1
|
LeBlanc ARH, Morrell AP, Sirovica S, Al-Jawad M, Labonte D, D'Amore DC, Clemente C, Wang S, Giuliani F, McGilvery CM, Pittman M, Kaye TG, Stevenson C, Capon J, Tapley B, Spiro S, Addison O. Iron-coated Komodo dragon teeth and the complex dental enamel of carnivorous reptiles. Nat Ecol Evol 2024; 8:1711-1722. [PMID: 39048730 PMCID: PMC11383799 DOI: 10.1038/s41559-024-02477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Komodo dragons (Varanus komodoensis) are the largest extant predatory lizards and their ziphodont (serrated, curved and blade-shaped) teeth make them valuable analogues for studying tooth structure, function and comparing with extinct ziphodont taxa, such as theropod dinosaurs. Like other ziphodont reptiles, V. komodoensis teeth possess only a thin coating of enamel that is nevertheless able to cope with the demands of their puncture-pull feeding. Using advanced chemical and structural imaging, we reveal that V. komodoensis teeth possess a unique adaptation for maintaining their cutting edges: orange, iron-enriched coatings on their tooth serrations and tips. Comparisons with other extant varanids and crocodylians revealed that iron sequestration is probably widespread in reptile enamels but it is most striking in V. komodoensis and closely related ziphodont species, suggesting a crucial role in supporting serrated teeth. Unfortunately, fossilization confounds our ability to consistently detect similar iron coatings in fossil teeth, including those of ziphodont dinosaurs. However, unlike V. komodoensis, some theropods possessed specialized enamel along their tooth serrations, resembling the wavy enamel found in herbivorous hadrosaurid dinosaurs. These discoveries illustrate unexpected and disparate specializations for maintaining ziphodont teeth in predatory reptiles.
Collapse
Affiliation(s)
- Aaron R H LeBlanc
- Centre for Oral, Clinical & Translational Sciences, King's College London, London, UK.
| | - Alexander P Morrell
- Centre for Oral, Clinical & Translational Sciences, King's College London, London, UK
| | - Slobodan Sirovica
- Centre for Oral, Clinical & Translational Sciences, King's College London, London, UK
- Centre for Oral Bioengineering, Queen Mary University of London, London, UK
| | | | - David Labonte
- Evolutionary Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | | | - Christofer Clemente
- School of Science Engineering and Technology, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Siyang Wang
- Department of Materials, Imperial College London, London, UK
| | - Finn Giuliani
- Department of Materials, Imperial College London, London, UK
| | | | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Thomas G Kaye
- Foundation for Scientific Advancement, Sierra Vista, AZ, USA
| | | | - Joe Capon
- Zoological Society of London, Regent's Park, London, UK
| | | | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, Regent's Park, London, UK
| | - Owen Addison
- Centre for Oral, Clinical & Translational Sciences, King's College London, London, UK
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Scheyer TM. The pseudosuchian record in paleohistology: A small review. Anat Rec (Hoboken) 2024. [PMID: 38655735 DOI: 10.1002/ar.25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
Archosauria originated around the Earth's largest biotic crisis that severely affected all ecosystems globally, the Permotriassic Mass extinction event, and comprises two crown-group lineages: the bird-lineage and the crocodylian lineage. The bird lineage includes the iconic pterosaurs, as well as dinosaurs and birds, whereas the crocodylian lineage includes clades such as aetosaurs, poposaurs, "rauisuchians," as well as Crocodylomorpha; the latter being represented today only by less than 30 extant species of Crocodylia. Despite playing important roles during Mesozoic and Cenozoic ecosystems, both on land and in water, Pseudosuchia received far less attention compared to the bird-lineage, which is also reflected in number and scope of histological studies so far. Lately, the field has seen a shift of focus toward pseudosuchians, however, and the symposium on "Paleohistological Inferences of Paleobiological Traits in Pseudosuchia" held during the International Congress of Vertebrate Morphology 2023 in Cairns, Queensland, Australia, is the latest proof of that. To put these novel aspects of paleohistological and paleobiological research into context, an overview of the non-extant pseudosuchian taxa whose postcranial bones were studied so far is provided here (c. 80 species out of a total of more than 700 extinct species described) and recent trends in pseudosuchian osteohistology are highlighted. In addition, histological studies on cranial and dental material and other potential hard tissues, such as eggshells and otoliths, are briefly reviewed as well.
Collapse
Affiliation(s)
- Torsten M Scheyer
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Dumont M, Milgram J, Herrel A, Shahar R, Shacham B, Houssin C, Delapré A, Cornette R, Segall M. Show Me Your Teeth And I Will Tell You What You Eat: Differences in Tooth Enamel in Snakes with Different Diets. Integr Comp Biol 2023; 63:265-275. [PMID: 37156518 DOI: 10.1093/icb/icad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Teeth are composed of the hardest tissues in the vertebrate body and have been studied extensively to infer diet in vertebrates. The morphology and structure of enamel is thought to reflect feeding ecology. Snakes have a diversified diet, some species feed on armored lizards, others on soft invertebrates. Yet, little is known about how tooth enamel, and specifically its thickness, is impacted by diet. In this study, we first describe the different patterns of enamel distribution and thickness in snakes. Then, we investigate the link between prey hardness and enamel thickness and morphology by comparing the dentary teeth of 63 species of snakes. We observed that the enamel is deposited asymmetrically at the antero-labial side of the tooth. Both enamel coverage and thickness vary a lot in snakes, from species with thin enamel, only at the tip of the tooth to a full facet covered with enamel. There variations are related with prey hardness: snakes feeding on hard prey have a thicker enamel and a lager enamel coverage while species. Snakes feeding on softer prey have a thin enamel layer confined to the tip of the tooth.
Collapse
Affiliation(s)
- Maïtena Dumont
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, HUJI, Rehovot, Israel
| | - Joshua Milgram
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, HUJI, Rehovot, Israel
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7179, Muséum National d'Histoire Naturelle CNRS, Paris, France
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, HUJI, Rehovot, Israel
| | - Boaz Shacham
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Céline Houssin
- Institut de Systématique Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d'Histoire naturelle CNRS, SU, EPHE, UA, CP 50, Paris, France
| | - Arnaud Delapré
- Institut de Systématique Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d'Histoire naturelle CNRS, SU, EPHE, UA, CP 50, Paris, France
| | - Raphaël Cornette
- Institut de Systématique Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d'Histoire naturelle CNRS, SU, EPHE, UA, CP 50, Paris, France
| | - Marion Segall
- Institut de Systématique Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d'Histoire naturelle CNRS, SU, EPHE, UA, CP 50, Paris, France
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
4
|
Mitsiadis TA, Pagella P, Capellini TD, Smith MM. The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model. Cell Mol Life Sci 2023; 80:182. [PMID: 37330998 DOI: 10.1007/s00018-023-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Linköpings Universitet, 581 85, Linköping, Sweden
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Moya Meredith Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, London, UK
| |
Collapse
|
5
|
Macroanatomical, Histological and Microtomographic Study of the Teeth of the Komodo Dragon ( Varanus komodoensis)-Adaptation to Hunting. BIOLOGY 2023; 12:biology12020247. [PMID: 36829525 PMCID: PMC9953444 DOI: 10.3390/biology12020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The present study aimed to characterize the macrostructure and microstructure of the mandibular teeth of the Komodo dragon (Varanus komodoensis) and the methods it uses to obtain food. Examinations were performed using a stereoscopic microscope, autofluorescence method, histological method and computed microtomography. A detailed macro- and micro-structural description of V. komodoensis mandibular teeth were made. The mandibular teeth are laterally flattened along their entire length and the dental crown is hooked caudally. The part of the nasal margin of the tooth crown is irregular, while the caudal margin of the tooth is characteristically serrated, except for the tooth base area. There are longitudinal grooves on the lingual and vestibular surfaces up to the lower third of the tooth height. The mandibular tooth is surrounded by a cuff made of the oral mucosa, containing the opening of the venom gland. In the histological structure of the tooth, the enamel covering the tooth crown and the dentin under the enamel are distinguished. The inside of the tooth, except its basal part, is filled with the tooth chamber, while the inside of the lower part of the tooth is filled with plicidentine, which corresponds to external furrows on the enamel. The plicidentine arrangement resembles a honeycomb. A small amount of dentine folds reach up to the tooth apex. Characteristic features of the structure of the mandibular teeth in V. komodoensis may indicate their significant role, in addition to the venom glands, in obtaining food in the natural environment of this species.
Collapse
|
6
|
Li T, Yongfeng L, Ruiqi L, Mingyue Z, Xiaofeng H. Development and structural characteristics of pseudoosteodentine in the Pacific cutlassfish, Trichiurus lepturus. Tissue Cell 2022; 77:101847. [DOI: 10.1016/j.tice.2022.101847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
|
7
|
Loss of biological control of enamel mineralization in amelogenin-phosphorylation-deficient mice. J Struct Biol 2022; 214:107844. [DOI: 10.1016/j.jsb.2022.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
|
8
|
Qi H, Gao G, Wang H, Ma Y, Wang H, Wu S, Yu J, Wang Q. Mechanical properties, microstructure and chemical composition of naked mole rat incisors. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which make it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterised the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found out that (i) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (ii) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (iii) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increase in distance from enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guide for the design of bionic machinery and materials.
Collapse
Affiliation(s)
- Hongyan Qi
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Guixiong Gao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Ministry of Education, Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Huixin Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Yunhai Ma
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Hubiao Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Siyang Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Jiangtao Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Qinghua Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Kosch JCD, Zanno LE. Sampling impacts the assessment of tooth growth and replacement rates in archosaurs: implications for paleontological studies. PeerJ 2020; 8:e9918. [PMID: 32999766 PMCID: PMC7505082 DOI: 10.7717/peerj.9918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022] Open
Abstract
Dietary habits in extinct species cannot be directly observed; thus, in the absence of extraordinary evidence, they must be reconstructed with a combination of morphological proxies. Such proxies often include information on dental organization and function such as tooth formation time and tooth replacement rate. In extinct organisms, tooth formation times and tooth replacement rate are calculated, in part via extrapolation of the space between incremental lines in dental tissues representing daily growth (von Ebner Line Increment Width; VEIW). However, to date, little work has been conducted testing assumptions about the primary data underpinning these calculations, specifically, the potential impact of differential sampling and data extrapolation protocols. To address this, we tested a variety of intradental, intramandibular, and ontogentic sampling effects on calculations of mean VEIW, tooth formation times, and replacement rates using histological sections and CT reconstructions of a growth series of three specimens of the extant archosaurian Alligator mississippiensis. We find transect position within the tooth and transect orientation with respect to von Ebner lines to have the greatest impact on calculations of mean VEIW—a maximum number of VEIW measurements should be made as near to the central axis (CA) as possible. Measuring in regions away from the central axis can reduce mean VEIW by up to 36%, causing inflated calculations of tooth formation time. We find little demonstrable impact to calculations of mean VEIW from the practice of subsampling along a transect, or from using mean VEIW derived from one portion of the dentition to extrapolate for other regions of the dentition. Subsampling along transects contributes only minor variations in mean VEIW (<12%) that are dwarfed by the standard deviation (SD). Moreover, variation in VEIW with distance from the pulp cavity likely reflects idiosyncratic patterns related to life history, which are difficult to control for; however, we recommend increasing the number of VEIW measured to minimize this effect. Our data reveal only a weak correlation between mean VEIW and body length, suggesting minimal ontogenetic impacts. Finally, we provide a relative SD of mean VEIW for Alligator of 29.94%, which can be used by researchers to create data-driven error bars for tooth formation times and replacement rates in fossil taxa with small sample sizes. We caution that small differences in mean VEIW calculations resulting from non-standardized sampling protocols, especially in a comparative context, will produce inflated error in tooth formation time estimations that intensify with crown height. The same holds true for applications of our relative SD to calculations of tooth formation time in extinct taxa, which produce highly variable maximum and minimum estimates in large-toothed taxa (e.g., 718–1,331 days in Tyrannosaurus).
Collapse
Affiliation(s)
- Jens C D Kosch
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Crofts SB, Smith SM, Anderson PSL. Beyond Description: The Many Facets of Dental Biomechanics. Integr Comp Biol 2020; 60:594-607. [DOI: 10.1093/icb/icaa103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synopsis
Teeth lie at the interface between an animal and its environment and, with some exceptions, act as a major component of resource procurement through food acquisition and processing. Therefore, the shape of a tooth is closely tied to the type of food being eaten. This tight relationship is of use to biologists describing the natural history of species and given the high instance of tooth preservation in the fossil record, is especially useful for paleontologists. However, correlating gross tooth morphology to diet is only part of the story, and much more can be learned through the study of dental biomechanics. We can explore the mechanics of how teeth work, how different shapes evolved, and the underlying forces that constrain tooth shape. This review aims to provide an overview of the research on dental biomechanics, in both mammalian and non-mammalian teeth, and to synthesize two main approaches to dental biomechanics to develop an integrative framework for classifying and evaluating dental functional morphology. This framework relates food material properties to the dynamics of food processing, in particular how teeth transfer energy to food items, and how these mechanical considerations may have shaped the evolution of tooth morphology. We also review advances in technology and new techniques that have allowed more in-depth studies of tooth form and function.
Collapse
Affiliation(s)
- S B Crofts
- Department of Evolution, Ecology, and Behavior, University of Illinois, 515 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - S M Smith
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - P S L Anderson
- Department of Evolution, Ecology, and Behavior, University of Illinois, 515 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Jones MEH, Lucas PW, Tucker AS, Watson AP, Sertich JJW, Foster JR, Williams R, Garbe U, Bevitt JJ, Salvemini F. Neutron scanning reveals unexpected complexity in the enamel thickness of an herbivorous Jurassic reptile. J R Soc Interface 2019; 15:rsif.2018.0039. [PMID: 29899156 PMCID: PMC6030635 DOI: 10.1098/rsif.2018.0039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/18/2018] [Indexed: 11/12/2022] Open
Abstract
Eilenodontines are one of the oldest radiation of herbivorous lepidosaurs (snakes, lizards and tuatara) characterized by batteries of wide teeth with thick enamel that bear mammal-like wear facets. Unlike most reptiles, eilenodontines have limited tooth replacement, making dental longevity particularly important to them. We use both X-ray and neutron computed tomography to examine a fossil tooth from the eilenodontine Eilenodon (Late Jurassic, USA). Of the two approaches, neutron tomography was more successful and facilitated measurements of enamel thickness and distribution. We find the enamel thickness to be regionally variable, thin near the cusp tip (0.10 mm) but thicker around the base (0.15–0.30 mm) and notably greater than that of other rhynchocephalians such as the extant Sphenodon (0.08–0.14 mm). The thick enamel in Eilenodon would permit greater loading, extend tooth lifespan and facilitate the establishment of wear facets that have sharp edges for orally processing plant material such as horsetails (Equisetum). The shape of the enamel dentine junction indicates that tooth development in Eilenodon and Sphenodon involved similar folding of the epithelium but different ameloblast activity.
Collapse
Affiliation(s)
- Marc E H Jones
- Department of Earth Sciences, The Natural History Museum, London, UK .,Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia.,South Australian Museum, North Terrace, Adelaide, South Australia 5001, Australia
| | - Peter W Lucas
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Abigail S Tucker
- Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Amy P Watson
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Joseph J W Sertich
- Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO, USA
| | | | - Ruth Williams
- Department of Adelaide Microscopy, The University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Ulf Garbe
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Floriana Salvemini
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia
| |
Collapse
|
12
|
Kundanati L, D'Incau M, Bernardi M, Scardi P, Pugno NM. A comparative study of the mechanical properties of a dinosaur and crocodile fossil teeth. J Mech Behav Biomed Mater 2019; 97:365-374. [PMID: 31158580 DOI: 10.1016/j.jmbbm.2019.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/15/2022]
Abstract
Vertebrate teeth are complex structures adapted in terms of shape and structure to serve a variety of functions like biting and grinding. Thus, examining the morphology, composition and mechanical properties of the teeth can aid in providing insights into the feeding behaviour of extinct species. We here provide the first mechanical characterisation of teeth in a spinosaurid dinosaur, Suchomimus tenerensis, and a pholidosaurid crocodylomorph, Sarcosuchus imperator. Our results show that both species have similar macrostructure of enamel, dental and interfacial layers, and similar composition, the main constituent being fluorapatite. Microindentation tests show that Suchomimus teeth have lower elastic modulus and hardness, as compared to Sarchosuchus. On the contrary, Sarcosuchus teeth have lower toughness. Nanoindentation showed the existence of mechanical gradients from dentin to enamel in Suchomimus and, less prominently, in Sarcosuchus. This was also supported by wear tests showing that in Suchomimus the dentin region is more wear-prone than the enamel region. With still scarce information available on the dietary regimes in extinct species, the analysis of micro and nano-mechanical properties of fossils teeth might be a help in targeting specific biological questions. However, much is still unknown concerning the changes underwent by organic material during diagenesis making at present impossible to definitely conclude if the differences in the mechanical properties of Suchomimus and Sarchosuchus here retrieved imply that the two species adopted different strategies when dealing with food processing or are the result of disparate taphonomic histories.
Collapse
Affiliation(s)
- Lakshminath Kundanati
- Laboratory of Bio-inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123, Italy
| | - Mirco D'Incau
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - Massimo Bernardi
- MUSE - Museo delle Scienze di Trento, Corso del Lavoro e della Scienza 3, 38122, Trento, Italy
| | - Paolo Scardi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - Nicola M Pugno
- Laboratory of Bio-inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123, Italy; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom; Ket-Lab, Edoardo Amaldi Foundation, Via del Politecnico snc, 00133, Roma, Italy.
| |
Collapse
|
13
|
Ma Y, Wang H, Jia H, Wang H, Xiao Y, Yu J, Qi H, Chen C. Mechanical properties, microstructure and morphological properties of badger teeth. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.17.00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The structure, composition and mechanical properties of badger teeth were characterized. At the same time, the difference between badger teeth and human teeth were analyzed. The micrographs of samples showed that badger teeth contained two layers – that is, enamel and dentin. In contrast to hardness, it indicated that the enamel has a higher hardness than dentin, and both are higher than those of humans. Meanwhile, badger teeth have an obvious hardness difference in enamel and dentin. And the badger enamel has a significant anisotropy, the hardness and the elasticity modulus in the cross-section were higher than those in the axial section. Fourier-transform infrared spectroscopy tests show that both the enamel and dentin consisted of carbonate–hydroxylapatite and hydroxyapatite crystals. And X-ray powder diffraction tests show that both the crystal amounts and size of enamel tended to be higher than those of dentin. The water, organic matrix and biomineral of each species were determined by thermogravimetry. Dentin had higher contents of water, organic matrix and carbonate (CO3) than enamel. In the natural world, the mechanical properties of badger teeth are related to their microstructures and compositions, which potentially provide an inspiration for machinery and bionic designs.
Collapse
Affiliation(s)
- Yunhai Ma
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China; College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Huixin Wang
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China; College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Honglei Jia
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China; College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Hubiao Wang
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China; College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Yang Xiao
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China; College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Jiangtao Yu
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China; College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Hongyan Qi
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China; College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Chuangfa Chen
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China; College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
14
|
The Biomechanics Behind Extreme Osteophagy in Tyrannosaurus rex. Sci Rep 2017; 7:2012. [PMID: 28515439 PMCID: PMC5435714 DOI: 10.1038/s41598-017-02161-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/07/2017] [Indexed: 11/27/2022] Open
Abstract
Most carnivorous mammals can pulverize skeletal elements by generating tooth pressures between occluding teeth that exceed cortical bone shear strength, thereby permitting access to marrow and phosphatic salts. Conversely, carnivorous reptiles have non-occluding dentitions that engender negligible bone damage during feeding. As a result, most reptilian predators can only consume bones in their entirety. Nevertheless, North American tyrannosaurids, including the giant (13 metres [m]) theropod dinosaur Tyrannosaurus rex stand out for habitually biting deeply into bones, pulverizing and digesting them. How this mammal-like capacity was possible, absent dental occlusion, is unknown. Here we analyzed T. rex feeding behaviour from trace evidence, estimated bite forces and tooth pressures, and studied tooth-bone contacts to provide the answer. We show that bone pulverization was made possible through a combination of: (1) prodigious bite forces (8,526–34,522 newtons [N]) and tooth pressures (718–2,974 megapascals [MPa]) promoting crack propagation in bones, (2) tooth form and dental arcade configurations that concentrated shear stresses, and (3) repetitive, localized biting. Collectively, these capacities and behaviors allowed T. rex to finely fragment bones and more fully exploit large dinosaur carcasses for sustenance relative to competing carnivores.
Collapse
|
15
|
Luebke A, Loza K, Patnaik R, Enax J, Raabe D, Prymak O, Fabritius HO, Gaengler P, Epple M. Reply to the ‘Comments on “Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks”’ by H. Botella et al., RSC Adv., 2016, 6, 74384–74388. RSC Adv 2017. [DOI: 10.1039/c6ra27121a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure and composition of 13 fossilized tooth and bone samples aged between 3 and 70 million years were analysed.
Collapse
Affiliation(s)
- A. Luebke
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - K. Loza
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - R. Patnaik
- Centre of Advanced Study in Geology
- Panjab University
- Chandigarh 160014
- India
| | - J. Enax
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - D. Raabe
- Microstructure Physics and Alloy Design
- Max-Planck-Institut für Eisenforschung
- 40237 Düsseldorf
- Germany
| | - O. Prymak
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - H.-O. Fabritius
- Microstructure Physics and Alloy Design
- Max-Planck-Institut für Eisenforschung
- 40237 Düsseldorf
- Germany
| | - P. Gaengler
- ORMED
- Institute for Oral Medicine at the University of Witten/Herdecke
- 58448 Witten
- Germany
| | - M. Epple
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|
16
|
Dumont M, Tafforeau P, Bertin T, Bhullar BA, Field D, Schulp A, Strilisky B, Thivichon-Prince B, Viriot L, Louchart A. Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the "last" toothed birds. BMC Evol Biol 2016; 16:178. [PMID: 27659919 PMCID: PMC5034473 DOI: 10.1186/s12862-016-0753-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023] Open
Abstract
Background The dentitions of extinct organisms can provide pivotal information regarding their phylogenetic position, as well as paleobiology, diet, development, and growth. Extant birds are edentulous (toothless), but their closest relatives among stem birds, the Cretaceous Hesperornithiformes and Ichthyornithiformes, retained teeth. Despite their significant phylogenetic position immediately outside the avian crown group, the dentitions of these taxa have never been studied in detail. To obtain new insight into the biology of these ‘last’ toothed birds, we use cutting-edge visualisation techniques to describe their dentitions at unprecedented levels of detail, in particular propagation phase contrast x-ray synchrotron microtomography at high-resolution. Results Among other characteristics of tooth shape, growth, attachment, implantation, replacement, and dental tissue microstructures, revealed by these analyses, we find that tooth morphology and ornamentation differ greatly between the Hesperornithiformes and Ichthyornithiformes. We also highlight the first Old World, and youngest record of the major Mesozoic clade Ichthyornithiformes. Both taxa exhibit extremely thin and simple enamel. The extension rate of Hesperornis tooth dentine appears relatively high compared to non-avian dinosaurs. Root attachment is found for the first time to be fully thecodont via gomphosis in both taxa, but in Hesperornis secondary evolution led to teeth implantation in a groove, at least locally without a periodontal ligament. Dental replacement is shown to be lingual via a resorption pit in the root, in both taxa. Conclusions Our results allow comparison with other archosaurs and also mammals, with implications regarding dental character evolution across amniotes. Some dental features of the ‘last’ toothed birds can be interpreted as functional adaptations related to diet and mode of predation, while others appear to be products of their peculiar phylogenetic heritage. The autapomorphic Hesperornis groove might have favoured firmer root attachment. These observations highlight complexity in the evolutionary history of tooth reduction in the avian lineage and also clarify alleged avian dental characteristics in the frame of a long-standing debate on bird origins. Finally, new hypotheses emerge that will possibly be tested by further analyses of avian teeth, for instance regarding dental replacement rates, or simplification and thinning of enamel throughout the course of early avian evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0753-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maïtena Dumont
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France.,UMR CNRS/MNHN 7179, "Mécanismes adaptatifs: des organismes aux communautés", 57 rue Cuvier CP55, 75005, Paris, France
| | - Paul Tafforeau
- ESRF-The European Synchrotron, 71, avenue des Martyrs, CS 40220, F-38043, Grenoble Cédex 9, France
| | - Thomas Bertin
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France
| | - Bhart-Anjan Bhullar
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, New Haven, 06520, CT, USA
| | - Daniel Field
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, New Haven, 06520, CT, USA
| | - Anne Schulp
- Natuurhistorisch Museum Maastricht, De Bosquetplein 6-7, NL-6211 KJ, Maastricht, The Netherlands.,Present Address: Naturalis Biodiversity Center, Darwinweg 2, 2333CR, Leiden, The Netherlands
| | - Brandon Strilisky
- Royal Tyrrell Museum of Palaeontology, P.O. Box 7500, Drumheller, T0J 0Y0, AB, Canada
| | - Béatrice Thivichon-Prince
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France
| | - Laurent Viriot
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France
| | - Antoine Louchart
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France. .,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5553, LECA, Equipe Paléo-Génomique, and Palgene (CNRS/ENS de Lyon), Ecole Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, 69364, Lyon cedex 7, France.
| |
Collapse
|
17
|
Li J, Guo L, Li Y, Lei Z, Liu Y, Shi W, Li T, Li W, Liu C. A device mimicking the biomechanical characteristics of crocodile skull for lumbar fracture reduction. BIOINSPIRATION & BIOMIMETICS 2016; 11:056004. [PMID: 27529133 DOI: 10.1088/1748-3190/11/5/056004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Open surgery is currently the main treatment method for the lumbar burst fracture with neurological deficit but may irreversibly disrupt the lumbar anatomy. The minimally invasive surgery (MIS) techniques have recently gained increasing attention. However, their use is still limited to lumbar burst fractures mainly due to their difficulties in burst fracture reduction and decompression. Here we present a novel bio-inspired MIS device which can be used with an endoscope to reset the bone fragments retropulsed into the spinal canal within the wounded vertebral body. Its head jaw mimics the biomechanical characteristics of a crocodile rostrum to improve the performance in gripping and moving bone pieces in the confined space of a vertebral body. This study may be capable of converting the posterior open surgeries to the MIS procedures, and expands the use of the MIS techniques in the treatment of lumbar burst fractures.
Collapse
Affiliation(s)
- Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian,116024, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli). Sci Rep 2016; 6:30387. [PMID: 27457883 PMCID: PMC4960601 DOI: 10.1038/srep30387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/30/2016] [Indexed: 11/08/2022] Open
Abstract
Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.
Collapse
|
19
|
Dosedělová H, Štěpánková K, Zikmund T, Lesot H, Kaiser J, Novotný K, Štembírek J, Knotek Z, Zahradníček O, Buchtová M. Age-related changes in the tooth-bone interface area of acrodont dentition in the chameleon. J Anat 2016; 229:356-68. [PMID: 27173578 DOI: 10.1111/joa.12490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2016] [Indexed: 11/29/2022] Open
Abstract
Chameleon teeth develop as individual structures at a distance from the developing jaw bone during the pre-hatching period and also partially during the post-hatching period. However, in the adult, all teeth are fused together and tightly attached to the jaw bone by mineralized attachment tissue to form one functional unit. Tooth to bone as well as tooth to tooth attachments are so firm that if injury to the oral cavity occurs, several neighbouring teeth and pieces of jaw can be broken off. We analysed age-related changes in chameleon acrodont dentition, where ankylosis represents a physiological condition, whereas in mammals, ankylosis only occurs in a pathological context. The changes in hard-tissue morphology and mineral composition leading to this fusion were analysed. For this purpose, the lower jaws of chameleons were investigated using X-ray micro-computed tomography, laser-induced breakdown spectroscopy and microprobe analysis. For a long time, the dental pulp cavity remained connected with neighbouring teeth and also to the underlying bone marrow cavity. Then, a progressive filling of the dental pulp cavity by a mineralized matrix occurred, and a complex network of non-mineralized channels remained. The size of these unmineralized channels progressively decreased until they completely disappeared, and the dental pulp cavity was filled by a mineralized matrix over time. Moreover, the distribution of calcium, phosphorus and magnesium showed distinct patterns in the different regions of the tooth-bone interface, with a significant progression of mineralization in dentin as well as in the supporting bone. In conclusion, tooth-bone fusion in chameleons results from an enhanced production of mineralized tissue during post-hatching development. Uncovering the developmental processes underlying these outcomes and performing comparative studies is necessary to better understand physiological ankylosis; for that purpose, the chameleon can serve as a useful model species.
Collapse
Affiliation(s)
- Hana Dosedělová
- Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Kateřina Štěpánková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Zikmund
- CEITEC - Central European Institute of Technology, Brno, University of Technology, Brno , Czech Republic
| | - Herve Lesot
- INSERM (French National Institute of Health and Medical Research), 'Osteoarticular and Dental Regenerative NanoMedicine' Laboratory, Faculté de Médicine, Université de Strasbourg, UMR 1109, Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Jozef Kaiser
- CEITEC - Central European Institute of Technology, Brno, University of Technology, Brno , Czech Republic
| | - Karel Novotný
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Brno, University of Technology, Brno , Czech Republic
| | - Jan Štembírek
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Zdeněk Knotek
- Clinic of Small Animals, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Oldřich Zahradníček
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Marcela Buchtová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Fagundes NCF, Cardoso MAG, Miranda MSL, Silva RDB, Teixeira FB, Nogueira BCL, Nogueira BML, de Melo SES, da Costa NMM, Lima RR. Morphological aspects and physical properties of enamel and dentine of Sus domesticus: A tooth model in laboratory research. Ann Anat 2015; 202:71-7. [PMID: 26434756 DOI: 10.1016/j.aanat.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
Abstract
This study aims to describe and analyze morphological and physical properties of deciduous teeth of Sus domesticus. Ultrastructural analysis, mineral composition and microhardness of enamel and dentine tissues were performed on 10 skulls of S. domesticus. External anatomic characteristics and the internal anatomy of the teeth were also described. Data regarding microhardness and ultrastructural analysis were subjected to statistical tests. For ultrastructural analysis, we used the analysis of variance (ANOVA) with Tukey's post hoc (p≤0.05) test. In the analysis of microhardness, the difference between the enamel and dentine tissues was analyzed by a Student's t test. Values were expressed as mean with standard error. The results of ultrastructural analysis showed the presence of an enamel prism pattern. A dentinal tubule pattern was also observed, with a larger diameter in the pulp chamber and the cervical third, in comparison to middle and apical thirds. We observed an average microhardness of 259.2kgf/mm(2) for enamel and 55.17kgf/mm(2) for dentine. In porcine enamel and dentine, the chemical elements Ca and P showed the highest concentration. The analysis of internal anatomy revealed the presence of a simple root canal system and the occurrence of main canals in the roots. The observed features are compatible with the functional demand of these animals, following a pattern very similar to that seen in other groups of mammals, which can encourage the development of research using dental elements from the pig as a substitute for human teeth in laboratory research.
Collapse
Affiliation(s)
- Nathalia Carolina Fernandes Fagundes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Miquéias André Gomes Cardoso
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Mayara Sabrina Luz Miranda
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Raira de Brito Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Francisco Bruno Teixeira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Bárbara Catarina Lima Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Brenna Magdalena Lima Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Sara Elisama Silva de Melo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Natacha Malu Miranda da Costa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa n. 1, Guamá, Belém-Pará 66075-900, Brazil.
| |
Collapse
|
21
|
Chen YC, Lee SY, Wu Y, Brink K, Shieh DB, Huang TD, Reisz RR, Sun CK. Third-harmonic generation microscopy reveals dental anatomy in ancient fossils. OPTICS LETTERS 2015; 40:1354-7. [PMID: 25831331 DOI: 10.1364/ol.40.001354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fossil teeth are primary tools in the study of vertebrate evolution, but standard imaging modalities have not been capable of providing high-quality images in dentin, the main component of teeth, owing to small refractive index differences in the fossilized dentin. Our first attempt to use third-harmonic generation (THG) microscopy in fossil teeth has yielded significant submicrometer level anatomy, with an unexpectedly strong signal contrasting fossilized tubules from the surrounding dentin. Comparison between fossilized and extant teeth of crocodilians reveals a consistent evolutionary signature through time, indicating the great significance of THG microscopy in the evolutionary studies of dental anatomy in fossil teeth.
Collapse
|
22
|
Abstract
Enamel is unique. It is the only epithelial-derived mineralized tissue in mammals and has a distinct micro- and nanostructure with nanofibrous apatite crystals as building blocks. It is synthesized by a highly specialized cell, the ameloblast, which secretes matrix proteins with little homology to any other known amino acid sequence, but which is composed of a primary structure that makes it competent to self-assemble and control apatite crystal growth at the nanometer scale. The end-product of ameloblast activity is a marvel of structural engineering: a material optimized to provide the tooth with maximum biting force, withstanding millions of cycles of loads without catastrophic failure, while also protecting the dental pulp from bacterial attack. This review attempts to bring into context the mechanical behavior of enamel with the developmental process of amelogenesis and structural development, since they are linked to tissue function, and the importance of controlling calcium phosphate mineralization at the nanometer scale. The origins of apatite nanofibers, the development of a stiffness gradient, and the biological processes responsible for the synthesis of a hard and fracture-resistant dental tissue are discussed with reference to the evolution of enamel from a fibrous composite to a complex, tough, and damage-tolerant coating on dentin.
Collapse
Affiliation(s)
- S Habelitz
- Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Lübke A, Enax J, Loza K, Prymak O, Gaengler P, Fabritius HO, Raabe D, Epple M. Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks. RSC Adv 2015. [DOI: 10.1039/c5ra11560d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sharks and dinosaurs used fluoroapatite in their teeth, unlike their contemporary relatives, as shown by a comprehensive analysis of the composition and structure of their fossilized teeth.
Collapse
Affiliation(s)
- A. Lübke
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - J. Enax
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - K. Loza
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - O. Prymak
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - P. Gaengler
- ORMED
- Institute for Oral Medicine at the University of Witten/Herdecke
- 58448 Witten
- Germany
| | - H.-O. Fabritius
- Microstructure Physics and Alloy Design
- Max-Planck-Institut für Eisenforschung
- 40237 Düsseldorf
- Germany
| | - D. Raabe
- Microstructure Physics and Alloy Design
- Max-Planck-Institut für Eisenforschung
- 40237 Düsseldorf
- Germany
| | - M. Epple
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|
24
|
Micromechanical characterization of prismless enamel in the tuatara, Sphenodon punctatus. J Mech Behav Biomed Mater 2014; 39:210-7. [DOI: 10.1016/j.jmbbm.2014.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 11/19/2022]
|