1
|
Yang L, Wagner T, Mechaly A, Boyko A, Bruch EM, Megrian D, Gubellini F, Alzari PM, Bellinzoni M. High resolution cryo-EM and crystallographic snapshots of the actinobacterial two-in-one 2-oxoglutarate dehydrogenase. Nat Commun 2023; 14:4851. [PMID: 37563123 PMCID: PMC10415282 DOI: 10.1038/s41467-023-40253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.
Collapse
Affiliation(s)
- Lu Yang
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, 430207, PR China
| | - Tristan Wagner
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, D-28359, Bremen, Germany
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, Plateforme de Cristallographie, F-75015, Paris, France
| | - Alexandra Boyko
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- BostonGene, Yerevan, Armenia
| | - Eduardo M Bruch
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Sanofi, In vitro Biology, Integrated Drug Discovery, 350 Water St, Cambridge, MA, 02141, USA
| | - Daniela Megrian
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Pedro M Alzari
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Marco Bellinzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France.
| |
Collapse
|
2
|
Harnessing Rare Actinomycete Interactions and Intrinsic Antimicrobial Resistance Enables Discovery of an Unusual Metabolic Inhibitor. mBio 2022; 13:e0039322. [PMID: 35608300 PMCID: PMC9239090 DOI: 10.1128/mbio.00393-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial natural products have historically been a deep source of new medicines, but their slowed discovery in recent decades has put a premium on developing strategies that enhance the likelihood of capturing novel compounds. Here, we used a straightforward approach that capitalizes on the interactive ecology of “rare” actinomycetes. Specifically, we screened for interactions that triggered the production of antimicrobials that inhibited the growth of a bacterial strain with exceptionally diverse natural antimicrobial resistance. This strategy led to the discovery of a family of antimicrobials we term the dynaplanins. Heterologous expression enabled identification of the dynaplanin biosynthetic gene cluster, which was missed by typical algorithms for natural product gene cluster detection. Genome sequencing of partially resistant mutants revealed a 2-oxo acid dehydrogenase E2 subunit as the likely molecular target of the dynaplanins, and this finding was supported by computational modeling of the dynaplanin scaffold within the active site of this enzyme. Thus, this simple strategy, which leverages microbial interactions and natural antibiotic resistance, can enable discovery of molecules with unique antimicrobial activity. In addition, these results indicate that primary metabolism may be a direct target for inhibition via chemical interference in competitive microbial interactions.
Collapse
|
3
|
Structural basis for the activity and regulation of human α-ketoglutarate dehydrogenase revealed by Cryo-EM. Biochem Biophys Res Commun 2022; 602:120-126. [PMID: 35272141 DOI: 10.1016/j.bbrc.2022.02.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022]
Abstract
The human mitochondrial alpha-ketoglutarate (α-KG) dehydrogenase complex (hKGDHc) is a well-studied macromolecular enzyme that converts α-KG to succinyl-CoA and NADH. Abnormalities of the complex lead to several diseases, including neurodegenerative disorders. Despite its importance in human metabolism and diseases, structural information on hKGDHc is not well defined. Here, we report the 2.92 Å resolution cryo-electron microscopy (EM) structure of its E1 component 2-oxoglutarate dehydrogenase (OGDH). The density map comprised residues 129-1,023, which is nearly the full length of OGDH. The structure clearly shows the active site and Ca2+ binding site of OGDH. This structural information will improve our understanding of the structure and function of hKGDHc and benefit pharmaceutical and basic science targeting this enzyme complex.
Collapse
|
4
|
Nemeria NS, Zhang X, Leandro J, Zhou J, Yang L, Houten SM, Jordan F. Toward an Understanding of the Structural and Mechanistic Aspects of Protein-Protein Interactions in 2-Oxoacid Dehydrogenase Complexes. Life (Basel) 2021; 11:407. [PMID: 33946784 PMCID: PMC8146983 DOI: 10.3390/life11050407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.
Collapse
Affiliation(s)
- Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Jieyu Zhou
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Luying Yang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| |
Collapse
|
5
|
Artiukhov AV, Kazantsev AV, Lukashev NV, Bellinzoni M, Bunik VI. Selective Inhibition of 2-Oxoglutarate and 2-Oxoadipate Dehydrogenases by the Phosphonate Analogs of Their 2-Oxo Acid Substrates. Front Chem 2021; 8:596187. [PMID: 33511099 PMCID: PMC7835950 DOI: 10.3389/fchem.2020.596187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Phosphonate analogs of pyruvate and 2-oxoglutarate are established specific inhibitors of cognate 2-oxo acid dehydrogenases. The present work develops application of this class of compounds to specific in vivo inhibition of 2-oxoglutarate dehydrogenase (OGDH) and its isoenzyme, 2-oxoadipate dehydrogenase (OADH). The isoenzymes-enriched preparations from the rat tissues with different expression of OADH and OGDH are used to characterize their interaction with 2-oxoglutarate (OG), 2-oxoadipate (OA) and the phosphonate analogs. Despite a 100-fold difference in the isoenzymes ratio in the heart and liver, similar Michaelis saturations by OG are inherent in the enzyme preparations from these tissues (KmOG = 0.45 ± 0.06 and 0.27 ± 0.026 mM, respectively), indicating no significant contribution of OADH to the OGDH reaction, or similar affinities of the isoenzymes to OG. However, the preparations differ in the catalysis of OADH reaction. The heart preparation, where OADH/OGDH ratio is ≈ 0.01, possesses low-affinity sites to OA (KmOA = 0.55 ± 0.07 mM). The liver preparation, where OADH/OGDH ratio is ≈ 1.6, demonstrates a biphasic saturation with OA: the low-affinity sites (Km,2OA = 0.45 ± 0.12 mM) are similar to those of the heart preparation; the high-affinity sites (Km,1OA = 0.008 ± 0.001 mM), revealed in the liver preparation only, are attributed to OADH. Phosphonate analogs of C5-C7 dicarboxylic 2-oxo acids inhibit OGDH and OADH competitively to 2-oxo substrates in all sites. The high-affinity sites for OA are affected the least by the C5 analog (succinyl phosphonate) and the most by the C7 one (adipoyl phosphonate). The opposite reactivity is inherent in both the low-affinity OA-binding sites and OG-binding sites. The C6 analog (glutaryl phosphonate) does not exhibit a significant preference to either OADH or OGDH. Structural analysis of the phosphonates binding to OADH and OGDH reveals the substitution of a tyrosine residue in OGDH for a serine residue in OADH among structural determinants of the preferential binding of the bulkier ligands to OADH. The consistent kinetic and structural results expose adipoyl phosphonate as a valuable pharmacological tool for specific in vivo inhibition of the DHTKD1-encoded OADH, a new member of mammalian family of 2-oxo acid dehydrogenases, up-regulated in some cancers and associated with diabetes and obesity.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Marco Bellinzoni
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
6
|
Kinugawa H, Kondo N, Komine-Abe A, Tomita T, Nishiyama M, Kosono S. In vitro reconstitution and characterization of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase hybrid complex from Corynebacterium glutamicum. Microbiologyopen 2020; 9:e1113. [PMID: 32864855 PMCID: PMC7568260 DOI: 10.1002/mbo3.1113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) and 2‐oxoglutarate dehydrogenase (ODH) are critical enzymes in central carbon metabolism. In Corynebacterium glutamicum, an unusual hybrid complex consisting of CgE1p (thiamine diphosphate‐dependent pyruvate dehydrogenase, AceE), CgE2 (dihydrolipoamide acetyltransferase, AceF), CgE3 (dihydrolipoamide dehydrogenase, Lpd), and CgE1o (thiamine diphosphate‐dependent 2‐oxoglutarate dehydrogenase, OdhA) has been suggested. Here, we elucidated that the PDH‐ODH hybrid complex in C. glutamicum probably consists of six copies of CgE2 in its core, which is rather compact compared with PDH and ODH in other microorganisms that have twenty‐four copies of E2. We found that CgE2 formed a stable complex with CgE3 (CgE2‐E3 subcomplex) in vitro, hypothetically comprised of two CgE2 trimers and four CgE3 dimers. We also found that CgE1o exists mainly as a hexamer in solution and is ready to form an active ODH complex when mixed with the CgE2‐E3 subcomplex. Our in vitro reconstituted system showed CgE1p‐ and CgE1o‐dependent inhibition of ODH and PDH, respectively, actively supporting the formation of the hybrid complex, in which both CgE1p and CgE1o associate with a single CgE2‐E3. In gel filtration chromatography, all the subunits of CgODH were eluted in the same fraction, whereas CgE1p was eluted separately from CgE2‐E3, suggesting a weak association of CgE1p with CgE2 compared with that of CgE1o. This study revealed the unique molecular architecture of the hybrid complex from C. glutamicum and the compact‐sized complex would provide an advantage to determine the whole structure of the unusual hybrid complex.
Collapse
Affiliation(s)
- Hirokazu Kinugawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Naoko Kondo
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Ayano Komine-Abe
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Japan
| |
Collapse
|
7
|
Bezerra GA, Foster WR, Bailey HJ, Hicks KG, Sauer SW, Dimitrov B, McCorvie TJ, Okun JG, Rutter J, Kölker S, Yue WW. Crystal structure and interaction studies of human DHTKD1 provide insight into a mitochondrial megacomplex in lysine catabolism. IUCRJ 2020; 7:693-706. [PMID: 32695416 PMCID: PMC7340257 DOI: 10.1107/s205225252000696x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
DHTKD1 is a lesser-studied E1 enzyme among the family of 2-oxoacid de-hydrogenases. In complex with E2 (di-hydro-lipo-amide succinyltransferase, DLST) and E3 (dihydrolipo-amide de-hydrogenase, DLD) components, DHTKD1 is involved in lysine and tryptophan catabolism by catalysing the oxidative de-carboxyl-ation of 2-oxoadipate (2OA) in mitochondria. Here, the 1.9 Å resolution crystal structure of human DHTKD1 is solved in complex with the thi-amine diphosphate co-factor. The structure reveals how the DHTKD1 active site is modelled upon the well characterized homologue 2-oxoglutarate (2OG) de-hydrogenase but engineered specifically to accommodate its preference for the longer substrate of 2OA over 2OG. A 4.7 Å resolution reconstruction of the human DLST catalytic core is also generated by single-particle electron microscopy, revealing a 24-mer cubic scaffold for assembling DHTKD1 and DLD protomers into a megacomplex. It is further demonstrated that missense DHTKD1 variants causing the inborn error of 2-amino-adipic and 2-oxoadipic aciduria impact on the complex formation, either directly by disrupting the interaction with DLST, or indirectly through destabilizing the DHTKD1 protein. This study provides the starting framework for developing DHTKD1 modulators to probe the intricate mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Gustavo A. Bezerra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - William R. Foster
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Henry J. Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Kevin G. Hicks
- Department of Biochemistry, University of Utah School of Medicine, USA
| | - Sven W. Sauer
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Thomas J. McCorvie
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, USA
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Wyatt W. Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
8
|
Artiukhov AV, Grabarska A, Gumbarewicz E, Aleshin VA, Kähne T, Obata T, Kazantsev AV, Lukashev NV, Stepulak A, Fernie AR, Bunik VI. Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues. Sci Rep 2020; 10:1886. [PMID: 32024885 PMCID: PMC7002488 DOI: 10.1038/s41598-020-58701-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid β-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of β-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Vasily A Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, George W. Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|