1
|
Chen Q, Zhang X, Tie Y, Zhang J, Huang P, Xie Y, Zhang L, Tang X, Zeng Z, Li L, Chen M, Chen R, Zhang S. Serum amyloid A for predicting prognosis in patients with newly diagnosed Crohn's disease. BMJ Open Gastroenterol 2024; 11:e001497. [PMID: 39266020 PMCID: PMC11404264 DOI: 10.1136/bmjgast-2024-001497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVE Serum amyloid A (SAA) was found to be positively correlated with the activity of Crohn's disease (CD); however, its prognostic value remains uncertain. Here, we examined its predictive ability in newly diagnosed CD and explored genetic association. METHODS This retrospective cohort study included patients newly diagnosed as CD at the First Affiliated Hospital of Sun Yat-sen University between June 2010 and March 2022. We employed receiver operating characteristic curve, Cox proportional hazard regression models and restricted cubic splines to investigate the prognostic performance of SAA for surgery and disease progression. To assess possible causality, a two-sample Mendelian randomisation (MR) of published genome-wide association study data was conducted. RESULTS During 2187.6 person-years (median age, 28 years, 72.4% male), 87 surgery and 153 disease progression events were documented. A 100-unit increment in SAA level generated 14% higher risk for surgery (adjusted HR (95% CI): 1.14 (1.05-1.23), p=0.001) and 12% for disease progression (1.12 (1.05-1.19), p<0.001). Baseline SAA level ≥89.2 mg/L led to significantly elevated risks for surgery (2.08 (1.31-3.28), p=0.002) and disease progression (1.72 (1.22-2.41), p=0.002). Such associations were assessed as linear. Adding SAA into a scheduled model significantly improved its predictive performances for surgery and disease progression (p for net reclassification indexes and integrated discrimination indexes <0.001). Unfortunately, no genetic causality between SAA and CD was observed in MR analysis. Sensitivity analyses showed robust results. CONCLUSION Although causality was not found, baseline SAA level was an independent predictor of surgery and disease progression in newly diagnosed CD, and had additive benefit to existing prediction models.
Collapse
Affiliation(s)
- Qia Chen
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xi Zhang
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhe Tie
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwu Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Pinwei Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuxuan Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liqian Zhang
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueer Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhirong Zeng
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Li
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rirong Chen
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, People's Republic of China
| |
Collapse
|
2
|
Nady A, Reichheld SE, Sharpe S. Structural studies of a serum amyloid A octamer that is primed to scaffold lipid nanodiscs. Protein Sci 2024; 33:e4983. [PMID: 38659173 PMCID: PMC11043621 DOI: 10.1002/pro.4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Serum amyloid A (SAA) is a highly conserved acute-phase protein that plays roles in activating multiple pro-inflammatory pathways during the acute inflammatory response and is commonly used as a biomarker of inflammation. It has been linked to beneficial roles in tissue repair through improved clearance of lipids and cholesterol from sites of damage. In patients with chronic inflammatory diseases, elevated levels of SAA may contribute to increased severity of the underlying condition. The majority of circulating SAA is bound to lipoproteins, primarily high-density lipoprotein (HDL). Interaction with HDL not only stabilizes SAA but also alters its functional properties, likely through altered accessibility of protein-protein interaction sites on SAA. While high-resolution structures for lipid-free, or apo-, forms of SAA have been reported, their relationship with the HDL-bound form of the protein, and with other possible mechanisms of SAA binding to lipids, has not been established. Here, we have used multiple biophysical techniques, including SAXS, TEM, SEC-MALS, native gel electrophoresis, glutaraldehyde crosslinking, and trypsin digestion to characterize the lipid-free and lipid-bound forms of SAA. The SAXS and TEM data show the presence of soluble octamers of SAA with structural similarity to the ring-like structures reported for lipid-free ApoA-I. These SAA octamers represent a previously uncharacterized structure for lipid-free SAA and are capable of scaffolding lipid nanodiscs with similar morphology to those formed by ApoA-I. The SAA-lipid nanodiscs contain four SAA molecules and have similar exterior dimensions as the lipid-free SAA octamer, suggesting that relatively few conformational rearrangements may be required to allow SAA interactions with lipid-containing particles such as HDL. This study suggests a new model for SAA-lipid interactions and provides new insight into how SAA might stabilize protein-lipid nanodiscs or even replace ApoA-I as a scaffold for HDL particles during inflammation.
Collapse
Affiliation(s)
- Asal Nady
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Sean E. Reichheld
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
| | - Simon Sharpe
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| |
Collapse
|
3
|
Jayaraman S, Urdaneta A, Bullitt E, Fändrich M, Gursky O. Lipid clearance and amyloid formation by serum amyloid A: exploring the links between beneficial and pathologic actions of an enigmatic protein. J Lipid Res 2023; 64:100429. [PMID: 37604227 PMCID: PMC10509712 DOI: 10.1016/j.jlr.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Serum amyloid A (SAA) is named after a life-threatening disease, yet this small evolutionarily conserved protein must have played a vital role in host defense. Most circulating SAA binds plasma lipoproteins and modulates their metabolism. However, this hardly justifies the rapid and dramatic SAA upregulation in inflammation, which is concomitant with upregulation of secretory phospholipase A2 (sPLA2). We proposed that these proteins synergistically clear cell membrane debris from the sites of injury. The present study uses biochemical and biophysical approaches to further explore the beneficial function of SAA and its potential links to amyloid formation. We show that murine and human SAA1 are powerful detergents that solubilize diverse lipids, including mammalian biomembranes, converting them into lipoprotein-size nanoparticles. These nanoparticles provide ligands for cell receptors, such as scavenger receptor CD36 or heparin/heparan sulfate, act as substrates of sPLA2, and sequester toxic products of sPLA2. Together, these functions enable SAA to rapidly clear unprotected lipids. SAA can also adsorb, without remodeling, to lipoprotein-size nanoparticles such as exosomal liposomes, which are proxies for lipoproteins. SAA in complexes with zwitterionic phospholipids stabilizes α-helices, while SAA in complexes containing anionic lipids or micelle-forming sPLA2 products forms metastable β-sheet-rich species that readily aggregate to form amyloid. Consequently, the synergy between SAA and sPLA2 extends from the beneficial lipid clearance to the pathologic amyloid formation. Furthermore, we show that lipid composition alters SAA conformation and thereby can influence the metabolic fate of SAA-lipid complexes, including their proamyloidogenic and proatherogenic binding to heparan sulfate.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA.
| | - Angela Urdaneta
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Esther Bullitt
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Chen R, Chen Q, Zheng J, Zeng Z, Chen M, Li L, Zhang S. Serum amyloid protein A in inflammatory bowel disease: from bench to bedside. Cell Death Discov 2023; 9:154. [PMID: 37164984 PMCID: PMC10172326 DOI: 10.1038/s41420-023-01455-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) is featured by gastrointestinal inflammation and a disease course with alternating recurrence and remission. The global burden caused by IBD has significantly boosted in recent years, necessitating treatment optimization. Serum amyloid A (SAA) is a class of 104 amino acid conservative acute-phase proteins, which is essential in immune-mediated inflammatory processes, like IBD. The SAA monomeric structure is composed of four α-helical regions and a C-terminal amorphous tail. Its disordered structure enables multiple bindings to different ligands and permits multiple functions. It has been proven that SAA has dual roles in the inflammatory process. SAA stimulates the pro-inflammatory cytokine expression and promotes the pathogenic differentiation of TH17 cells. In addition, SAA can remove toxic lipids produced during inflammatory responses and membrane debris from dead cells, redirect HDL, and recycle cholesterol for tissue repair. In IBD, SAA acts on gut epithelium barriers, induces T-cell differentiation, and promotes phagocytosis of Gram-negative bacteria. Owing to the tight connection between SAA and IBD, several clinical studies have taken SAA for a biomarker for diagnosis, assessing disease activity, and predicting prognosis in IBD. Furthermore, 5-MER peptide, a drug specifically targeting SAA, has shown anti-inflammatory effects in some SAA-dependent animal models, providing novel insights into the therapeutic targets of IBD.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qia Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieqi Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Gutierrez CT, Loizides C, Hafez I, Brostrøm A, Wolff H, Szarek J, Berthing T, Mortensen A, Jensen KA, Roursgaard M, Saber AT, Møller P, Biskos G, Vogel U. Acute phase response following pulmonary exposure to soluble and insoluble metal oxide nanomaterials in mice. Part Fibre Toxicol 2023; 20:4. [PMID: 36650530 PMCID: PMC9843849 DOI: 10.1186/s12989-023-00514-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Acute phase response (APR) is characterized by a change in concentration of different proteins, including C-reactive protein and serum amyloid A (SAA) that can be linked to both exposure to metal oxide nanomaterials and risk of cardiovascular diseases. In this study, we intratracheally exposed mice to ZnO, CuO, Al2O3, SnO2 and TiO2 and carbon black (Printex 90) nanomaterials with a wide range in phagolysosomal solubility. We subsequently assessed neutrophil numbers, protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, Saa3 and Saa1 mRNA levels in lung and liver tissue, respectively, and SAA3 and SAA1/2 in plasma. Endpoints were analyzed 1 and 28 days after exposure, including histopathology of lung and liver tissues. RESULTS All nanomaterials induced pulmonary inflammation after 1 day, and exposure to ZnO, CuO, SnO2, TiO2 and Printex 90 increased Saa3 mRNA levels in lungs and Saa1 mRNA levels in liver. Additionally, CuO, SnO2, TiO2 and Printex 90 increased plasma levels of SAA3 and SAA1/2. Acute phase response was predicted by deposited surface area for insoluble metal oxides, 1 and 28 days post-exposure. CONCLUSION Soluble and insoluble metal oxides induced dose-dependent APR with different time dependency. Neutrophil influx, Saa3 mRNA levels in lung tissue and plasma SAA3 levels correlated across all studied nanomaterials, suggesting that these endpoints can be used as biomarkers of acute phase response and cardiovascular disease risk following exposure to soluble and insoluble particles.
Collapse
Affiliation(s)
- Claudia Torero Gutierrez
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark ,grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Charis Loizides
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Iosif Hafez
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Anders Brostrøm
- grid.5170.30000 0001 2181 8870National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Copenhagen, Denmark
| | - Henrik Wolff
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Helsinki, Finland
| | - Józef Szarek
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Trine Berthing
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Alicja Mortensen
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Martin Roursgaard
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anne Thoustrup Saber
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - George Biskos
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus ,grid.5292.c0000 0001 2097 4740Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
6
|
Schulte T, Chaves-Sanjuan A, Mazzini G, Speranzini V, Lavatelli F, Ferri F, Palizzotto C, Mazza M, Milani P, Nuvolone M, Vogt AC, Vogel M, Palladini G, Merlini G, Bolognesi M, Ferro S, Zini E, Ricagno S. Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter. Nat Commun 2022; 13:7041. [PMID: 36396658 PMCID: PMC9672049 DOI: 10.1038/s41467-022-34743-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
AA amyloidosis is a systemic disease characterized by deposition of misfolded serum amyloid A protein (SAA) into cross-β amyloid in multiple organs in humans and animals. AA amyloidosis occurs at high SAA serum levels during chronic inflammation. Prion-like transmission was reported as possible cause of extreme AA amyloidosis prevalence in captive animals, e.g. 70% in cheetah and 57-73% in domestic short hair (DSH) cats kept in zoos and shelters, respectively. Herein, we present the 3.3 Å cryo-EM structure of AA amyloid extracted post-mortem from the kidney of a DSH cat with renal failure, deceased in a shelter with extreme disease prevalence. The structure reveals a cross-β architecture assembled from two 76-residue long proto-filaments. Despite >70% sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct amyloid fold. Inclusion of an eight-residue insert unique to feline SAA contributes to increased amyloid stability. The presented feline AA amyloid structure is fully compatible with the 99% identical amino acid sequence of amyloid fragments of captive cheetah.
Collapse
Affiliation(s)
- Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Filippo Ferri
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, S.C. Diagnostica Specialistica, Via Bologna 148, 10154, Torino, Italy
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anne-Cathrine Vogt
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, 3010, Bern, Switzerland
| | - Monique Vogel
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, 3010, Bern, Switzerland
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Sciences, University of Padova, viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
- Department of Animal Medicine, Production and Health, University of Padua, viale dell'Università 16, 35020, Legnaro, Padua, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy.
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
7
|
Sundaria A, Liberta F, Savran D, Sarkar R, Rodina N, Peters C, Schwierz N, Haupt C, Schmidt M, Reif B. SAA fibrils involved in AA amyloidosis are similar in bulk and by single particle reconstitution: A MAS solid-state NMR study. J Struct Biol X 2022; 6:100069. [PMID: 35924280 PMCID: PMC9340516 DOI: 10.1016/j.yjsbx.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
AA amyloidosis is one of the most prevalent forms of systemic amyloidosis and affects both humans and other vertebrates. In this study, we compare MAS solid-state NMR data with a recent cryo-EM study of fibrils involving full-length murine SAA1.1. We address the question whether the specific requirements for the reconstitution of an amyloid fibril structure by cryo-EM can potentially yield a bias towards a particular fibril polymorph. We employ fibril seeds extracted from in to vivo material to imprint the fibril structure onto the biochemically produced protein. Sequential assignments yield the secondary structure elements in the fibril state. Long-range DARR and PAR experiments confirm largely the topology observed in the ex-vivo cryo-EM study. We find that the β-sheets identified in the NMR experiments are similar to the β-sheets found in the cryo-EM study, with the exception of amino acids 33–42. These residues cannot be assigned by solid-state NMR, while they adopt a stable β-sheet in the cryo-EM structure. We suggest that the differences between MAS solid-state NMR and cryo-EM data are a consequence of a second conformer involving residues 33–42. Moreover, we were able to characterize the dynamic C-terminal tail of SAA in the fibril state. The C-terminus is flexible, remains detached from the fibrils, and does not affect the SAA fibril structure as confirmed further by molecular dynamics simulations. As the C-terminus can potentially interact with other cellular components, binding to cellular targets can affect its accessibility for protease digestion.
Collapse
|
8
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
9
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
10
|
Structural Basis for Vital Function and Malfunction of Serum Amyloid A: an Acute-Phase Protein that Wears Hydrophobicity on Its Sleeve. Curr Atheroscler Rep 2020; 22:69. [PMID: 32968930 PMCID: PMC7511256 DOI: 10.1007/s11883-020-00888-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review addresses normal and pathologic functions of serum amyloid A (SAA), an enigmatic biomarker of inflammation and protein precursor of AA amyloidosis, a life-threatening complication of chronic inflammation. SAA is a small, highly evolutionarily conserved acute-phase protein whose plasma levels increase up to one thousand-fold in inflammation, infection, or after trauma. The advantage of this dramatic but transient increase is unclear, and the complex role of SAA in immune response is intensely investigated. This review summarizes recent advances in our understanding of the structure-function relationship of this intrinsically disordered protein, outlines its newly emerging beneficial roles in lipid transport and inflammation control, and discusses factors that critically influence its misfolding in AA amyloidosis. RECENT FINDINGS High-resolution structures of lipid-free SAA in crystals and fibrils have been determined by x-ray crystallography and electron cryo-microscopy. Low-resolution structural studies of SAA-lipid complexes, together with biochemical, cell-based, animal model, genetic, and clinical studies, have provided surprising new insights into a wide range of SAA functions. An emerging vital role of SAA is lipid encapsulation to remove cell membrane debris from sites of injury. The structural basis for this role has been proposed. The lysosomal origin of AA amyloidosis has solidified, and its molecular and cellular mechanisms have emerged. Recent studies have revealed molecular underpinnings for understanding complex functions of this Cambrian protein in lipid transport, immune response, and amyloid formation. These findings help guide the search for much-needed targeted therapies to block the protein deposition in AA amyloidosis.
Collapse
|
11
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
12
|
Biological Characterization of Commercial Recombinantly Expressed Immunomodulating Proteins Contaminated with Bacterial Products in the Year 2020: The SAA3 Case. Mediators Inflamm 2020; 2020:6087109. [PMID: 32694927 PMCID: PMC7362292 DOI: 10.1155/2020/6087109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
The serum amyloid A (SAA) gene family is highly conserved and encodes acute phase proteins that are upregulated in response to inflammatory triggers. Over the years, a considerable amount of literature has been published attributing a wide range of biological effects to SAAs such as leukocyte recruitment, cytokine and chemokine expression and induction of matrix metalloproteinases. Furthermore, SAAs have also been linked to protumorigenic, proatherogenic and anti-inflammatory effects. Here, we investigated the biological effects conveyed by murine SAA3 (mu rSAA3) recombinantly expressed in Escherichia coli. We observed the upregulation of a number of chemokines including CCL2, CCL3, CXCL1, CXCL2, CXCL6 or CXCL8 following stimulation of monocytic, fibroblastoid and peritoneal cells with mu rSAA3. Furthermore, this SAA variant displayed potent in vivo recruitment of neutrophils through the activation of TLR4. However, a major problem associated with proteins derived from recombinant expression in bacteria is potential contamination with various bacterial products, such as lipopolysaccharide, lipoproteins and formylated peptides. This is of particular relevance in the case of SAA as there currently exists a discrepancy in biological activity between SAA derived from recombinant expression and that of an endogenous source, i.e. inflammatory plasma. Therefore, we subjected commercial recombinant mu rSAA3 to purification to homogeneity via reversed-phase high-performance liquid chromatography (RP-HPLC) and re-assessed its biological potential. RP-HPLC-purified mu rSAA3 did not induce chemokines and lacked in vivo neutrophil chemotactic activity, but retained the capacity to synergize with CXCL8 in the activation of neutrophils. In conclusion, experimental results obtained when using proteins recombinantly expressed in bacteria should always be interpreted with care.
Collapse
|
13
|
Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol 2020; 21:756-765. [PMID: 32572240 DOI: 10.1038/s41590-020-0698-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
The molecular basis for the propensity of a small number of environmental proteins to provoke allergic responses is largely unknown. Herein, we report that mite group 13 allergens of the fatty acid-binding protein (FABP) family are sensed by an evolutionarily conserved acute-phase protein, serum amyloid A1 (SAA1), that promotes pulmonary type 2 immunity. Mechanistically, SAA1 interacted directly with allergenic mite FABPs (Der p 13 and Blo t 13). The interaction between mite FABPs and SAA1 activated the SAA1-binding receptor, formyl peptide receptor 2 (FPR2), which drove the epithelial release of the type-2-promoting cytokine interleukin (IL)-33 in a SAA1-dependent manner. Importantly, the SAA1-FPR2-IL-33 axis was upregulated in nasal epithelial cells from patients with chronic rhinosinusitis. These findings identify an unrecognized role for SAA1 as a soluble pattern recognition receptor for conserved FABPs found in common mite allergens that initiate type 2 immunity at mucosal surfaces.
Collapse
|
14
|
Frame NM, Kumanan M, Wales TE, Bandara A, Fändrich M, Straub JE, Engen JR, Gursky O. Structural Basis for Lipid Binding and Function by an Evolutionarily Conserved Protein, Serum Amyloid A. J Mol Biol 2020; 432:1978-1995. [PMID: 32035904 PMCID: PMC7225066 DOI: 10.1016/j.jmb.2020.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/28/2023]
Abstract
Serum amyloid A (SAA) is a plasma protein that transports lipids during inflammation. To explore SAA solution conformations and lipid-binding mechanism, we used hydrogen-deuterium exchange mass spectrometry, lipoprotein reconstitution, amino acid sequence analysis, and molecular dynamics simulations. Solution conformations of lipid-bound and lipid-free mSAA1 at pH~7.4 agreed in details with the crystal structures but also showed important differences. The results revealed that amphipathic α-helices h1 and h3 comprise a lipid-binding site that is partially pre-formed in solution, is stabilized upon binding lipids, and shows lipid-induced folding of h3. This site sequesters apolar ligands via a concave hydrophobic surface in SAA oligomers. The largely disordered/dynamic C-terminal region is conjectured to mediate the promiscuous binding of other ligands. The h1-h2 linker region is predicted to form an unexpected β-hairpin that may represent an early amyloidogenic intermediate. The results help establish structural underpinnings for understanding SAA interactions with its key functional ligands, its evolutional conservation, and its transition to amyloid.
Collapse
Affiliation(s)
- Nicholas M Frame
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, United States
| | - Meera Kumanan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, United States
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, 89081, Germany
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, United States.
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States.
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, United States; Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, MA, 02118, United States.
| |
Collapse
|
15
|
High-Density Lipoprotein (HDL) Inhibits Serum Amyloid A (SAA)-Induced Vascular and Renal Dysfunctions in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2020; 21:ijms21041316. [PMID: 32075280 PMCID: PMC7072968 DOI: 10.3390/ijms21041316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
Serum amyloid A (SAA) promotes endothelial inflammation and dysfunction that is associated with cardiovascular disease and renal pathologies. SAA is an apoprotein for high-density lipoprotein (HDL) and its sequestration to HDL diminishes SAA bioactivity. Herein we investigated the effect of co-supplementing HDL on SAA-mediated changes to vascular and renal function in apolipoprotein E-deficient (ApoE-/-) mice in the absence of a high-fat diet. Male ApoE-/- mice received recombinant human SAA or vehicle (control) by intraperitoneal (i.p.) injection every three days for two weeks with or without freshly isolated human HDL supplemented by intravenous (i.v.) injection in the two weeks preceding SAA stimulation. Aorta and kidney were harvested 4 or 18 weeks after commencement of treatment. At 4 weeks after commencement of treatment, SAA increased aortic vascular cell adhesion molecule (VCAM)-1 expression and F2-isoprostane level and decreased cyclic guanosine monophosphate (cGMP), consistent with SAA stimulating endothelial dysfunction and promoting atherosclerosis. SAA also stimulated renal injury and inflammation that manifested as increased urinary protein, kidney injury molecule (KIM)-1, and renal tissue cytokine/chemokine levels as well as increased protein tyrosine chlorination and P38 MAPkinase activation and decreased in Bowman's space, confirming that SAA elicited a pro-inflammatory phenotype in the kidney. At 18 weeks, vascular lesions increased significantly in the cohort of ApoE-/- mice treated with SAA alone. By contrast, pretreatment of mice with HDL decreased SAA pro-inflammatory activity, inhibited SAA enhancement of aortic lesion size and renal function, and prevented changes to glomerular Bowman's space. Taken together, these data indicate that supplemented HDL reduces SAA-mediated endothelial and renal dysfunction in an atherosclerosis-prone mouse model.
Collapse
|
16
|
Zheng H, Li H, Zhang J, Fan H, Jia L, Ma W, Ma S, Wang S, You H, Yin Z, Li X. Serum amyloid A exhibits pH dependent antibacterial action and contributes to host defense against Staphylococcus aureus cutaneous infection. J Biol Chem 2019; 295:2570-2581. [PMID: 31819008 DOI: 10.1074/jbc.ra119.010626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A (SAA), one of the major highly conserved acute-phase proteins in most mammals, is predominantly produced by hepatocytes and also by a variety of cells in extrahepatic tissues. It is well-known that the expression of SAA is sharply increased in bacterial infections. However, the exact physiological function of SAA during bacterial infection remains unclear. Herein, we showed that SAA expression significantly increased in abscesses of Staphylococcus aureus cutaneous infected mice, which exert direct antibacterial effects by binding to the bacterial cell surface and disrupting the cell membrane in acidic conditions. Mechanically, SAA disrupts anionic liposomes by spontaneously forming small vesicles or micelles under acidic conditions. Especially, the N-terminal region of SAA is necessary for membrane disruption and bactericidal activity. Furthermore, we found that mice deficient in SAA1/2 were more susceptible to infection by S. aureus In addition, the expression of SAA in infected skin was regulated by interleukin-6. Taken together, these findings support a key role of the SAA in host defense and may provide a novel therapeutic strategy for cutaneous bacterial infection.
Collapse
Affiliation(s)
- Han Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haifeng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingyuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hanlu Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lina Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenqiang Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuoqian Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shenghong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua You
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, China
| | - Zhinan Yin
- First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510310, China
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
17
|
Takase H, Tanaka M, Nakamura Y, Morita SY, Yamada T, Mukai T. Effects of lipid composition on the structural properties of human serum amyloid A in reconstituted high-density lipoprotein particles. Chem Phys Lipids 2019; 221:8-14. [DOI: 10.1016/j.chemphyslip.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
|
18
|
Jayaraman S, Fändrich M, Gursky O. Synergy between serum amyloid A and secretory phospholipase A 2. eLife 2019; 8:46630. [PMID: 31111824 PMCID: PMC6557629 DOI: 10.7554/elife.46630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022] Open
Abstract
Serum amyloid A (SAA) is an evolutionally conserved enigmatic biomarker of inflammation. In acute inflammation, SAA plasma levels increase ~1,000 fold, suggesting that this protein family has a vital beneficial role. SAA increases simultaneously with secretory phospholipase A2 (sPLA2), compelling us to determine how SAA influences sPLA2 hydrolysis of lipoproteins. SAA solubilized phospholipid bilayers to form lipoproteins that provided substrates for sPLA2. Moreover, SAA sequestered free fatty acids and lysophospholipids to form stable proteolysis-resistant complexes. Unlike albumin, SAA effectively removed free fatty acids under acidic conditions, which characterize inflammation sites. Therefore, SAA solubilized lipid bilayers to generate substrates for sPLA2 and removed its bioactive products. Consequently, SAA and sPLA2 can act synergistically to remove cellular membrane debris from injured sites, which is a prerequisite for tissue healing. We postulate that the removal of lipids and their degradation products constitutes a vital primordial role of SAA in innate immunity; this role remains to be tested in vivo. Cell boundaries are made up of fatty substances known as lipids. When cells get severely damaged, their lipid membranes break apart. These broken fragments of membrane become highly toxic, and must be removed as soon as possible to allow the tissue to heal. A small protein called serum amyloid A, SAA for short, was recently proposed to play a pivotal role in this process. In humans, SAA levels in the blood rapidly spike to over a thousand times their normal level following inflammation, injury or infection. Combined with the fact SAA has been conserved for over 500 million years, this suggests that SAA must be important for survival. But, it is not entirely clear how this protein works. One clue for how SAA works is its relationship to another ancient protein called secretory phospholipase A2. This protein, also known as sPLA2, is part of a big family of enzymes that break down lipids in the cell membrane. Notably, sPLA2 levels rise at the same time and place as SAA during inflammation. This led Jayaraman et al. to ask whether SAA and sPLA2 might be working together to clean up the cell membrane debris. To find out, Jayaraman et al. mixed mouse SAA with vesicles of membrane lipids, and then added sPLA2. This revealed that SAA reshapes the lipid membrane into smaller ‘nanoparticles’ with tightly curved surfaces that are easier for sPLA2 to break down. As the sPLA2 breaks up these particles, SAA then gathers up and gets rid of the leftover toxic fragments. This suggests that SAA has two roles: helping sPLA2 break down the membrane, and removing any toxic debris. Clearing debris after injury is essential for proper healing. So, understanding how it works is crucial to find new ways to treat inflammation. Further work to understand SAA and sPLA2 could improve our understanding of how to treat acute and chronic inflammation and its life-threatening complications.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, United States
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, United States.,Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, United States
| |
Collapse
|
19
|
Burgess EJ, Hoyt LR, Randall MJ, Mank MM, Bivona JJ, Eisenhauer PL, Botten JW, Ballif BA, Lam YW, Wargo MJ, Boyson JE, Ather JL, Poynter ME. Bacterial Lipoproteins Constitute the TLR2-Stimulating Activity of Serum Amyloid A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2377-2384. [PMID: 30158125 PMCID: PMC6179936 DOI: 10.4049/jimmunol.1800503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.
Collapse
Affiliation(s)
- Edward J Burgess
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Laura R Hoyt
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew J Randall
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Madeleine M Mank
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Joseph J Bivona
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Philip L Eisenhauer
- Immunobiology Division, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Jason W Botten
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Immunobiology Division, Department of Medicine, University of Vermont, Burlington, VT 05405
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405; and
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT 05405; and
| | - Matthew J Wargo
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Jonathan E Boyson
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Department of Surgery, University of Vermont, Burlington, VT 05405
| | - Jennifer L Ather
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew E Poynter
- Vermont Lung Center, University of Vermont, Burlington, VT 05405;
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| |
Collapse
|
20
|
Jayaraman S, Gantz DL, Haupt C, Fändrich M, Gursky O. Serum amyloid A sequesters diverse phospholipids and their hydrolytic products, hampering fibril formation and proteolysis in a lipid-dependent manner. Chem Commun (Camb) 2018; 54:3532-3535. [PMID: 29565436 DOI: 10.1039/c8cc01424h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serum amyloid A action in immune response and deposition in inflammation-linked amyloidosis involve SAA-lipid interactions. We show that SAA sequesters neutral and anionic phospholipids and their hydrolytic products to form nanoparticles, suggesting a synergy with phospholipase A2. The lipid charge and shape affect SAA protection from proteolysis, aggregation and fibrillogenesis.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., W302, Boston, MA 02118, USA.
| | - Donald L Gantz
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., W302, Boston, MA 02118, USA.
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., W302, Boston, MA 02118, USA.
| |
Collapse
|
21
|
Tanaka M, Kawakami T, Okino N, Sasaki K, Nakanishi K, Takase H, Yamada T, Mukai T. Acceleration of amyloid fibril formation by carboxyl-terminal truncation of human serum amyloid A. Arch Biochem Biophys 2018; 639:9-15. [DOI: 10.1016/j.abb.2017.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
|