sr stabilized firmly at the surface site.
Collapse
Affiliation(s)
- Seung Yeop Lee
- Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 305-353, Republic of Korea.
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea; Department of Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Ju Eun Lee
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Keon Ah Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Sang-Hyo Lee
- Department of Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Ji Young Lee
- Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 305-353, Republic of Korea
| | - Jae Kwang Lee
- Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 305-353, Republic of Korea
| | - Jong Tae Jeong
- Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 305-353, Republic of Korea
| | - Seung-Yop Lee
- Department of Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea; Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea.
| |
Collapse
|
23
|
Liu M, Dong F, Kang W, Sun S, Wei H, Zhang W, Nie X, Guo Y, Huang T, Liu Y. Biosorption of strontium from simulated nuclear wastewater by Scenedesmus spinosus under culture conditions: adsorption and bioaccumulation processes and models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:6099-118. [PMID: 24919131 PMCID: PMC4078568 DOI: 10.3390/ijerph110606099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 11/16/2022]
Abstract
Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately 10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.
Collapse
Affiliation(s)
- Mingxue Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wu Kang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Shiyong Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hongfu Wei
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wei Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xiaoqin Nie
- National Defense Key Discipline Laboratory of the Nuclear Waste and Environmental Safety of the Commission of Science, Technology and Industry for National Defense, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| | - Yuting Guo
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Ting Huang
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yuanyuan Liu
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
24
|
Yuasa T, Takahashi O. Ultrastructural morphology of the reproductive swarmers of Sphaerozoum punctatum (Huxley) from the East China Sea. Eur J Protistol 2014; 50:194-204. [DOI: 10.1016/j.ejop.2013.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/10/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
|
25
|
Smieja-Król B, Janeczek J, Wiedermann J. Pseudomorphs of barite and biogenic ZnS after phyto-crystals of calcium oxalate (whewellite) in the peat layer of a poor fen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7227-33. [PMID: 24604275 PMCID: PMC4025188 DOI: 10.1007/s11356-014-2700-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/24/2014] [Indexed: 05/22/2023]
Abstract
Pseudomorphs of barite (BaSO4) and Cd-rich ZnS after whewellite (CaC2O4·H2O) occur within remnants of Scots pine bark tissues in the peat layer of a poor fen located near a zinc smelter in south Poland. A two-step formation of the pseudomorphs is postulated based on SEM observations: (1) complete dissolution of whewellite, possibly caused by oxalotrophic bacteria, and (2) subsequent bacterially induced precipitation of barite and spheroidal aggregates of ZnS together with galena (PbS) in voids left by the dissolved whewellite crystals. Local increase in pH due to microbial degradation of whewellite, elevated concentrations of Zn(II) and Ba(II) in pore water due to the decomposition of atmospheric particles of sphalerite and barite in the acidic (pH 3.5-3.8) environment, oxidation of S species during drying and rewetting of the peat layer, and subsequent partial reduction of sulfate anions by sulfur-reducing bacteria were all factors likely involved in the crystallization of ZnS and barite in the microenvironment of the post-whewellite voids.
Collapse
Affiliation(s)
- Beata Smieja-Król
- Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200, Sosnowiec, Poland,
| | | | | |
Collapse
|
26
|
He H, Veneklaas EJ, Kuo J, Lambers H. Physiological and ecological significance of biomineralization in plants. TRENDS IN PLANT SCIENCE 2014; 19:166-74. [PMID: 24291440 DOI: 10.1016/j.tplants.2013.11.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 05/24/2023]
Abstract
Biomineralization is widespread in the plant kingdom. The most common types of biominerals in plants are calcium oxalate crystals, calcium carbonate, and silica. Functions of biominerals may depend on their shape, size, abundance, placement, and chemical composition. In this review we highlight advances in understanding physiological and ecological significance of biomineralization in plants. We focus on the functions of biomineralization in regulating cytoplasmic free calcium levels, detoxifying aluminum and heavy metals, light gathering and scattering to optimize photosynthesis, aiding in pollen release, germination, and tube growth, the roles it plays in herbivore deterrence, biogeochemical cycling of carbon, calcium, and silicon, and sequestering atmospheric CO2.
Collapse
Affiliation(s)
- Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; School of Plant Biology, The University of Western Australia, Crawley (Perth), WA 6009, Australia.
| | - Erik J Veneklaas
- School of Plant Biology, The University of Western Australia, Crawley (Perth), WA 6009, Australia
| | - John Kuo
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley (Perth), WA 6009, Australia
| | - Hans Lambers
- School of Plant Biology, The University of Western Australia, Crawley (Perth), WA 6009, Australia
| |
Collapse
|
27
|
Chen S, Deng J, Yuan Y, Flachenecker C, Mak R, Hornberger B, Jin Q, Shu D, Lai B, Maser J, Roehrig C, Paunesku T, Gleber SC, Vine DJ, Finney L, VonOsinski J, Bolbat M, Spink I, Chen Z, Steele J, Trapp D, Irwin J, Feser M, Snyder E, Brister K, Jacobsen C, Woloschak G, Vogt S. The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:66-75. [PMID: 24365918 PMCID: PMC3874019 DOI: 10.1107/s1600577513029676] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/28/2013] [Indexed: 05/20/2023]
Abstract
Hard X-ray fluorescence microscopy is one of the most sensitive techniques for performing trace elemental analysis of biological samples such as whole cells and tissues. Conventional sample preparation methods usually involve dehydration, which removes cellular water and may consequently cause structural collapse, or invasive processes such as embedding. Radiation-induced artifacts may also become an issue, particularly as the spatial resolution increases beyond the sub-micrometer scale. To allow imaging under hydrated conditions, close to the `natural state', as well as to reduce structural radiation damage, the Bionanoprobe (BNP) has been developed, a hard X-ray fluorescence nanoprobe with cryogenic sample environment and cryo transfer capabilities, dedicated to studying trace elements in frozen-hydrated biological systems. The BNP is installed at an undulator beamline at sector 21 of the Advanced Photon Source. It provides a spatial resolution of 30 nm for two-dimensional fluorescence imaging. In this first demonstration the instrument design and motion control principles are described, the instrument performance is quantified, and the first results obtained with the BNP on frozen-hydrated whole cells are reported.
Collapse
Affiliation(s)
- S. Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - J. Deng
- Applied Physics, Northwestern University, Evanston, IL 60208, USA
| | - Y. Yuan
- Department of Radiation Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | - R. Mak
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | | | - Q. Jin
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - D. Shu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - B. Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - J. Maser
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - C. Roehrig
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - T. Paunesku
- Department of Radiation Oncology, Northwestern University, Chicago, IL 60611, USA
| | - S. C. Gleber
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - D. J. Vine
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - L. Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - J. VonOsinski
- Northwestern Synchrotron Research Center, Argonne, IL 60439, USA
| | - M. Bolbat
- Northwestern Synchrotron Research Center, Argonne, IL 60439, USA
| | - I. Spink
- Xradia Inc., Pleasanton, CA 94588, USA
| | - Z. Chen
- Xradia Inc., Pleasanton, CA 94588, USA
| | - J. Steele
- Xradia Inc., Pleasanton, CA 94588, USA
| | - D. Trapp
- Xradia Inc., Pleasanton, CA 94588, USA
| | - J. Irwin
- Xradia Inc., Pleasanton, CA 94588, USA
| | - M. Feser
- Xradia Inc., Pleasanton, CA 94588, USA
| | - E. Snyder
- Xradia Inc., Pleasanton, CA 94588, USA
| | - K. Brister
- Northwestern Synchrotron Research Center, Argonne, IL 60439, USA
| | - C. Jacobsen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Applied Physics, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - G. Woloschak
- Department of Radiation Oncology, Northwestern University, Chicago, IL 60611, USA
| | - S. Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
28
|
Tester CC, Joester D. Precipitation in Liposomes as a Model for Intracellular Biomineralization. Methods Enzymol 2013; 532:257-76. [DOI: 10.1016/b978-0-12-416617-2.00012-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE, López-García P. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 2012; 336:459-62. [PMID: 22539718 DOI: 10.1126/science.1216171] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.
Collapse
Affiliation(s)
- Estelle Couradeau
- Institut de Minéralogie et de Physique de la Matière Condensée, CNRS UMR 7590, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|