1
|
Pakharukova N, Thomas BN, Bansia H, Li L, Abzalimov RR, Kim J, Kahsai AW, Pani B, Bassford DK, Liu S, Zhang X, des Georges A, Lefkowitz RJ. Beta-arrestin 1 mediated Src activation via Src SH3 domain revealed by cryo-electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605623. [PMID: 39131402 PMCID: PMC11312540 DOI: 10.1101/2024.07.31.605623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Beta-arrestins (βarrs) are key regulators and transducers of G-protein coupled receptor signaling; however, little is known of how βarrs communicate with their downstream effectors. Here, we use cryo-electron microscopy to elucidate how βarr1 recruits and activates non-receptor tyrosine kinase Src. βarr1 binds Src SH3 domain via two distinct sites: a polyproline site in the N-domain and a non-proline site in the central crest region. At both sites βarr1 interacts with the aromatic surface of SH3 which is critical for Src autoinhibition, suggesting that βarr1 activates Src by SH3 domain displacement. Binding of SH3 to the central crest region induces structural rearrangements in the β-strand V, finger, and middle loops of βarr1 and interferes with βarr1 coupling to the receptor core potentially impacting receptor desensitization and downstream signaling.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center; Durham, NC 27710, USA
| | - Brittany N Thomas
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center; Durham, NC 27710, USA
| | - Harsh Bansia
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Linus Li
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Rinat R Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Dana K Bassford
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center; Durham, NC 27710, USA
| | - Shibo Liu
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Xingdong Zhang
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York; New York, NY 10031, USA
- Biochemistry and Chemistry PhD Programs, Graduate Center, City University of New York; New York, NY 10031, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center; Durham, NC 27710, USA
- Department of Biochemistry, Duke University Medical Center; Durham, NC 27710, USA
| |
Collapse
|
2
|
Choi S, Lee Y, Park S, Jang SY, Park J, Oh DW, Kim SM, Kim TH, Lee GS, Cho C, Kim BS, Lee D, Kim EH, Cheong HK, Moon JH, Song JJ, Hwang J, Kim MH. Dissemination of pathogenic bacteria is reinforced by a MARTX toxin effector duet. Nat Commun 2024; 15:6218. [PMID: 39043696 PMCID: PMC11266601 DOI: 10.1038/s41467-024-50650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Multiple bacterial genera take advantage of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin to invade host cells. Secretion of the MARTX toxin by Vibrio vulnificus, a deadly opportunistic pathogen that causes primary septicemia, the precursor of sepsis, is a major driver of infection; however, the molecular mechanism via which the toxin contributes to septicemia remains unclear. Here, we report the crystal and cryo-electron microscopy (EM) structures of a toxin effector duet comprising the domain of unknown function in the first position (DUF1)/Rho inactivation domain (RID) complexed with human targets. These structures reveal how the duet is used by bacteria as a potent weapon. The data show that DUF1 acts as a RID-dependent transforming NADase domain (RDTND) that disrupts NAD+ homeostasis by hijacking calmodulin. The cryo-EM structure of the RDTND-RID duet complexed with calmodulin and Rac1, together with immunological analyses in vitro and in mice, provide mechanistic insight into how V. vulnificus uses the duet to suppress ROS generation by depleting NAD(P)+ and modifying Rac1 in a mutually-reinforcing manner that ultimately paralyzes first line immune responses, promotes dissemination of invaders, and induces sepsis. These data may allow development of tools or strategies to combat MARTX toxin-related human diseases.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Song Yee Jang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Jongbin Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Do Won Oh
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Su-Man Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biology Education, Chonnam National University, Gwangju, 61186, Korea
| | - Tae-Hwan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Changyi Cho
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Donghan Lee
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Eun-Hee Kim
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Hae-Kap Cheong
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| |
Collapse
|
3
|
Bock LV, Igaev M, Grubmüller H. Single-particle Cryo-EM and molecular dynamics simulations: A perfect match. Curr Opin Struct Biol 2024; 86:102825. [PMID: 38723560 DOI: 10.1016/j.sbi.2024.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Knowledge of the structure and dynamics of biomolecules is key to understanding the mechanisms underlying their biological functions. Single-particle cryo-electron microscopy (cryo-EM) is a powerful structural biology technique to characterize complex biomolecular systems. Here, we review recent advances of how Molecular Dynamics (MD) simulations are being used to increase and enhance the information extracted from cryo-EM experiments. We will particularly focus on the physics underlying these experiments, how MD facilitates structure refinement, in particular for heterogeneous and non-isotropic resolution, and how thermodynamic and kinetic information can be extracted from cryo-EM data.
Collapse
Affiliation(s)
- Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany. https://twitter.com/Pogoscience
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany. https://twitter.com/maxotubule
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany.
| |
Collapse
|
4
|
Park J, Joung I, Joo K, Lee J. Application of conformational space annealing to the protein structure modeling using cryo-EM maps. J Comput Chem 2023; 44:2332-2346. [PMID: 37585026 DOI: 10.1002/jcc.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/26/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo-EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax (FastRelax) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo-EM map and de novo protein modeling by tracing the Cryo-EM map, was performed by CSA. In the refinement of the rigid-fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross-correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo-EM structure modeling.
Collapse
Affiliation(s)
| | | | - Keehyoung Joo
- Center for Advanced Computations, Korea Institute for Advanced Study, Seoul, South Korea
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| |
Collapse
|
5
|
Miyashita O, Tama F. Advancing cryo-electron microscopy data analysis through accelerated simulation-based flexible fitting approaches. Curr Opin Struct Biol 2023; 82:102653. [PMID: 37451233 DOI: 10.1016/j.sbi.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Flexible fitting based on molecular dynamics simulation is a technique for structure modeling from cryo-EM data. It has been utilized for nearly two decades, and while cryo-EM resolution has improved significantly, it remains a powerful approach that can provide structural and dynamical insights that are not directly accessible from experimental data alone. Molecular dynamics simulations provide a means to extract atomistic details of conformational changes that are encoded in cryo-EM data and can also assist in improving the quality of structural models. Additionally, molecular dynamics simulations enable the characterization of conformational heterogeneity in cryo-EM data. We will summarize the advancements made in these techniques and highlight recent developments in this field.
Collapse
Affiliation(s)
- Osamu Miyashita
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Florence Tama
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
6
|
Sarkar D, Lee H, Vant JW, Turilli M, Vermaas JV, Jha S, Singharoy A. Adaptive Ensemble Refinement of Protein Structures in High Resolution Electron Microscopy Density Maps with Radical Augmented Molecular Dynamics Flexible Fitting. J Chem Inf Model 2023; 63:5834-5846. [PMID: 37661856 DOI: 10.1021/acs.jcim.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Hyungro Lee
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - John W Vant
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Matteo Turilli
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
| | - Shantenu Jha
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
7
|
Blau C, Yvonnesdotter L, Lindahl E. Gentle and fast all-atom model refinement to cryo-EM densities via a maximum likelihood approach. PLoS Comput Biol 2023; 19:e1011255. [PMID: 37523411 PMCID: PMC10427019 DOI: 10.1371/journal.pcbi.1011255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/15/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
Better detectors and automated data collection have generated a flood of high-resolution cryo-EM maps, which in turn has renewed interest in improving methods for determining structure models corresponding to these maps. However, automatically fitting atoms to densities becomes difficult as their resolution increases and the refinement potential has a vast number of local minima. In practice, the problem becomes even more complex when one also wants to achieve a balance between a good fit of atom positions to the map, while also establishing good stereochemistry or allowing protein secondary structure to change during fitting. Here, we present a solution to this challenge using a maximum likelihood approach by formulating the problem as identifying the structure most likely to have produced the observed density map. This allows us to derive new types of smooth refinement potential-based on relative entropy-in combination with a novel adaptive force scaling algorithm to allow balancing of force-field and density-based potentials. In a low-noise scenario, as expected from modern cryo-EM data, the relative-entropy based refinement potential outperforms alternatives, and the adaptive force scaling appears to aid all existing refinement potentials. The method is available as a component in the GROMACS molecular simulation toolkit.
Collapse
Affiliation(s)
- Christian Blau
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Linnea Yvonnesdotter
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Low JYK, Shi X, Anandalakshmi V, Neo D, Peh GSL, Koh SK, Zhou L, Abdul Rahim MK, Boo K, Lee J, Mohanram H, Alag R, Mu Y, Mehta JS, Pervushin K. Release of frustration drives corneal amyloid disaggregation by brain chaperone. Commun Biol 2023; 6:348. [PMID: 36997596 PMCID: PMC10063603 DOI: 10.1038/s42003-023-04725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
TGFBI-related corneal dystrophy (CD) is characterized by the accumulation of insoluble protein deposits in the corneal tissues, eventually leading to progressive corneal opacity. Here we show that ATP-independent amyloid-β chaperone L-PGDS can effectively disaggregate corneal amyloids in surgically excised human cornea of TGFBI-CD patients and release trapped amyloid hallmark proteins. Since the mechanism of amyloid disassembly by ATP-independent chaperones is unknown, we reconstructed atomic models of the amyloids self-assembled from TGFBIp-derived peptides and their complex with L-PGDS using cryo-EM and NMR. We show that L-PGDS specifically recognizes structurally frustrated regions in the amyloids and releases those frustrations. The released free energy increases the chaperone's binding affinity to amyloids, resulting in local restructuring and breakage of amyloids to protofibrils. Our mechanistic model provides insights into the alternative source of energy utilized by ATP-independent disaggregases and highlights the possibility of using these chaperones as treatment strategies for different types of amyloid-related diseases.
Collapse
Affiliation(s)
- Jia Yi Kimberly Low
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, 518172, Shenzhen, China
| | | | - Dawn Neo
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Gary Swee Lim Peh
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Siew Kwan Koh
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - M K Abdul Rahim
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ketti Boo
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - JiaXuan Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Reema Alag
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Jodhbir S Mehta
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.
- Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
9
|
Lugmayr W, Kotov V, Goessweiner-Mohr N, Wald J, DiMaio F, Marlovits TC. StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement. Nat Protoc 2023; 18:239-264. [PMID: 36323866 DOI: 10.1038/s41596-022-00757-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/08/2022] [Indexed: 01/13/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) data represent density maps of macromolecular systems at atomic or near-atomic resolution. However, building and refining 3D atomic models by using data from cryo-EM maps is not straightforward and requires significant hands-on experience and manual intervention. We recently developed StarMap, an easy-to-use interface between the popular structural display program ChimeraX and Rosetta, a powerful molecular modeling engine. StarMap offers a general approach for refining structural models of biological macromolecules into cryo-EM density maps by combining Monte Carlo sampling with local density-guided optimization, Rosetta-based all-atom refinement and real-space B-factor calculations in a straightforward workflow. StarMap includes options for structural symmetry, local refinements and independent model validation. The overall quality of the refinement and the structure resolution is then assessed via analytical outputs, such as magnification calibration (pixel size calibration) and Fourier shell correlations. Z-scores reported by StarMap provide an easily interpretable indicator of the goodness of fit for each residue and can be plotted to evaluate structural models and improve local residue refinements, as well as to identify flexible regions and potentially functional sites in large macromolecular complexes. The protocol requires general computer skills, without the need for coding expertise, because most parts of the workflow can be operated by clicking tabs within the ChimeraX graphical user interface. Time requirements for the model refinement depend on the size and quality of the input data; however, this step can typically be completed within 1 d. The analytical parts of the workflow are completed within minutes.
Collapse
Affiliation(s)
- Wolfgang Lugmayr
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,CSSB Centre for Structural Systems Biology, Hamburg, Germany.,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria
| | - Vadim Kotov
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,CSSB Centre for Structural Systems Biology, Hamburg, Germany.,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Evotec SE, Hamburg, Germany
| | - Nikolaus Goessweiner-Mohr
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,CSSB Centre for Structural Systems Biology, Hamburg, Germany.,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Johannes Kepler University, Institute of Biophysics, Linz, Austria
| | - Jiri Wald
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,CSSB Centre for Structural Systems Biology, Hamburg, Germany.,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria
| | - Frank DiMaio
- University of Washington, Department of Biochemistry, Seattle, WA, USA
| | - Thomas C Marlovits
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany. .,CSSB Centre for Structural Systems Biology, Hamburg, Germany. .,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany. .,Research Institute of Molecular Pathology (IMP), Vienna, Austria. .,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
10
|
Abstract
Three-dimensional protein structural data at the molecular level are pivotal for successful precision medicine. Such data are crucial not only for discovering drugs that act to block the active site of the target mutant protein but also for clarifying to the patient and the clinician how the mutations harbored by the patient work. The relative paucity of structural data reflects their cost, challenges in their interpretation, and lack of clinical guidelines for their utilization. Rapid technological advancements in experimental high-resolution structural determination increasingly generate structures. Computationally, modeling algorithms, including molecular dynamics simulations, are becoming more powerful, as are compute-intensive hardware, particularly graphics processing units, overlapping with the inception of the exascale era. Accessible, freely available, and detailed structural and dynamical data can be merged with big data to powerfully transform personalized pharmacology. Here we review protein and emerging genome high-resolution data, along with means, applications, and examples underscoring their usefulness in precision medicine. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA; .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA;
| | - Guy Nir
- Department of Biochemistry and Molecular Biology, Department of Neuroscience, Cell Biology and Anatomy, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA;
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Yamamori Y, Tomii K. Application of Homology Modeling by Enhanced Profile-Profile Alignment and Flexible-Fitting Simulation to Cryo-EM Based Structure Determination. Int J Mol Sci 2022; 23:1977. [PMID: 35216093 PMCID: PMC8879198 DOI: 10.3390/ijms23041977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
Application of cryo-electron microscopy (cryo-EM) is crucially important for ascertaining the atomic structure of large biomolecules such as ribosomes and protein complexes in membranes. Advances in cryo-EM technology and software have made it possible to obtain data with near-atomic resolution, but the method is still often capable of producing only a density map with up to medium resolution, either partially or entirely. Therefore, bridging the gap separating the density map and the atomic model is necessary. Herein, we propose a methodology for constructing atomic structure models based on cryo-EM maps with low-to-medium resolution. The method is a combination of sensitive and accurate homology modeling using our profile-profile alignment method with a flexible-fitting method using molecular dynamics simulation. As described herein, this study used benchmark applications to evaluate the model constructions of human two-pore channel 2 (one target protein in CASP13 with its structure determined using cryo-EM data) and the overall structure of Enterococcus hirae V-ATPase complex.
Collapse
Affiliation(s)
- Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan;
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan;
- AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
12
|
Miner JC, Fenimore PW, Fischer WM, McMahon BH, Sanbonmatsu KY, Tung CS. Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022). Curr Res Struct Biol 2022; 4:220-230. [PMID: 35765663 PMCID: PMC9221923 DOI: 10.1016/j.crstbi.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
|
13
|
Hirai S, Tomimatsu K, Miyawaki-Kuwakado A, Takizawa Y, Komatsu T, Tachibana T, Fukushima Y, Takeda Y, Negishi L, Kujirai T, Koyama M, Ohkawa Y, Kurumizaka H. Unusual nucleosome formation and transcriptome influence by the histone H3mm18 variant. Nucleic Acids Res 2021; 50:72-91. [PMID: 34929737 PMCID: PMC8855299 DOI: 10.1093/nar/gkab1137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/14/2022] Open
Abstract
Histone H3mm18 is a non-allelic H3 variant expressed in skeletal muscle and brain
in mice. However, its function has remained enigmatic. We found that H3mm18 is
incorporated into chromatin in cells with low efficiency, as compared to H3.3.
We determined the structures of the nucleosome core particle (NCP) containing
H3mm18 by cryo-electron microscopy, which revealed that the entry/exit DNA
regions are drastically disordered in the H3mm18 NCP. Consistently, the H3mm18
NCP is substantially unstable in vitro. The forced expression
of H3mm18 in mouse myoblast C2C12 cells markedly suppressed muscle
differentiation. A transcriptome analysis revealed that the forced expression of
H3mm18 affected the expression of multiple genes, and suppressed a group of
genes involved in muscle development. These results suggest a novel gene
expression regulation system in which the chromatin landscape is altered by the
formation of unusual nucleosomes with a histone variant, H3mm18, and provide
important insight into understanding transcription regulation by chromatin.
Collapse
Affiliation(s)
- Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Kosuke Tomimatsu
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka812-0054, Japan
| | - Atsuko Miyawaki-Kuwakado
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka812-0054, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Tetsuro Komatsu
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15, Showa-machi, Maebashi, Gunma371-8512, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka558-8585, Japan
| | - Yutaro Fukushima
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Yasuko Takeda
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Masako Koyama
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka812-0054, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| |
Collapse
|
14
|
Wood DM, Dobson RC, Horne CR. Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation. Biochem Soc Trans 2021; 49:2711-2726. [PMID: 34854920 PMCID: PMC8786299 DOI: 10.1042/bst20210674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.
Collapse
Affiliation(s)
- David M. Wood
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
15
|
Warshamanage R, Yamashita K, Murshudov GN. EMDA: A Python package for Electron Microscopy Data Analysis. J Struct Biol 2021; 214:107826. [PMID: 34915128 PMCID: PMC8935390 DOI: 10.1016/j.jsb.2021.107826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022]
Abstract
An open-source Python library EMDA for cryo-EM map and model manipulation is presented with a specific focus on validation. The use of several functionalities in the library is presented through several examples. The utility of local correlation as a metric for identifying map-model differences and unmodeled regions in maps, and how it is used as a metric of map-model validation is demonstrated. The mapping of local correlation to individual atoms, and its use to draw insights on local signal variations are discussed. EMDA’s likelihood-based map overlay is demonstrated by carrying out a superposition of two domains in two related structures. The overlay is carried out first to bring both maps into the same coordinate frame and then to estimate the relative movement of domains. Finally, the map magnification refinement in EMDA is presented with an example to highlight the importance of adjusting the map magnification in structural comparison studies.
Collapse
Affiliation(s)
- Rangana Warshamanage
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Keitaro Yamashita
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
16
|
Simpkin AJ, Winn MD, Rigden DJ, Keegan RM. Redeployment of automated MrBUMP search-model identification for map fitting in cryo-EM. Acta Crystallogr D Struct Biol 2021; 77:1378-1385. [PMID: 34726166 PMCID: PMC8561737 DOI: 10.1107/s2059798321009165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
In crystallography, the phase problem can often be addressed by the careful preparation of molecular-replacement search models. This has led to the development of pipelines such as MrBUMP that can automatically identify homologous proteins from an input sequence and edit them to focus on the areas that are most conserved. Many of these approaches can be applied directly to cryo-EM to help discover, prepare and correctly place models (here called cryo-EM search models) into electrostatic potential maps. This can significantly reduce the amount of manual model building that is required for structure determination. Here, MrBUMP is repurposed to fit automatically obtained PDB-derived chains and domains into cryo-EM maps. MrBUMP was successfully able to identify and place cryo-EM search models across a range of resolutions. Methods such as map segmentation are also explored as potential routes to improved performance. Map segmentation was also found to improve the effectiveness of the pipeline for higher resolution (<8 Å) data sets.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martyn D. Winn
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Daniel J. Rigden
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ronan M. Keegan
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
17
|
Dasgupta B, Miyashita O, Uchihashi T, Tama F. Reconstruction of Three-Dimensional Conformations of Bacterial ClpB from High-Speed Atomic-Force-Microscopy Images. Front Mol Biosci 2021; 8:704274. [PMID: 34422905 PMCID: PMC8376356 DOI: 10.3389/fmolb.2021.704274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
ClpB belongs to the cellular disaggretase machinery involved in rescuing misfolded or aggregated proteins during heat or other cellular shocks. The function of this protein relies on the interconversion between different conformations in its native condition. A recent high-speed-atomic-force-microscopy (HS-AFM) experiment on ClpB from Thermus thermophilus shows four predominant conformational classes, namely, open, closed, spiral, and half-spiral. Analyses of AFM images provide only partial structural information regarding the molecular surface, and thus computational modeling of three-dimensional (3D) structures of these conformations should help interpret dynamical events related to ClpB functions. In this study, we reconstruct 3D models of ClpB from HS-AFM images in different conformational classes. We have applied our recently developed computational method based on a low-resolution representation of 3D structure using a Gaussian mixture model, combined with a Monte-Carlo sampling algorithm to optimize the agreement with target AFM images. After conformational sampling, we obtained models that reflect conformational variety embedded within the AFM images. From these reconstructed 3D models, we described, in terms of relative domain arrangement, the different types of ClpB oligomeric conformations observed by HS-AFM experiments. In particular, we highlighted the slippage of the monomeric components around the seam. This study demonstrates that such details of information, necessary for annotating the different conformational states involved in the ClpB function, can be obtained by combining HS-AFM images, even with limited resolution, and computational modeling.
Collapse
Affiliation(s)
- Bhaskar Dasgupta
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan
| | - Osamu Miyashita
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan
| | - Takayuki Uchihashi
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Florence Tama
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan.,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Jourdi G, Abdoul J, Siguret V, Decleves X, Frezza E, Pailleret C, Gouin-Thibault I, Gandrille S, Neveux N, Samama CM, Pasquali S, Gaussem P. Induced forms of α 2-macroglobulin neutralize heparin and direct oral anticoagulant effects. Int J Biol Macromol 2021; 184:209-217. [PMID: 34126147 DOI: 10.1016/j.ijbiomac.2021.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Alpha2-macroglobulin (α2M) is a physiological macromolecule that facilitates the clearance of many proteinases, cytokines and growth factors in human. Here, we explored the effect of induced forms of α2M on anticoagulant drugs. Gla-domainless factor Xa (GDFXa) and methylamine (MA)-induced α2M were prepared and characterized by electrophoresis, immunonephelometry, chromogenic, clot waveform and rotational thromboelastometry assays. Samples from healthy volunteers and anticoagulated patients were included. In vivo neutralization of anticoagulants was evaluated in C57Bl/6JRj mouse bleeding-model. Anticoagulant binding sites on induced α2M were depicted by computer-aided energy minimization modeling. GDFXa-induced α2M neutralized dabigatran and heparins in plasma and whole blood. In mice, a single IV dose of GDFXa-induced α2M following anticoagulant administration significantly reduced blood loss and bleeding time. Being far easier to prepare, we investigated the efficacy of MA-induced α2M. It neutralized rivaroxaban, apixaban, dabigatran and heparins in spiked samples in a concentration-dependent manner and in samples from treated patients. Molecular docking analysis evidenced the ability of MA-induced α2M to bind non-covalently these compounds via some deeply buried binding sites. Induced forms of α2M have the potential to neutralize direct oral anticoagulants and heparins, and might be developed as a universal antidote in case of major bleeding or urgent surgery.
Collapse
Affiliation(s)
- Georges Jourdi
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Centre-Université de Paris, Hôpital Cochin, F-75014, Paris, France; Research Centre, Montreal Heart Institute, University of Montreal, Faculty of Pharmacy, Montreal, Canada.
| | - Johan Abdoul
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France
| | - Virginie Siguret
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Nord-Université de Paris, Hôpital Lariboisière, F-75010 Paris, France
| | - Xavier Decleves
- AP-HP. Centre-Université de Paris, Hôpital Cochin, F-75014, Paris, France; Université de Paris, Variabilité de réponse aux psychotropes, INSERM UMR_S1144, F-75006 Paris, France
| | - Elisa Frezza
- Laboratoire CiTCoM, Université de Paris, CNRS, F-75006 Paris, France
| | - Claire Pailleret
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; Clinique du Mont Louis, F-75011 Paris, France
| | - Isabelle Gouin-Thibault
- Laboratoire d'hématologie, CHU Pontchaillou, Université de Rennes 1, CIC-Inserm1414, F-35000 Rennes, France
| | - Sophie Gandrille
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Centre-Université de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Nathalie Neveux
- AP-HP. Centre-Université de Paris, Hôpital Cochin, F-75014, Paris, France
| | - Charles Marc Samama
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Centre-Université de Paris, Hôpital Cochin, F-75014, Paris, France
| | - Samuela Pasquali
- Laboratoire CiTCoM, Université de Paris, CNRS, F-75006 Paris, France
| | - Pascale Gaussem
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR_S1140, F-75006, Paris, France; AP-HP. Centre-Université de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France.
| |
Collapse
|
19
|
Structural basis of substrate recognition and thermal protection by a small heat shock protein. Nat Commun 2021; 12:3007. [PMID: 34021140 PMCID: PMC8140096 DOI: 10.1038/s41467-021-23338-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Small heat shock proteins (sHsps) bind unfolding proteins, thereby playing a pivotal role in the maintenance of proteostasis in virtually all living organisms. Structural elucidation of sHsp-substrate complexes has been hampered by the transient and heterogeneous nature of their interactions, and the precise mechanisms underlying substrate recognition, promiscuity, and chaperone activity of sHsps remain unclear. Here we show the formation of a stable complex between Arabidopsis thaliana plastid sHsp, Hsp21, and its natural substrate 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) under heat stress, and report cryo-electron microscopy structures of Hsp21, DXPS and Hsp21-DXPS complex at near-atomic resolution. Monomeric Hsp21 binds across the dimer interface of DXPS and engages in multivalent interactions by recognizing highly dynamic structural elements in DXPS. Hsp21 partly unfolds its central α-crystallin domain to facilitate binding of DXPS, which preserves a native-like structure. This mode of interaction suggests a mechanism of sHsps anti-aggregation activity towards a broad range of substrates.
Collapse
|
20
|
Hamaguchi T, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Itoh S, Ifuku K, Yamashita E, Maeda K, Yonekura K, Kashino Y. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. Nat Commun 2021; 12:2333. [PMID: 33879791 PMCID: PMC8058080 DOI: 10.1038/s41467-021-22502-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d'. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.
Collapse
Affiliation(s)
- Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Keisuke Kawakami
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, Sumiyoshi-ku, Osaka, Japan.
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
| | | | | | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kou Maeda
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan.
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan.
| |
Collapse
|
21
|
Takeda H, Tsutsumi A, Nishizawa T, Lindau C, Busto JV, Wenz LS, Ellenrieder L, Imai K, Straub SP, Mossmann W, Qiu J, Yamamori Y, Tomii K, Suzuki J, Murata T, Ogasawara S, Nureki O, Becker T, Pfanner N, Wiedemann N, Kikkawa M, Endo T. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 2021; 590:163-169. [PMID: 33408415 DOI: 10.1038/s41586-020-03113-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
The mitochondrial outer membrane contains so-called β-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of β-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the β-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the β-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed β-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a β-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of β-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for β-barrel assembly.
Collapse
Affiliation(s)
- Hironori Takeda
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jon V Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Sanofi Deutschland GmbH, Frankfurt am Main, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Novartis Pharma AG, Basel, Switzerland
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Sanofi-Aventis (Suisse) ag, Vernier, Switzerland
| | - Waltraut Mossmann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Junko Suzuki
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan.
| |
Collapse
|
22
|
Stsiapanava A, Xu C, Brunati M, Zamora‐Caballero S, Schaeffer C, Bokhove M, Han L, Hebert H, Carroni M, Yasumasu S, Rampoldi L, Wu B, Jovine L. Cryo-EM structure of native human uromodulin, a zona pellucida module polymer. EMBO J 2020; 39:e106807. [PMID: 33196145 PMCID: PMC7737619 DOI: 10.15252/embj.2020106807] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Assembly of extracellular filaments and matrices mediating fundamental biological processes such as morphogenesis, hearing, fertilization, and antibacterial defense is driven by a ubiquitous polymerization module known as zona pellucida (ZP) "domain". Despite the conservation of this element from hydra to humans, no detailed information is available on the filamentous conformation of any ZP module protein. Here, we report a cryo-electron microscopy study of uromodulin (UMOD)/Tamm-Horsfall protein, the most abundant protein in human urine and an archetypal ZP module-containing molecule, in its mature homopolymeric state. UMOD forms a one-start helix with an unprecedented 180-degree twist between subunits enfolded by interdomain linkers that have completely reorganized as a result of propeptide dissociation. Lateral interaction between filaments in the urine generates sheets exposing a checkerboard of binding sites to capture uropathogenic bacteria, and UMOD-based models of heteromeric vertebrate egg coat filaments identify a common sperm-binding region at the interface between subunits.
Collapse
Affiliation(s)
- Alena Stsiapanava
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Chenrui Xu
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingaporeSingapore
| | - Martina Brunati
- Molecular Genetics of Renal DisordersDivision of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | | | - Céline Schaeffer
- Molecular Genetics of Renal DisordersDivision of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marcel Bokhove
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Ling Han
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hans Hebert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Biomedical Engineering and Health SystemsKTH Royal Institute of TechnologyHuddingeSweden
| | - Marta Carroni
- Department of Biochemistry and BiophysicsScience for Life LaboratoryStockholm UniversityStockholmSweden
| | - Shigeki Yasumasu
- Department of Materials and Life SciencesFaculty of Science and TechnologySophia UniversityTokyoJapan
| | - Luca Rampoldi
- Molecular Genetics of Renal DisordersDivision of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Bin Wu
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingaporeSingapore
| | - Luca Jovine
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
23
|
Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H, Kurumizaka H. Structural basis for the inhibition of cGAS by nucleosomes. Science 2020; 370:455-458. [PMID: 32912999 DOI: 10.1126/science.abd0237] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) senses invasion of pathogenic DNA and stimulates inflammatory signaling, autophagy, and apoptosis. Organization of host DNA into nucleosomes was proposed to limit cGAS autoinduction, but the underlying mechanism was unknown. Here, we report the structural basis for this inhibition. In the cryo-electron microscopy structure of the human cGAS-nucleosome core particle (NCP) complex, two cGAS monomers bridge two NCPs by binding the acidic patch of the histone H2A-H2B dimer and nucleosomal DNA. In this configuration, all three known cGAS DNA binding sites, required for cGAS activation, are repurposed or become inaccessible, and cGAS dimerization, another prerequisite for activation, is inhibited. Mutating key residues linking cGAS and the acidic patch alleviates nucleosomal inhibition. This study establishes a structural framework for why cGAS is silenced on chromatinized self-DNA.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Christian Zierhut
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryan Kim
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nobuki Uruma
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
24
|
Thompson MC, Yeates TO, Rodriguez JA. Advances in methods for atomic resolution macromolecular structure determination. F1000Res 2020; 9:F1000 Faculty Rev-667. [PMID: 32676184 PMCID: PMC7333361 DOI: 10.12688/f1000research.25097.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances have dramatically increased the power and scope of structural biology. New developments in high-resolution cryo-electron microscopy, serial X-ray crystallography, and electron diffraction have been especially transformative. Here we highlight some of the latest advances and current challenges at the frontiers of atomic resolution methods for elucidating the structures and dynamical properties of macromolecules and their complexes.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| |
Collapse
|
25
|
Kim DN, Gront D, Sanbonmatsu KY. Practical Considerations for Atomistic Structure Modeling with Cryo-EM Maps. J Chem Inf Model 2020; 60:2436-2442. [PMID: 32422044 PMCID: PMC7891309 DOI: 10.1021/acs.jcim.0c00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe common approaches to atomistic structure modeling with single particle analysis derived cryo-EM maps. Several strategies for atomistic model building and atomistic model fitting methods are discussed, including selection criteria and implementation procedures. In covering basic concepts and caveats, this short perspective aims to help facilitate active discussion between scientists at different levels with diverse backgrounds.
Collapse
Affiliation(s)
- Doo Nam Kim
- Computational Biology Team, Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
- New Mexico Consortium, Los Alamos, New Mexico, 87544, United States
| |
Collapse
|
26
|
Srivastava A, Tiwari SP, Miyashita O, Tama F. Integrative/Hybrid Modeling Approaches for Studying Biomolecules. J Mol Biol 2020; 432:2846-2860. [DOI: 10.1016/j.jmb.2020.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
|
27
|
Alnabati E, Kihara D. Advances in Structure Modeling Methods for Cryo-Electron Microscopy Maps. Molecules 2019; 25:molecules25010082. [PMID: 31878333 PMCID: PMC6982917 DOI: 10.3390/molecules25010082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/16/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) has now become a widely used technique for structure determination of macromolecular complexes. For modeling molecular structures from density maps of different resolutions, many algorithms have been developed. These algorithms can be categorized into rigid fitting, flexible fitting, and de novo modeling methods. It is also observed that machine learning (ML) techniques have been increasingly applied following the rapid progress of the ML field. Here, we review these different categories of macromolecule structure modeling methods and discuss their advances over time.
Collapse
Affiliation(s)
- Eman Alnabati
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|