1
|
Harwansh RK, Bahadur S, Deshmukh R, Rahman MA. Exciting Potential of Nanoparticlized Lipidic System for Effective Treatment of Breast Cancer and Clinical Updates: A Translational Prospective. Curr Pharm Des 2020; 26:1191-1205. [PMID: 32003686 DOI: 10.2174/1381612826666200131101156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) is a multifactorial disease and becoming a major health issue in women throughout the globe. BC is a malignant type of cancer which results from transcriptional changes in proteins and genes. Besides the availability of modern medicines and detection tools, BC has become a topmost deadly disease and its cure still remains challenging. Nanotechnology based approaches are being employed for the diagnosis and treatment of BC at clinical stages. Nanosystems have a significant role in the study of the interaction of malignant cells with their microenvironment through receptor-based targeted approach. Nowadays, lipid-based nanocarriers are being popularized in the domain of pharmaceutical and medical biology for cancer therapy. Lipidic nanoparticlized systems (LNPs) have proven to have high loading efficiency, less toxicity, improved therapeutic efficacy, enhanced bioavailability and stability of the bioactive compounds compared to traditional drug delivery systems. In the present context, several LNPs based formulations have been undertaken in various phases of clinical trials in different countries. This review highlights the importance of chemotherapeutics based lipidic nanocarriers and their anticipated use for the treatment of BC. Furthermore, the clinical trials and future prospective of LNPs have been widely elaborated.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Md A Rahman
- College of Pharmacy, Taif University, Taif - 21974, Saudi Arabia
| |
Collapse
|
2
|
Harwansh RK, Deshmukh R. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit Rev Oncol Hematol 2020; 154:103070. [PMID: 32871325 DOI: 10.1016/j.critrevonc.2020.103070] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a heterogeneous disease, occurs due to transcriptional changes in genetic and epigenetic including numerous genes and proteins. Worldwide, breast cancer (BC) is the life-threatening malignancies in women, is characterized by the occurrence of more than one molecular alteration. The incidence and mortality of BC are growing every day because of the adoption of western living standards, metropolitanization, and more life expectancy. Even though many modern approaches are available for the detection and treatment of BC, despite of these, it remains the topmost cause of death in women. This review highlights various approaches, including the importance of clinical, pathological, and molecular aspects of BC. Moreover, risk factors, biomarkers, immunotherapy, investigational drugs, and their role through tumor targets and immune systems have been discussed for management of BC. Furthermore, various targeting approaches for tumors through nanocarriers and their clinical trials have been elaborated in BC challenges and future perspectives.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| |
Collapse
|
3
|
Diaz Bessone MI, Simón-Gracia L, Scodeller P, Ramirez MDLA, Lago Huvelle MA, Soler-Illia GJAA, Simian M. iRGD-guided tamoxifen polymersomes inhibit estrogen receptor transcriptional activity and decrease the number of breast cancer cells with self-renewing capacity. J Nanobiotechnology 2019; 17:120. [PMID: 31812165 PMCID: PMC6898937 DOI: 10.1186/s12951-019-0553-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tamoxifen (Tam) is the most frequent treatment for estrogen receptor (ER) positive breast cancer. We recently showed that fibronectin (FN) leads to Tam resistance and selection of breast cancer stem cells. With the aim of developing a nanoformulation that would simultaneously tackle ER and FN/β1 integrin interactions, we designed polyethylene glycol-polycaprolactone polymersomes polymersomes (PS) that carry Tam and are functionalized with the tumor-penetrating iRGD peptide (iRGD-PS-Tam). RESULTS Polyethylene glycol-polycaprolactone PS were assembled and loaded with Tam using the hydration film method. The loading of encapsulated Tam, measured by UPLC, was 2.4 ± 0.5 mol Tam/mol polymer. Physicochemical characterization of the PS demonstrated that iRGD functionalization had no effect on morphology, and a minimal effect on the PS size and polydispersity (176 nm and Pdi 0.37 for iRGD-TAM-PS and 171 nm and Pdi 0.36 for TAM-PS). iRGD-PS-Tam were taken up by ER+ breast carcinoma cells in 2D-culture and exhibited increased penetration of 3D-spheroids. Treatment with iRGD-PS-Tam inhibited proliferation and sensitized cells cultured on FN to Tam. Mechanistically, treatment with iRGD-PS-Tam resulted in inhibition ER transcriptional activity as evaluated by a luciferase reporter assay. iRGD-PS-Tam reduced the number of cells with self-renewing capacity, a characteristic of breast cancer stem cells. In vivo, systemic iRGD-PS-Tam showed selective accumulation at the tumor site. CONCLUSIONS Our study suggests iRGD-guided delivery of PS-Tam as a potential novel therapeutic strategy for the management of breast tumors that express high levels of FN. Future studies in pre-clinical in vivo models are warranted.
Collapse
Affiliation(s)
- María Inés Diaz Bessone
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - María de los Angeles Ramirez
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - María Amparo Lago Huvelle
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Galo J. A. A. Soler-Illia
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Marina Simian
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| |
Collapse
|
4
|
Natoni A, Bohara R, Pandit A, O'Dwyer M. Targeted Approaches to Inhibit Sialylation of Multiple Myeloma in the Bone Marrow Microenvironment. Front Bioeng Biotechnol 2019; 7:252. [PMID: 31637237 PMCID: PMC6787837 DOI: 10.3389/fbioe.2019.00252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Aberrant glycosylation modulates different aspects of tumor biology, and it has long been recognized as a hallmark of cancer. Among the different forms of glycosylation, sialylation, the addition of sialic acid to underlying oligosaccharides, is often dysregulated in cancer. Increased expression of sialylated glycans has been observed in many types of cancer, including multiple myeloma, and often correlates with aggressive metastatic behavior. Myeloma, a cancer of plasma cells, develops in the bone marrow, and colonizes multiple sites of the skeleton including the skull. In myeloma, the bone marrow represents an essential niche where the malignant cells are nurtured by the microenvironment and protected from chemotherapy. Here, we discuss the role of hypersialylation in the metastatic process focusing on multiple myeloma. In particular, we examine how increased sialylation modulates homing of malignant plasma cells into the bone marrow by regulating the activity of molecules important in bone marrow cellular trafficking including selectins and integrins. We also propose that inhibiting sialylation may represent a new therapeutic strategy to overcome bone marrow-mediated chemotherapy resistance and describe different targeted approaches to specifically deliver sialylation inhibitors to the bone marrow microenvironment.
Collapse
Affiliation(s)
- Alessandro Natoni
- Apoptosis Research Centre, School of Medicine, National University of Ireland, Galway, Ireland
| | - Raghvendra Bohara
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Michael O'Dwyer
- Apoptosis Research Centre, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
5
|
Sauvage F, Legrand FX, Roux M, Rajkovic I, Weiss TM, Varga Z, Augis L, Nugue G, Debouzy JC, Vergnaud-Gauduchon J, Barratt G. Interaction of dequalinium chloride with phosphatidylcholine bilayers: A biophysical study with consequences on the development of lipid-based mitochondrial nanomedicines. J Colloid Interface Sci 2019; 537:704-715. [DOI: 10.1016/j.jcis.2018.11.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/30/2022]
|
6
|
Zilkowski I, Ziouti F, Schulze A, Hauck S, Schmidt S, Mainz L, Sauer M, Albrecht K, Jundt F, Groll J. Nanogels Enable Efficient miRNA Delivery and Target Gene Downregulation in Transfection-Resistant Multiple Myeloma Cells. Biomacromolecules 2018; 20:916-926. [DOI: 10.1021/acs.biomac.8b01553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ilona Zilkowski
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Fani Ziouti
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Andres Schulze
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Stefanie Hauck
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Stefanie Schmidt
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Laura Mainz
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Markus Sauer
- Chair for Biotechnology and Biophysics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
7
|
Detappe A, Bustoros M, Mouhieddine TH, Ghoroghchian PP. Advancements in Nanomedicine for Multiple Myeloma. Trends Mol Med 2018; 24:560-574. [DOI: 10.1016/j.molmed.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022]
|
8
|
de la Puente P, Azab AK. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. Eur J Haematol 2017; 98:529-541. [PMID: 28208215 DOI: 10.1111/ejh.12870] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
Abstract
Multiple myeloma (MM) is a hematological malignancy that remains incurable, with relapse rates >90%. The main limiting factor for the effective use of chemotherapies in MM is the serious side effects caused by these drugs. The emphasis in cancer treatment has shifted from cytotoxic, non-specific chemotherapies to molecularly targeted and rationally designed therapies showing greater efficacy and fewer side effects. Traditional chemotherapy has shown several disadvantages such as lack of targeting capabilities, systemic toxicity, and side effects; low therapeutic index, as well as most anticancer drugs, has poor water solubility. Nanoparticle delivery systems (NPs) are capable of targeting large doses of chemotherapies into the target area while sparing healthy tissues, overcoming the limitations of traditional chemotherapy. Here, we review the current state of the art in nanoparticle-based strategies designed to treat MM. Many nanoparticle delivery systems have been studied for myeloma using non-targeted NPs (liposomes, polymeric NPs, and inorganic NPs), triggered NPs, as well as targeted NPs (VLA-4, ABC drug transporters, bone microenvironment targeting). The results in preclinical and clinical studies are promising; however, there remains much to be learned in the emerging field of nanomedicine in myeloma.
Collapse
Affiliation(s)
- Pilar de la Puente
- Cancer Biology Division, Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Cancer Biology Division, Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Abstract
Nanobiotechnologies have been applied to improve drug delivery and to overcome some of the problems of drug delivery in cancer. These can be classified into many categories that include use of various nanoparticles, nanoencapsulation, targeted delivery to tumors of various organs, and combination with other methods of treatment of cancer such as radiotherapy. Nanoparticles are also used for gene therapy for cancer. Some of the technologies enable combination of diagnostics with therapeutics which will be important for the personalized management of cancer. Some of the limitations of these technologies and prospects for future development are discussed.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Blaesiring 7, CH-4057 Basel, Switzerland.
| |
Collapse
|
10
|
Sauvage F, Franzè S, Bruneau A, Alami M, Denis S, Nicolas V, Lesieur S, Legrand FX, Barratt G, Messaoudi S, Vergnaud-Gauduchon J. Formulation and in vitro efficacy of liposomes containing the Hsp90 inhibitor 6BrCaQ in prostate cancer cells. Int J Pharm 2016; 499:101-109. [DOI: 10.1016/j.ijpharm.2015.12.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
|
11
|
Urbinati G, Marsaud V, Nicolas V, Vergnaud-Gauduchon J, Renoir JM. Liposomal trichostatin A: therapeutic potential in hormone-dependent and -independent breast cancer xenograft models. Horm Mol Biol Clin Investig 2015; 6:215-25. [PMID: 25961258 DOI: 10.1515/hmbci.2011.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Trichostatin A (TSA) is one of the most potent histone deacetylase inhibitors (HDACi) in vitro but it lacks biological activity in vivo when injected intravenously owing to its fast metabolism. MATERIALS AND METHODS TSA was incorporated into Stealth® liposomes (TSA-lipo) at a high loading and its anticancer activity was evaluated in several types of breast cancer cells and xenografts. RESULTS In estrogen receptor α (ERα)-positive MCF-7 and T47-D cells, TSA induced a long-term degradation of cyclin A and a proteasome-dependent loss of ERα and cyclin D1, allowed derepression of p21WAF1/CIP1, HDAC1 and RhoB GTPase, concomitantly with blockade in G2/M of the cell cycle and apoptosis induction. In MDA-MB-231 (MDA) and SKBr-3 cells, TSA increased ERα mRNA and p21WAF1/CIP1 protein expression, but decreased cyclin A with a G2/M blockade and cleavage of polyADP-ribose polymerase (PARP). No significant restoration of any ER protein was noticed in any cells. TSA-lipo markedly inhibited tumor growth in MCF-7 and MDA cells xenografts following intravenous injection. Their anticancer effects were characterized by inhibition of Ki-67 labeling, the inhibition of tumor vasculature and an increase of p21WAF1/CIP1 in both tumors. In MCF-7 cell tumors, enhanced RhoB accumulation in the cytoplasm of epithelial cells was noticed, inversely to ERα that was strongly decreased. CONCLUSION Such anticancer activity of TSA-lipo is exp-lained by the protection provided by HDACi encapsulation and by the strong tumor accumulation of the nanocarriers as revealed by fluorescence confocal microscopy experi-ments. Together with its lack of toxicity, the enhanced stability of TSA-lipo in vivo justifies its development for therapeutic use in the treatment estradiol-dependent and -independent breast cancers.
Collapse
|
12
|
Formulation and Pharmacokinetics of Thermosensitive Stealth® Liposomes Encapsulating 5-Fluorouracil. Pharm Res 2014; 32:1585-603. [DOI: 10.1007/s11095-014-1559-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/27/2014] [Indexed: 01/29/2023]
|
13
|
Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci U S A 2014; 111:10287-92. [PMID: 24982170 DOI: 10.1073/pnas.1401337111] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(D,L-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.
Collapse
|
14
|
Kherfani A, Amri K, Hachem M, Abid L, Bouaziz M, Mestiri M. An association of vertebral breast cancer metastasis and multiple myeloma, revealed by a spinal cord compression. Pan Afr Med J 2014; 19:168. [PMID: 25810804 PMCID: PMC4364686 DOI: 10.11604/pamj.2014.19.168.5166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/04/2014] [Indexed: 11/24/2022] Open
Abstract
Authors describe the case of a patient with breast cancer and multiple myeloma as the second metachronous disease responsible for spinal cord compression. Synchronous occurrence of bone marrow breast cancer disease and multiple myeloma has not been described in the literature, as in this case. By presenting this case, we point to possible association between both diseases and the possible factors involved in the development of second malignant disease.
Collapse
Affiliation(s)
- Abdelhakim Kherfani
- Department of Adults' Orthopedics Surgery, MT Kassab, Institute of Orthopedics, Tunisia
| | - Khalil Amri
- Department of Adults' Orthopedics Surgery, MT Kassab, Institute of Orthopedics, Tunisia
| | - Mahjoub Hachem
- Department of Adults' Orthopedics Surgery, MT Kassab, Institute of Orthopedics, Tunisia
| | - Leila Abid
- Department of Histology and Pathology, MT Kassab, Institute of Orthopedics, Tunisia
| | - Mouna Bouaziz
- Department of Medical Imagery, MT Kassab, Institute of Orthopedics, Tunisia
| | - Mondher Mestiri
- Department of Adults' Orthopedics Surgery, MT Kassab, Institute of Orthopedics, Tunisia
| |
Collapse
|
15
|
Escobar Ivirico JL, Beaumont M, García Cruz DM, Gómez-Pinedo UA, Pradas MM. Cytotoxic effect of 4-hydroxytamoxifen conjugate material on human Schwann cells: Synthesis and characterization. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513506664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the toxicity of 4-hydroxytamoxifen (4-OHT) on human Schwann cells (HSCs) was evaluated. Substantial alterations in the cell morphology and viability were observed at 4-OHT concentrations higher than 3 µg/mL. Therefore, we designed and synthesized a drug–polymer conjugate, based on N-(2-hydroxypropyl)methacrylamide (HPMA) and ethyl acrylate (EA) for delivering 4-OHT to the target tissue without the detrimental consequences of the systemic therapy currently used. The macromer carrier of 4-OHT (MATX), with a functionalization degree of 80%, was synthesized in two steps and verified by 1H-NMR and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy. MATX was conjugated to the poly(HPMA-co-EA) copolymer network via radical polymerization. The influence of MATX on the physical, chemical, and mechanical properties of poly(HPMA-co-EA-co-MATX) with a ratio of 69/29/2 wt% was compared to those of poly(HPMA-co-EA) networks with a similar feed mixture. The in vitro release of 4-OHT within 1 month was 6 wt% of the total amount of drug linked to the copolymer backbone.
Collapse
Affiliation(s)
- Jorge L Escobar Ivirico
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Marco Beaumont
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Dunia M García Cruz
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Ulises A Gómez-Pinedo
- Regenerative Medicine, Neurology and Neurosurgery Lab, IdISSC, San Carlos Clinic Hospital, Madrid, Spain
| | - Manuel M Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
16
|
Lamas B, Nachat‐Kappes R, Goncalves‐Mendes N, Mishellany F, Rossary A, Vasson M, Farges M. Dietary fat without body weight gain increases in vivo MCF‐7 human breast cancer cell growth and decreases natural killer cell cytotoxicity. Mol Carcinog 2013; 54:58-71. [DOI: 10.1002/mc.22074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/22/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Bruno Lamas
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Rachida Nachat‐Kappes
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Nicolas Goncalves‐Mendes
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Florence Mishellany
- EA 4677 ERTICa, Service d'Anatomopathologie, Centre de Lutte Contre le Cancer Jean PerrinClermont‐FerrandFrance
| | - Adrien Rossary
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| | - Marie‐Paule Vasson
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
- Centre de Lutte Contre le Cancer Jean PerrinUnité de NutritionClermont‐FerrandFrance
- CHU Clermont‐Ferrand, Unité de NutritionClermont‐FerrandFrance
| | - Marie‐Chantal Farges
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH AuvergneINRA, UMR 1019Clermont‐FerrandFrance
| |
Collapse
|
17
|
Sugasini D, Lokesh BR. Uptake of α-Linolenic Acid and Its Conversion to Long Chain Omega-3 Fatty Acids in Rats Fed Microemulsions of Linseed Oil. Lipids 2012; 47:1155-67. [DOI: 10.1007/s11745-012-3731-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
18
|
Paolino D, Licciardi M, Celia C, Giammona G, Fresta M, Cavallaro G. Folate-targeted supramolecular vesicular aggregates as a new frontier for effective anticancer treatment in in vivo model. Eur J Pharm Biopharm 2012; 82:94-102. [PMID: 22705641 DOI: 10.1016/j.ejpb.2012.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/25/2022]
Abstract
Supramolecular vesicular aggregates (SVAs), made up by self-assembling liposomes and polyasparthydrazide co-polymers conjugated to folic acid molecules were extensively investigated in this manuscript as potential active targeting formulation for anticancer drug delivery. Folate-targeted systems (FT-SVAs) were used to treat breast cancer and to further proof the potential in vivo administration of these systems for the therapeutic treatment for several aggressive solid tumors. The physicochemical and technological parameters of FT-SVAs are suitable for their potential in vivo administration. The chemotherapeutic activity of GEM-loaded FT-SVAs was increased during in vivo experiments. NOD-SCID mice bearing MCF-7 human xenograft is used as breast cancer model. The measurement of the volume and weight of tumor masses decreased when animal models are treated by using GEM-loaded FT-SVAs, compared to data obtained by using GEM-loaded mPEG-SUVs and the free form of GEM. An almost complete regression of the tumor (≈ 0.2 cm(3)) was observed in NOD-SCID mice bearing MCF-7 human xenografts treated by GEM-loaded FT-SVAs due to the noticeable improvement of GEM pharmacokinetic parameters provided by FT-SVAs with respect to native anticancer drug. The obtained data showed that supramolecular systems could represent an innovative drug delivery system by self-assembling liposomes and biocompatible polymers to be potentially used for anticancer treatment.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Health Sciences, University Magna Græcia of Catanzaro, Germaneto-Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Ray D, Mohapatra DK, Mohapatra RK, Mohanta GP, Sahoo PK. Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 19:1487-502. [DOI: 10.1163/156856208786140382] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Debajyoti Ray
- a P.G. Department of Pharmaceutics, Sri Jayadev College of Pharmaceutical Sciences, Naharakanta, Bhubaneswar 752101, India
| | - Dillip K. Mohapatra
- b University Department of Pharmaceutical Sciences, Utkal University, Bhubaneswar 751004, India
| | - Ranjit K. Mohapatra
- c University Department of Pharmaceutical Sciences, Utkal University, Bhubaneswar 751004, India
| | - Guru P. Mohanta
- d Department of Pharmacy, Annamalai University, Annamalai nagar, Tamil Nadu 608002, India
| | - Prafulla K. Sahoo
- e Polymer Research Unit, Department of Chemistry, Utkal University, Bhubaneswar 751004, India
| |
Collapse
|
20
|
Sarmah JK, Mahanta R, Bhattacharjee SK, Mahanta R, Biswas A. Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles. Int J Biol Macromol 2011; 49:390-6. [PMID: 21641924 DOI: 10.1016/j.ijbiomac.2011.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery. In the present study tamoxifen citrate, TMX (a non-steroidal antiestrogenic drug) loaded guar gum nanoparticles, GG NPs, crosslinked with glutaraldehyde were prepared for treatment of breast cancer. An oil in water (o/w) emulsion polymer cross-linking method was employed for preparation of blank and drug loaded sustained release nature biodegradable nanoparticles. Prepared nanoparticles were characterized by morphology in scanning electron microscope (SEM), size distribution in transmission electron microscope (TEM), TMX loading by high performance liquid chromatography (HPLC) and in vitro drug release characteristics. An overall sustained release of the drug from the biodegradable nanoparticles was observed in in vitro release studies. The release of TMX from GG NPs was found to be effected by guar gum and glutaraldehyde concentration. Regression coefficient (R(2)) analysis suggested that the predominant mechanism behind the drug release from the nanoparticles was time dependent release and diffusion. In vivo studies on female albino mice demonstrated maximum uptake of the drug by mammary tissue after 24h of administration with drug loaded guar gum nanoparticles in comparison with that with the tablet form of the drug. These findings demonstrate that controlled release of TMX from GG NPs could be a potential alternative pharmaceutical formulation in passive targeting of TMX in breast cancer treatments.
Collapse
|
21
|
Urbinati G, Marsaud V, Plassat V, Fattal E, Lesieur S, Renoir JM. Liposomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int J Pharm 2010; 397:184-93. [DOI: 10.1016/j.ijpharm.2010.06.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
22
|
Güç E, Gündüz G, Gündüz U. Fatty acid based hyperbranched polymeric nanoparticles for hydrophobic drug delivery. Drug Dev Ind Pharm 2010; 36:1139-48. [DOI: 10.3109/03639041003691906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Urbinati G, Audisio D, Marsaud V, Plassat V, Arpicco S, Sola B, Fattal E, Renoir JM. Therapeutic potential of new 4-hydroxy-tamoxifen-loaded pH-gradient liposomes in a multiple myeloma experimental model. Pharm Res 2009; 27:327-39. [PMID: 20033476 DOI: 10.1007/s11095-009-0023-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/01/2009] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the better liposomal formulation incorporating the active metabolite of tamoxifen, 4-hydroxy-tamoxifen (4HT) and the biological impact of 4HT-pH-gradient liposomes on response to in vivo treatment. METHODS Several pegylated liposomes were formulated by varying the composition of lipids, increasing external pH from 7.4 to 9.0 and doubling the lipid concentration. Dipalmitoylphosphatidylcholine / cholesterol / distearoylphosphoethanolamine poly(ethylene)glycol liposomes (DL-9 liposomes) were chosen for their physico-chemical properties. Toxicity and release kinetics were assessed in breast cancer MCF-7 as well as in multiple myeloma (MM) cells. In vivo antitumor activity and bio-distribution were measured in the RPMI8226 MM model. RESULTS Compared to conventional non-pH-gradient liposomes, 4HT-DL-9 liposomes resulted in concentration of up to 1 mM 4HT, greater stability, relative toxicity and slow 4HT release. Intravenous injections of 4HT-DL-9 liposomes at 4 mg/kg/week blocked MM tumor growth. Ki67 and CD34 labeling decreased in treated tumors, concomitantly with increase of activated caspase-3 supporting a cell proliferation arrest, a decrease of tumor vasculature and the induction of tumor cell death. CONCLUSION This antitumor effect was assumed to be the result of a modified biodistribution of 4HT once trapped in DL-9 liposomes. Such 4HT-containing pH-gradient Stealth nanocarriers could be helpful for MM treatment.
Collapse
Affiliation(s)
- Giorgia Urbinati
- CNRS, UMR 8612, Physico-Chimie, Pharmacotechnie, Biopharmacie, Laboratoire Pharmacologie Cellulaire et Moléculaire des Anticancéreux, Faculté de Pharmacie, 5 rue J.B. Clément, Châtenay-Malabry, F-92296, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Int J Pharm 2009; 367:127-32. [DOI: 10.1016/j.ijpharm.2008.09.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 11/17/2022]
|
25
|
Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 2008; 3:311-21. [PMID: 18990940 PMCID: PMC2626938 DOI: 10.2147/ijn.s2824] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Magnetic iron oxide (IO) nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI), which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.
Collapse
Affiliation(s)
- Xiang-Hong Peng
- Department of Medical Oncology/Hematology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kiss E, Dravetzky K, Hill K, Kutnyánszky E, Varga A. Protein interaction with a Pluronic-modified poly(lactic acid) Langmuir monolayer. J Colloid Interface Sci 2008; 325:337-45. [PMID: 18649892 DOI: 10.1016/j.jcis.2008.05.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/18/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
Interaction of bovine serum albumin (BSA) with poly(lactic acid) (PLA) layers mixed with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Pluronic) at air/solution interfaces was studied by the Langmuir balance technique. Wettability of the mixed PLA-Pluronic system was characterized in the form of a transferred one-layer Langmuir-Blodgett film, and considerable hydrophilization was obtained for all of the Pluronics (6400, 6800, 10500, and 12700) applied here. The density of PEO chains in the monolayer and hence the coverage of PLA was controlled by the composition and the compression of the mixed monolayers. Tensiometric investigations revealed that a significant reduction of BSA adsorption/penetration was achieved by applying the Pluronic 6800 and 12700 with long PEO blocks for hydrophilization of PLA. Interaction of BSA with the modified PLA monolayer depended on the density and length of the PEO chains. The surface morphological characteristics of the films determined by atomic force microscopy were in good correlation with the results of BSA interaction. The average roughness of the polymer LB layer was high due to BSA penetration into the PLA film, while smooth surfaces with small roughness were obtained when the PLA layer was modified by Pluronic 6800.
Collapse
Affiliation(s)
- E Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Loránd Eötvös University, Budapest 112, P.O. Box 32, 1518 Hungary.
| | | | | | | | | |
Collapse
|
27
|
Liposomal delivery improves the growth-inhibitory and apoptotic activity of low doses of gemcitabine in multiple myeloma cancer cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2008; 4:155-66. [PMID: 18430611 DOI: 10.1016/j.nano.2008.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/13/2008] [Accepted: 02/18/2008] [Indexed: 11/23/2022]
Abstract
Gemcitabine-loaded pegylated unilamellar liposomes (200 nm) were proposed for the treatment of multiple myeloma cancer disease. Physicochemical and technological parameters of liposomes were evaluated by using laser light scattering and gel permeation chromatography. The growth-inhibitory activity of gemcitabine-loaded liposomes compared to the free drug was assayed in vitro on U266 (autocrine, interleukin-6-independent) and INA-6 (IL-6-dependent) multiple myeloma cell lines. Liposomes noticeably improved the growth-inhibitory activity of gemcitabine in terms of both dose-dependent and incubation-time effects. Liposomal delivery of gemcitabine consistently and significantly increased induction of apoptosis and caused a complete inhibition of proliferation. Liposomes were able to interact with multiple myeloma cells as demonstrated by confocal laser scanning microscopy and hence to improve the intracellular gemcitabine delivery. Gemcitabine-loaded liposomes were much more effective in vitro than the free drug. This formulation may offer even more in vivo advantages both in terms of drug pharmacokinetic and biodistribution.
Collapse
|
28
|
Rickert EL, Trebley JP, Peterson AC, Morrell MM, Weatherman RV. Synthesis and characterization of bioactive tamoxifen-conjugated polymers. Biomacromolecules 2007; 8:3608-12. [PMID: 17929966 PMCID: PMC2528197 DOI: 10.1021/bm070413t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macromolecular conjugates of tamoxifen could perhaps be used to circumvent some of the limitations of the extensively used breast cancer drug. To test the feasibility of these conjugates, a 4-hydroxytamoxifen analogue was conjugated to a diaminoalkyl linker and then conjugated to activated esters of a poly(methacrylic acid) polymer synthesized by atom transfer radical polymerization. A polymer conjugated to the 4-hydroxytamoxifen analogue with a six-carbon linker showed high affinity for both estrogen receptor alpha and estrogen receptor beta and potent antagonism of the estrogen receptor in cell-based transcriptional reporter assays. These results suggest that the conjugation of 4-hydroxytamoxifen to a polymer results in a macromolecular conjugate that can display ligand in a manner that can be recognized by estrogen receptor and still act as a potent antiestrogen in cells.
Collapse
Affiliation(s)
- Emily L. Rickert
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | | | - Anton C. Peterson
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | | | - Ross V. Weatherman
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| |
Collapse
|
29
|
Sola B, Renoir JM. Estrogenic or antiestrogenic therapies for multiple myeloma? Mol Cancer 2007; 6:59. [PMID: 17888187 PMCID: PMC2082328 DOI: 10.1186/1476-4598-6-59] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 09/24/2007] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy which remains incurable due to both intrinsic and acquired resistance to conventional or more novel drugs. Estrogenic and antiestrogenic compounds are very promising drugs for the treatment of MM. Indeed, they inhibit cell proliferation in vitro. They block cell cycle and/or induce apoptosis even in drug-resistant MM cells but not normal B cells. They interfere with survival pathways often deregulated in myelomas. They co-operate with conventional drugs to enhance apoptosis or to overcome resistance. In vivo, they act also on tumoral angiogenesis in xenograft models. As a whole, they possess all the criteria which render them attractive for a new therapeutic strategy. Importantly, they are well-tolerated at the doses tested in vitro or in vivo, encouraging the rapid onset of critical trials.
Collapse
Affiliation(s)
- Brigitte Sola
- Biologie moléculaire et cellulaire de la signalisation, IFR 146, Université de Caen, Caen, France
| | - Jack-Michel Renoir
- Pharmacologie cellulaire et moléculaire des anticancéreux, CNRS UMR 8612, Châtenay-Malabry, France
- Université de Paris-Sud, IFR 141, Orsay, France
| |
Collapse
|
30
|
Pope-Harman A, Cheng MMC, Robertson F, Sakamoto J, Ferrari M. Biomedical nanotechnology for cancer. Med Clin North Am 2007; 91:899-927. [PMID: 17826110 DOI: 10.1016/j.mcna.2007.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanotechnology may hold the key to controlling many devastating diseases. In the fight against the pain, suffering, and death due to cancer, nanotechnology will allow earlier diagnosis and even prevention of malignancy at premalignant stages, in addition to providing multimodality treatment not possible with current conventional techniques. This review discusses nanotechnology already used in diagnostic and therapeutic applications for cancer. Also addressed are theoretic and evolving uses of nanotechnology, including multifunctional nanoparticles for imaging and therapy, nanochannel implants for controlled release of drugs, nanoscale devices for evaluation of proteomics and genomics, and diagnostic techniques that take advantage of physical changes in diseased tissue.
Collapse
Affiliation(s)
- Amy Pope-Harman
- Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
31
|
Renoir JM, Stella B, Ameller T, Connault E, Opolon P, Marsaud V. Improved anti-tumoral capacity of mixed and pure anti-oestrogens in breast cancer cell xenografts after their administration by entrapment in colloidal nanosystems. J Steroid Biochem Mol Biol 2006; 102:114-27. [PMID: 17056251 DOI: 10.1016/j.jsbmb.2006.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anti-oestrogens (AEs) are currently used for treating hormone-dependent breast cancers. They specifically bind to oestrogen receptors (ERs) and inhibit their transactivation capacity. However, ERs are present in various other tissues in which AEs may have either a beneficial or detrimental action. AE administration via systems targeting breast tumours may be an important therapeutic improvement. Thus, several biodegradable drug delivery systems containing either "mixed" (4-hydroxytamoxifen - 4-HT) or "pure" (RU 58668 - RU) AEs were prepared. Liposomes and nanospheres (NS, composed of non-toxic and biodegradable lipids and poly(d,l-lactic acid) incorporated up to 1 and 0.5 mM AE, respectively. Nanocapsules (NCs) in which an oily core solubilises the AE incorporated no more than 0.02 mM of the drug. PEG-functionalised nanoparticles survived longer in plasma and had better controlled release of the drug. The small size of the vectors (100-250 nm) was compatible with their extravasation through the discontinuous endothelium of tumour vasculature, allowing their accumulation in MCF-7 cell xenografts and leading to a prolonged exposure of the tumour to AEs. In these tumours and in MCF-7/ras xenografts, RU-NS and RU-NC (6.5mg/kg/week and 0.27 mg/kg/week, respectively, doses at which free RU had a very weak effect), both inhibited tumour growth. Entrapped RU significantly induced involution of tumours and strongly induced apoptosis in tumour cells, concomitantly with inhibiting tumour angiogenesis. 4-HT-nanoparticles also arrest oestradiol-induced tumour growth, inducing apoptosis and inhibiting angiogenesis. However, unlike RU-nanoparticles, they did not promote ERalpha subtype loss in tumour cells. Subcutaneous administration of both RU- and 4-HT-NS in MCF-7 xenografts strongly arrested tumour growth for prolonged periods and RUNS decreased the number of tumour epithelial cells. Analysis of the proteins involved in cell cycle proliferation and apoptosis confirmed that RU-nanoparticles were more efficient than 4-HT-nanoparticles. Their lack of toxicity and high anti-tumour potency that affects only tumour cells in the xenograft models mean these AE-loaded colloidal systems are a breakthrough in hormone-dependent breast cancer treatment.
Collapse
Affiliation(s)
- Jack-Michel Renoir
- CNRS, UMR 8612, and Université Paris-Sud, Faculté de Pharmacie, IFR 141, 92296 Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|
32
|
Hu FX, Neoh KG, Kang ET. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 2006; 27:5725-33. [PMID: 16890989 DOI: 10.1016/j.biomaterials.2006.07.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The present study deals with the synthesis and characterization of tamoxifen-loaded magnetite/poly(l-lactic acid) composite nanoparticles (TMCN), and their in vitro anti-cancer activity against MCF-7 breast cancer cells. The composite nanoparticles with an average size of approximately 200 nm, were synthesized via a solvent evaporation/extraction technique in an oil/water emulsion. The superparamagnetic property (saturation magnetization value of approximately 7 emu/g) of the TMCN is provided by Fe(3)O(4) nanoparticles of approximately 6 nm encapsulated in the poly(l-lactic acid) matrix. The encapsulation efficiency of the Fe(3)O(4) and tamoxifen as a function of the concentration in the organic phase was investigated. The uptake of TMCN and tamoxifen by MCF-7 was estimated from the intracellular iron concentration. After 4h incubation of MCF-7 with TMCN, significant changes in the cell morphology were discernible from phase contrast microscopy. Cytotoxicity assay shows that while the Fe(3)O(4)-loaded poly(l-lactic acid) composite nanoparticles exhibit no significant cytotoxicity against MCF-7, approximately 80% of the these cells were killed after incubation for 4 days with TMCN.
Collapse
Affiliation(s)
- F X Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore
| | | | | |
Collapse
|
33
|
Maillard S, Gauduchon J, Marsaud V, Gouilleux F, Connault E, Opolon P, Fattal E, Sola B, Renoir JM. Improved antitumoral properties of pure antiestrogen RU 58668-loaded liposomes in multiple myeloma. J Steroid Biochem Mol Biol 2006; 100:67-78. [PMID: 16753295 DOI: 10.1016/j.jsbmb.2006.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
In most of multiple myeloma (MM) cells, the "pure" antiestrogen (AE) RU 58668 (RU) induced either a G1-arrest (LP-1, OPM-2, NCI-H929, U266 cells) or apoptosis (RPMI 8226 cells). In RPMI 8226 cells, RU activates a caspase-dependent cell death pathway leading to the release of cytochrome c, the decrease of the essential MM survival factor Mcl-1, the cleavage of Bid and the activation of caspases-3 and -8. Incorporation of RU in pegylated cholesterol-containing liposomes allowed a controlled RU release, improving its anti-proliferative and apoptotic effects in cells. In RPMI 8226 xenografts, i.v. injected RU-liposomes but not free RU, exhibited antitumor activity. In vivo, RU-liposomes triggered the mitochondrial death pathway, concomitantly with a down-regulation of Mcl-1 and Bid cleavage. The decrease of CD34 immunoreactivity indicated a reduction of angiogenesis. The decrease of VEGF secretion in vitro supported a direct effect of RU on angiogenesis. These pro-apoptotic and antiangiogenic effects were explained by a prolonged exposure to the drug and to the endocytosis capacity of liposomes which might increase RU uptake and bypass a membrane export of free RU. Thus, these combined enhanced activities of RU-liposomes support that such a delivery of an AE may constitute a strategy of benefit for MM treatment.
Collapse
|
34
|
Ottewell PD, Coleman RE, Holen I. From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res Treat 2006; 96:101-13. [PMID: 16319986 DOI: 10.1007/s10549-005-9067-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous mouse models of mammary cancer have been developed that mimic selective aspects of human disease. The use of these models has enabled preclinical chemotherapeutic, chemoprevention, and genetic therapy studies in vivo, the testing of gene delivery systems, and the identification of tumour and metastasis suppressor and inducer genes. This review has discussed the most abundantly used murine models of mammary cancer including: spontaneous tumours, chemically induced tumours, orthotopic and syngeneic tumour transplantation, injected tumours, and genetically engineered mice with a predisposition to neoplasia. Each model has been discussed with regards to its merits and limitations for investigating the genetic and phenotypic alterations involved in the human disease as well as its potential usefulness for the development of new treatment strategies. To date no single mouse model is available with the ability to replicate the entire disease process, however, existing models continue to provide invaluable insights into breast cancer induction and progression that would be impossible to obtain using in vitro models alone.
Collapse
Affiliation(s)
- P D Ottewell
- Academic Unit of Clinical Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|