1
|
Ho QV, Young MJ. Mineralocorticoid receptors, macrophages and new mechanisms for cardiovascular disease. Mol Cell Endocrinol 2024; 593:112340. [PMID: 39134137 DOI: 10.1016/j.mce.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Quoc Viet Ho
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia; Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Sassi A, Wang Y, Chassot A, Roth I, Ramakrishnan S, Olivier V, Staub O, Udwan K, Feraille E. Expression of claudin-8 is induced by aldosterone in renal collecting duct principal cells. Am J Physiol Renal Physiol 2021; 321:F645-F655. [PMID: 34605273 DOI: 10.1152/ajprenal.00207.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fine tuning of Na+ reabsorption takes place along the aldosterone-sensitive distal nephron, which includes the collecting duct (CD), where it is mainly regulated by aldosterone. In the CD, Na+ reabsorption is mediated by the epithelial Na+ channel and Na+ pump (Na+-K+-ATPase). Paracellular ion permeability is mainly dependent on tight junction permeability. Claudin-8 is one of the main tight junction proteins expressed along the aldosterone-sensitive distal nephron. We have previously shown a coupling between transcellular Na+ reabsorption and paracellular Na+ barrier. We hypothesized that aldosterone controls the expression levels of both transcellular Na+ transporters and paracellular claudin-8 in a coordinated manner. Here, we show that aldosterone increased mRNA and protein levels as well as lateral membrane localization of claudin-8 in cultured CD principal cells. The increase in claudin-8 mRNA levels in response to aldosterone was prevented by preincubation with 17-hydroxyprogesterone, a mineralocorticoid receptor antagonist, and by inhibition of transcription with actinomycin D. We also showed that a low-salt diet, which stimulated aldosterone secretion, was associated with increased claudin-8 abundance in the mouse kidney. Reciprocally, mice subjected to a high-salt diet, which inhibits aldosterone secretion, or treated with spironolactone, a mineralocorticoid receptor antagonist, displayed decreased claudin-8 expression. Inhibition of glycogen synthase kinase-3, Lyn, and Abl signaling pathways prevented the effect of aldosterone on claudin-8 mRNA and protein abundance, suggesting that signaling of protein kinases plays a permissive role on the transcriptional activity of the mineralocorticoid receptor. This study shows that signaling via multiple protein kinases working in concert mediates aldosterone-induced claudin-8 expression in the CD.NEW & NOTEWORTHY In this study, we showed that aldosterone modulates claudin-8 expression in cultured collecting duct principal cells and in the mouse kidney. The upregulation of claudin-8 expression in response to aldosterone is dependent on at least glycogen synthase kinase-3, Lyn, and Abl signaling pathways, indicating the participation of multiple protein kinases to the effect of aldosterone.
Collapse
Affiliation(s)
- Ali Sassi
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Center of Competence in Research "Kidney.ch," Switzerland
| | - Yubao Wang
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Center of Competence in Research "Kidney.ch," Switzerland
| | - Alexandra Chassot
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Center of Competence in Research "Kidney.ch," Switzerland
| | - Isabelle Roth
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Suresh Ramakrishnan
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Center of Competence in Research "Kidney.ch," Switzerland
| | - Valérie Olivier
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Center of Competence in Research "Kidney.ch," Switzerland
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Khalil Udwan
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Eric Feraille
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Center of Competence in Research "Kidney.ch," Switzerland
| |
Collapse
|
3
|
OPALS: A New Osimertinib Adjunctive Treatment of Lung Adenocarcinoma or Glioblastoma Using Five Repurposed Drugs. Cells 2021; 10:cells10051148. [PMID: 34068720 PMCID: PMC8151869 DOI: 10.3390/cells10051148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Pharmacological targeting aberrant activation of epidermal growth factor receptor tyrosine kinase signaling is an established approach to treating lung adenocarcinoma. Osimertinib is a tyrosine kinase approved and effective in treating lung adenocarcinomas that have one of several common activating mutations in epidermal growth factor receptor. The emergence of resistance to osimertinib after a year or two is the rule. We developed a five-drug adjuvant regimen designed to increase osimertinib’s growth inhibition and thereby delay the development of resistance. Areas of Uncertainty: Although the assembled preclinical data is strong, preclinical data and the following clinical trial results can be discrepant. The safety of OPALS drugs when used individually is excellent. We have no data from humans on their tolerability when used as an ensemble. That there is no data from the individual drugs to suspect problematic interaction does not exclude the possibility. Data Sources: All relevant PubMed.org articles on the OPALS drugs and corresponding pathophysiology of lung adenocarcinoma and glioblastoma were reviewed. Therapeutic Opinion: The five drugs of OPALS are in wide use in general medicine for non-oncology indications. OPALS uses the anti-protozoal drug pyrimethamine, the antihistamine cyproheptadine, the antibiotic azithromycin, the antihistamine loratadine, and the potassium sparing diuretic spironolactone. We show how these inexpensive and generically available drugs intersect with and inhibit lung adenocarcinoma growth drive. We also review data showing that both OPALS adjuvant drugs and osimertinib have data showing they may be active in suppressing glioblastoma growth.
Collapse
|
4
|
Erbaş İM, Altincik SA, Çatli G, Ünüvar T, Özhan B, Abaci A, Anik A. Does fludrocortisone treatment cause hypomagnesemia in children with primary adrenal insufficiency? Turk J Med Sci 2021; 51:231-237. [PMID: 33155789 PMCID: PMC7991856 DOI: 10.3906/sag-2008-167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/05/2020] [Indexed: 11/18/2022] Open
Abstract
Background/aim Aldosterone is a mineralocorticoid that secreted from adrenal glands and a known factor to increase magnesium excretion by direct and indirect effects on renal tubular cells. Although the frequency of hypomagnesemia was found to be approximately 5% in adult studies, there is no study in the literature investigating the frequency of hypomagnesemia in children by using fludrocortisone, which has a mineralocorticoid activity. Materials and methods A multi-center retrospective study was conducted, including children who were under fludrocortisone treatment for primary adrenal insufficiency and applied to participant pediatric endocrinology outpatient clinics. Results Forty-three patients (58.1% male, 41.9% prepubertal) included in the study, whose median age was 9.18 (0.61-19) years, and the most common diagnosis among the patients was a salt-wasting form of congenital adrenal hyperplasia (67.4%). Mean serum magnesium level was 2.05 (±0.13) mg/dL, and hypomagnesemia was not observed in any of the patients treated with fludrocortisone. None of the patients had increased urinary excretion of magnesium. Conclusion Unlike the studies performed in adults, we could not find any evidence of magnesium wasting effect of fludrocortisone treatment with normal or even high doses in children and adolescents.
Collapse
Affiliation(s)
- İbrahim Mert Erbaş
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Selda Ayça Altincik
- Department of Pediatric Endocrinology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gönül Çatli
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Kâtip Çelebi University, İzmir, Turkey
| | - Tolga Ünüvar
- Department of Pediatric Endocrinology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Bayram Özhan
- Department of Pediatric Endocrinology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ayhan Abaci
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahmet Anik
- Department of Pediatric Endocrinology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
5
|
Thomas W, Dooley R, Quinn S, Robles MY, Harvey BJ. Protein kinase D2 regulates epithelial sodium channel activity and aldosterone non-genomic responses in renal cortical collecting duct cells. Steroids 2020; 155:108553. [PMID: 31836481 DOI: 10.1016/j.steroids.2019.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Perdana University - Royal College of Surgeons in Ireland School of Medicine, Block D MAEPS, Serdang 43400, Selangor, Malaysia
| | - Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Sinead Quinn
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Manuel Yusef Robles
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Centro di Estudios Cientificos CECs, Valdivia, Chile.
| |
Collapse
|
6
|
Chambers L, Dorrance AM. Regulation of ion channels in the microcirculation by mineralocorticoid receptor activation. CURRENT TOPICS IN MEMBRANES 2020; 85:151-185. [PMID: 32402638 DOI: 10.1016/bs.ctm.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mineralocorticoid receptor (MR) has classically been studied in the renal epithelium for its role in regulating sodium and water balance and, subsequently, blood pressure. However, the MR also plays a critical role in the microvasculature by regulating ion channel expression and function. Activation of the MR by its endogenous agonist aldosterone results in translocation of the MR into the nucleus, where it can act as a transcription factor. Although most of the actions of the aldosterone can be attributed to its genomic activity though MR activation, it can also act by nongenomic mechanisms. Activation of this ubiquitous receptor increases the expression of epithelial sodium channels (ENaC) in both the endothelium and smooth muscle cells of peripheral and cerebral vessels. MR activation also regulates activity of calcium channels, calcium-activated potassium channels, and various transient receptor potential (TRP) channels. Modification of these ion channels results in a myriad of negative consequences, including impaired endothelium-dependent vasodilation, alterations in generation of myogenic tone, and increased inflammation and oxidative stress. Taken together, these studies demonstrate the importance of studying the impact of the MR on ion channel function in the vasculature. While research in this area has made advances in recent years, there are still many large gaps in knowledge that need to be filled. Crucial future directions of study include defining the molecular mechanisms involved in this interaction, as well as elucidating the potential sex differences that may exist, as these areas of understanding are currently lacking.
Collapse
Affiliation(s)
- Laura Chambers
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
7
|
Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation. Mol Cancer Res 2019; 17:1961-1974. [PMID: 31311827 DOI: 10.1158/1541-7786.mcr-19-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
Protein kinase D1 (PKD1) is a serine/threonine kinase that belongs to the calcium/calmodulin-dependent kinase family, and is involved in multiple mechanisms implicated in tumor progression such as cell motility, invasion, proliferation, protein transport, and apoptosis. While it is expressed in most tissues in the normal state, PKD1 expression may increase or decrease during tumorigenesis, and its role in proliferation is context-dependent and poorly understood. In this review, we present and discuss the current landscape of studies investigating the role of PKD1 in the proliferation of both cancerous and normal cells. Indeed, as a potential therapeutic target, deciphering whether PKD1 exerts a pro- or antiproliferative effect, and under what conditions, is of paramount importance.
Collapse
Affiliation(s)
- Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France. .,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
8
|
Young MJ, Adler GK. Aldosterone, the Mineralocorticoid Receptor and Mechanisms of Cardiovascular Disease. VITAMINS AND HORMONES 2019; 109:361-385. [DOI: 10.1016/bs.vh.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Abstract
Since its discovery, aldosterone and ion modulation have been entwined. While scientific investigations throughout the decades have emphasized aldosterone's connection to Na+, K+, and H+ homeostasis, more recent research has demonstrated a relationship between aldosterone and Mg2+, Ca2+, and Cl- homeostasis. The mechanisms connecting aldosterone to ion regulation frequently involve ion channels; the membrane localized proteins containing at least one aqueous pore for ion conduction. In order to precisely control intracellular or intraorganelle ion concentrations, ion channels have evolved highly specific regions within the conduction pore that select ions by charge, size, and/or dehydration energy requirement, meaning aldosterone must be able to modulate multiple ion channels to regulate the many ions described above. The list of ion channels presently connected to aldosterone includes ENaC (Na+), ROMK/BK (K+), TRPV4/5/6 (Ca2+), TRPM7/6 (Mg2+), and ClC-K/CFTR (Cl-), among others. This list is only expected to grow over time, as the promiscuity of aldosterone becomes more understood.
Collapse
Affiliation(s)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Geng J, Zhao Z, Yang L, Zhang M, Liu X. Protein Kinase D was involved in vascular remodeling in spontaneously hypertensive rats. Clin Exp Hypertens 2018; 41:299-306. [PMID: 29781735 DOI: 10.1080/10641963.2018.1469647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was designed to determine the role of PKD in vascular remodeling (VR) in Spontaneously hypertensive rats (SHRs). Increased SBP, VR and PKD activation were prominent in SHRs. The SBP has a positive correlation with the activation of PKD in SHRs. The ratio of media to lumen (MT/LD), volume fraction of collagen (VFC), hydroxyproline, IL-6, TNF-α and nitrotyrosine content were significantly related to the activated PKD. It may be concluded that PKD plays a central role in VR, and the mechanism may be related to its regulation of hypertrophy, fibrosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jing Geng
- a Shandong provincial Hospital Affiliated to Shandong University , Jinan , Shandong , PR China
| | - Zhuo Zhao
- b Department of Cardiology Ji'nan Central Hospital , Jinan , Shandong , PR China
| | - Le Yang
- a Shandong provincial Hospital Affiliated to Shandong University , Jinan , Shandong , PR China
| | - Mingwei Zhang
- a Shandong provincial Hospital Affiliated to Shandong University , Jinan , Shandong , PR China
| | - Xiangjuan Liu
- c The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health , Shandong University Qilu Hospital , Jinan , Shandong , PR China
| |
Collapse
|
11
|
Harvey BJ, Thomas W. Aldosterone-induced protein kinase signalling and the control of electrolyte balance. Steroids 2018; 133:67-74. [PMID: 29079406 DOI: 10.1016/j.steroids.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 01/20/2023]
Abstract
Aldosterone acts through the mineralocorticoid receptor (MR) to modulate gene expression in target tissues. In the kidney, the principal action of aldosterone is to promote sodium conservation in the distal nephron and so indirectly enhance water conservation under conditions of hypotension. Over the last twenty years the rapid activation of protein kinase signalling cascades by aldosterone has been described in various tissues. This review describes the integration of rapid protein kinase D signalling responses with the non-genomic actions of aldosterone and transcriptional effects of MR activation.
Collapse
Affiliation(s)
- Brian J Harvey
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education Centre, Beaumont Hospital, Dublin, Ireland
| | - Warren Thomas
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education Centre, Beaumont Hospital, Dublin, Ireland; Perdana University - Royal College of Surgeons in Ireland School of Medicine, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Function and Regulation of Protein Kinase D in Oxidative Stress: A Tale of Isoforms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2138502. [PMID: 29854077 PMCID: PMC5944262 DOI: 10.1155/2018/2138502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Oxidative stress is a condition that arises when cells are faced with levels of reactive oxygen species (ROS) that destabilize the homeostatic redox balance. High levels of ROS can cause damage to macromolecules including DNA, lipids, and proteins, eventually resulting in cell death. Moderate levels of ROS however serve as signaling molecules that can drive and potentiate several cellular phenotypes. Increased levels of ROS are associated with a number of diseases including neurological disorders and cancer. In cancer, increased ROS levels can contribute to cancer cell survival and proliferation via the activation of several signaling pathways. One of the downstream effectors of increased ROS is the protein kinase D (PKD) family of kinases. In this review, we will discuss the regulation and function of this family of ROS-activated kinases and describe their unique isoform-specific features, in terms of both kinase regulation and signaling output.
Collapse
|
13
|
Ruhs S, Nolze A, Hübschmann R, Grossmann C. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. J Endocrinol 2017; 234:T107-T124. [PMID: 28348113 DOI: 10.1530/joe-16-0659] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid hormone receptor family and classically functions as a ligand-dependent transcription factor. It is involved in water-electrolyte homeostasis and blood pressure regulation but independent from these effects also furthers inflammation, fibrosis, hypertrophy and remodeling in cardiovascular tissues. Next to genomic effects, aldosterone elicits very rapid actions within minutes that do not require transcription or translation and that occur not only in classical MR epithelial target organs like kidney and colon but also in nonepithelial tissues like heart, vasculature and adipose tissue. Most of these effects can be mediated by classical MR and its crosstalk with different signaling cascades. Near the plasma membrane, the MR seems to be associated with caveolin and striatin as well as with receptor tyrosine kinases like EGFR, PDGFR and IGF1R and G protein-coupled receptors like AT1 and GPER1, which then mediate nongenomic aldosterone effects. GPER1 has also been named a putative novel MR. There is a close interaction and functional synergism between the genomic and the nongenomic signaling so that nongenomic signaling can lead to long-term effects and support genomic actions. Therefore, understanding nongenomic aldosterone/MR effects is of potential relevance for modulating genomic aldosterone effects and may provide additional targets for intervention.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Nolze
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Ralf Hübschmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
14
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget 2016; 7:94-111. [PMID: 26646587 PMCID: PMC4807985 DOI: 10.18632/oncotarget.6475] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022] Open
Abstract
Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer.
Collapse
|
16
|
Valinsky WC, Jolly A, Miquel P, Touyz RM, Shrier A. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7). J Biol Chem 2016; 291:20163-72. [PMID: 27466368 PMCID: PMC5025699 DOI: 10.1074/jbc.m116.735175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg(2+)-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg(2+) levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed.
Collapse
Affiliation(s)
- William C Valinsky
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Anna Jolly
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Perrine Miquel
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Rhian M Touyz
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Alvin Shrier
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| |
Collapse
|
17
|
Hian CK, Lee CL, Thomas W. Renin-Angiotensin-Aldosterone System Antagonism and Polycystic Kidney Disease Progression. Nephron Clin Pract 2016; 134:59-63. [PMID: 27476173 DOI: 10.1159/000448296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disease characterised by the formation of multiple renal cysts that adversely affect renal function. ADPKD shows significant progression with age when complications due to hypertension are most significant. The activation of the renin-angiotensin-aldosterone system (RAAS) occurs in progressive kidney disease leading to hypertension. The RAAS system may also contribute to ADPKD progression by stimulating signalling pathways in the renal cyst cells to promote growth and deregulate epithelial transport. This mini review focuses on the contribution of the RAAS system to renal cyst enlargement and the potential for antagonists of the RAAS system to suppress cyst enlargement as well as control ADPKD-associated hypertension.
Collapse
Affiliation(s)
- Chuan Kai Hian
- Perdana University - Royal College of Surgeons in Ireland School of Medicine, Serdang, Malaysia
| | | | | |
Collapse
|
18
|
Forrester SJ, Kawai T, O'Brien S, Thomas W, Harris RC, Eguchi S. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annu Rev Pharmacol Toxicol 2015; 56:627-53. [PMID: 26566153 DOI: 10.1146/annurev-pharmtox-070115-095427] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Shannon O'Brien
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Walter Thomas
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| |
Collapse
|
19
|
Xiao J, Chen W, Lu Y, Zhang X, Fu C, Yan Z, Zhang Z, Ye Z. Crosstalk between peroxisome proliferator-activated receptor-γ and mineralcorticoid receptor in TNF-α activated renal tubular cell. Inflamm Res 2015; 64:603-14. [PMID: 26072064 DOI: 10.1007/s00011-015-0838-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/31/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In our previous study, we observed the crosstalk between peroxisome proliferator-activated receptor-γ (PPAR-γ) and angiotensin II in activated renal tubular cells. The present study is aimed to further explore the crosstalk between PPAR-γ and mineralocorticoid receptor (MR) in tumor necrosis factor (TNF)-α activated renal tubular cells. METHODS Human proximal renal tubular epithelial cells HK-2 were cultured with the pre-treatment of PPAR-γ agonist, pioglitazone (5 μM), MR antagonist, eplerenone (5 μM), or their combined treatment, followed by activation with TNF-α (20 ng/ml). In the parallel experiment, PPAR-γ inhibitor GW9662 (25 µM) was used to study the independence of PPAR-γ. Gene expression and protein synthesis of intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), MR and PPAR-γ were measured by RT-PCR, ELISA and Western blot, respectively; nuclear factor κB (NF-κB) nuclear translocation activity in the nucleus was examined by EMSA assay. RESULTS TNF-α effectively activated HK-2 cells by up-regulating gene expression and protein synthesis of ICAM-1, IL-6 and MR and down-regulating PPAR-γ in a dose-dependent manner. TNF-α also significantly induced NF-κB nuclear translocation in HK-2 cells. Dual treatment of pioglitazone and eplerenone demonstrated synergistic effect on reducing ICAM-1 and IL-6 expression and alleviating NF-κB activation when compared with their monotherapies in TNF-α activated renal tubular cells. PPAR-γ antagonist, GW9662, significantly attenuated protective effect on ICAM-1, IL-6 and PPAR-γ expression by pioglitazone, eplerenone and their combined treatment. CONCLUSIONS Our data suggest that pioglitazone, in a PPAR-γ-dependent manner, trans-represses MR signaling by suppressing NF-κB activation. MR antagonist also restored PPAR-γ expression. Dual treatment of pioglitazone and eplerenone present better efficacy in attenuating excessive inflammatory response in activated renal tubular cells under stimulation of TNF-α than single treatment.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Meinel S, Gekle M, Grossmann C. Mineralocorticoid receptor signaling: crosstalk with membrane receptors and other modulators. Steroids 2014; 91:3-10. [PMID: 24928729 DOI: 10.1016/j.steroids.2014.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid receptor superfamily. Classically, it acts as a ligand-bound transcription factor in epithelial tissues, where it regulates water and electrolyte homeostasis and controls blood pressure. Additionally, the MR has been shown to elicit pathophysiological effects including inflammation, fibrosis and remodeling processes in the cardiovascular system and the kidneys and MR antagonists have proven beneficial for patients with certain cardiovascular and renal disease. The underlying molecular mechanisms that mediate MR effects have not been fully elucidated but very likely rely on interactions with other signaling pathways in addition to genomic actions at hormone response elements. In this review we will focus on interactions of MR signaling with different membrane receptors, namely receptor tyrosine kinases and the angiotensin II receptor because of their potential relevance for disease. In addition, GPR30 is discussed as a new aldosterone receptor. To gain insights into the problem why the MR only seems to mediate pathophysiological effects in the presence of additional permissive factors we will also briefly discuss factors that lead to modulation of MR activity as well. Overall, MR signaling is part of an intricate network that still needs to be investigated further.
Collapse
Affiliation(s)
- S Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - M Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - C Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
21
|
Gilet A, Zou F, Boumenir M, Frippiat JP, Thornton SN, Lacolley P, Ropars A. Aldosterone up-regulates MMP-9 and MMP-9/NGAL expression in human neutrophils through p38, ERK1/2 and PI3K pathways. Exp Cell Res 2014; 331:152-163. [PMID: 25449697 DOI: 10.1016/j.yexcr.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/04/2014] [Accepted: 11/09/2014] [Indexed: 01/08/2023]
Abstract
Aldosterone and mineralocorticoid receptors are important regulators of inflammation. During this process, chemokines and extracellular matrix degradation by matrix metalloproteases, such as MMP-9, help leukocytes reaching swiftly and infiltrating the injured tissue, two processes essential for tissue repair. Leukocytes, such as neutrophils, are a rich source of MMP-9 and possess mineralocorticoid receptors (MR). The aim of our study was to investigate whether aldosterone was able to regulate proMMP-9, active MMP-9 and MMP-9/NGAL production in human neutrophils. Here we show that aldosterone increased MMP-9 mRNA in a dose- and time-dependent manner. This hormone up-regulated also dose-dependently proMMP-9 and active MMP-9 protein release as well as the MMP-9/NGAL protein complex. PI3K, p38 and ERK1/2 inhibition diminished these aldosterone-induced neutrophil productions. Furthermore, spironolactone, a MR antagonist, counteracted aldosterone-induced increases of proMMP-9, active MMP-9 and MMP-9/NGAL complex. These findings indicate that aldosterone could participate in tissue repair by modulating neutrophil activity and favoring extracellular matrix degradation.
Collapse
Affiliation(s)
- Alexandre Gilet
- (a)University of Lorraine, UMR_S U1116 (ex-U961 UHP-INSERM), Vandoeuvre-les-Nancy, France
| | - Feng Zou
- (a)University of Lorraine, UMR_S U1116 (ex-U961 UHP-INSERM), Vandoeuvre-les-Nancy, France; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, Hubei Province, China
| | - Meriem Boumenir
- (a)University of Lorraine, UMR_S U1116 (ex-U961 UHP-INSERM), Vandoeuvre-les-Nancy, France
| | - Jean-Pol Frippiat
- EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandoeuvre-les-Nancy, France
| | - Simon N Thornton
- (a)University of Lorraine, UMR_S U1116 (ex-U961 UHP-INSERM), Vandoeuvre-les-Nancy, France
| | - Patrick Lacolley
- (a)University of Lorraine, UMR_S U1116 (ex-U961 UHP-INSERM), Vandoeuvre-les-Nancy, France
| | - Armelle Ropars
- (a)University of Lorraine, UMR_S U1116 (ex-U961 UHP-INSERM), Vandoeuvre-les-Nancy, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandoeuvre-les-Nancy, France.
| |
Collapse
|
22
|
Abstract
Aldosterone regulates blood pressure through its effects on the kidney and the cardiovascular system. Dysregulation of aldosterone signalling can result in hypertension which in turn can lead to chronic pathologies of the kidney such as renal fibrosis and nephropathy. Aldosterone acts by binding to the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues such as segments of the distal nephron including the connecting tubule and cortical collecting duct (CCD). Aldosterone also promotes the activation of protein kinase signalling cascades that are coupled to growth factor receptors and act directly on specific substrates in the cell membrane or cytoplasm. The rapid actions of aldosterone can also modulate gene expression through the phosphorylation of transcription factors. Aldosterone is a key regulator of Na(+) conservation in the distal nephron, largely through multiple mechanisms that modulate the activity of the epithelial Na(+) channel (ENaC). Aldosterone transcriptionally up-regulates the ENaCα subunit and also up regulates serum and glucocorticoid-regulated kinase-1 (SGK1) that indirectly regulates the ubiquitination of ENaC subunits. Aldosterone promotes the activation of protein kinase D1 (PKD1) which can modify the activity of ENaC and other transporters through effects on sub-cellular trafficking. In M1-CCD cells, early sub-cellular trafficking causes the redistribution of ENaC subunits within minutes of treatment with aldosterone. ENaC subunits can also interact directly with phosphatidylinositide signalling intermediates in the membrane and the mechanism by which PKD isoforms regulate protein trafficking is through the control of vesicle fission from the trans Golgi network by activation of phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ).
Collapse
Affiliation(s)
- Sinéad Quinn
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Warren Thomas
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
23
|
Dooley R, Angibaud E, Yusef YR, Thomas W, Harvey BJ. Aldosterone-induced ENaC and basal Na+/K+-ATPase trafficking via protein kinase D1-phosphatidylinositol 4-kinaseIIIβ trans Golgi signalling in M1 cortical collecting duct cells. Mol Cell Endocrinol 2013; 372:86-95. [PMID: 23541637 DOI: 10.1016/j.mce.2013.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/11/2013] [Accepted: 03/15/2013] [Indexed: 01/06/2023]
Abstract
Aldosterone regulates Na(+) transport in the distal nephron through multiple mechanisms that include the transcriptional control of epithelial sodium channel (ENaC) and Na(+)/K(+)-ATPase subunits. Aldosterone also induces the rapid phosphorylation of Protein Kinase D1 (PKD1). PKD isoforms regulate protein trafficking, by the control of vesicle fission from the trans Golgi network (TGN) through activation of phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ). We report rapid ENaCγ translocation to the plasma membrane after 30 min aldosterone treatment in polarized M1 cortical collecting duct cells, which was significantly impaired in PKD1 shRNA-mediated knockdown cells. In PKD1-deficient cells, the ouabain-sensitive current was significantly reduced and Na(+)/K(+)-ATPase α and β subunits showed aberrant localization. PKD1 and PI4KIIIβ localize to the TGN, and aldosterone induced an interaction between PKD1 and PI4KIIIβ following aldosterone treatment. This study reveals a novel mechanism for rapid regulation of ENaC and the Na(+)/K(+)-ATPase, via directed trafficking through PKD1-PI4KIIIβ signalling at the level of the TGN.
Collapse
Affiliation(s)
- Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
24
|
Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci 2013; 14:10761-90. [PMID: 23702846 PMCID: PMC3709701 DOI: 10.3390/ijms140610761] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
The Src gene product (Src) and the epidermal growth factor receptor (EGFR) are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845) in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases) or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase). A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.
Collapse
|
25
|
Rapid nongenomic action of aldosterone on protein expressions of Hsp90( α and β ) and pc-Src in rat kidney. BIOMED RESEARCH INTERNATIONAL 2013; 2013:346480. [PMID: 23484111 PMCID: PMC3581097 DOI: 10.1155/2013/346480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/25/2012] [Accepted: 12/25/2012] [Indexed: 01/28/2023]
Abstract
Previous in vitro studies indicated that aldosterone nongenomically phosphorylates epidermal growth factor receptor (EGFR) through activation of upstream signals, heat shock protein 90 β (Hsp90 β ), and cytosolic (c)-Src kinase. We demonstrated that aldosterone rapidly elevates EGFR phosphorylation in rat kidney. There are no in vivo data regarding renal Hsp90( α and β ) and phosphorylated (p)c-Src protein expressions. The present study further investigates the expressions of these proteins. Male Wistar rats were intraperitoneally injected with normal saline solution or aldosterone (Aldo: 150 μ g/kg BW). After 30 minutes, abundances and localizations of these proteins were determined. Aldosterone enhanced renal Hsp90 β protein abundance (P < 0.001), but Hsp90 α and pc-Src protein levels remained unaltered. Expression of Hsp90( α and β ) was induced prominently in the proximal convoluted tubules (PCTs). Activation of Hsp90 α was observed in vascular and outer medulla regions, whereas Hsp90 β was induced in the cortex. Immunoreactivity of pc-Src was elevated in PCT with obvious staining at the luminal membrane. This in vivo study is the first to demonstrate that aldosterone nongenomically elevates Hsp90( α and β ) protein expressions in rat kidney. Aldosterone had no effect on pc-Src protein levels but modulated localization. These results indicate that aldosterone regulates upstream mediators of EGFR transactivation in vivo.
Collapse
|
26
|
Grossmann C, Gekle M. Interaction between mineralocorticoid receptor and epidermal growth factor receptor signaling. Mol Cell Endocrinol 2012; 350:235-41. [PMID: 21827828 DOI: 10.1016/j.mce.2011.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 02/05/2023]
Abstract
The mineralocorticoid receptor (MR) is a steroid receptor that physiologically regulates water and electrolyte homeostasis but that can also induce pathophysiological effects in the renocardiovascular system. Classically, the MR acts as a transcription factor at glucocorticoid response elements but additional protein-protein interactions with other signaling cascades have been described. Of these, the crosstalk with EGFR signaling is especially interesting because various vasoactive substances like angiotensin II and endothelin-1 also mediate their pathophysiological effects via the EGFR. Recently, the MR has been shown to interact nongenomically (via transactivation) and genomically with the epidermal growth factor receptor (via altered expression). These interactions seem to contribute to physiological (e.g. salt homeostasis) as well as pathophysiological (e.g. vascular function) MR effects. The current knowledge on the mechanisms of interaction and on the possible cellular and systemic physiological as well as pathophysiological relevance is reviewed in this article.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, Halle, Germany.
| | | |
Collapse
|
27
|
Dooley R, Harvey BJ, Thomas W. Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol 2012; 350:223-34. [PMID: 21801805 DOI: 10.1016/j.mce.2011.07.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid 'non-genomic' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.
Collapse
Affiliation(s)
- Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
28
|
Thomas P. Rapid steroid hormone actions initiated at the cell surface and the receptors that mediate them with an emphasis on recent progress in fish models. Gen Comp Endocrinol 2012; 175:367-83. [PMID: 22154643 PMCID: PMC3264783 DOI: 10.1016/j.ygcen.2011.11.032] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified.
Collapse
Affiliation(s)
- Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
29
|
Messaoudi S, Zhang AD, Griol-Charhbili V, Escoubet B, Sadoshima J, Farman N, Jaisser F. The epidermal growth factor receptor is involved in angiotensin II but not aldosterone/salt-induced cardiac remodelling. PLoS One 2012; 7:e30156. [PMID: 22291909 PMCID: PMC3264592 DOI: 10.1371/journal.pone.0030156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/11/2011] [Indexed: 01/10/2023] Open
Abstract
Experimental and clinical studies have shown that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system; however, the signalling pathways involved in the pathophysiological effects of aldosterone/MR in vivo are not fully understood. Several in vitro studies suggest that Epidermal Growth Factor Receptor (EGFR) plays a role in the cardiovascular effects of aldosterone. This hypothesis remains to be demonstrated in vivo. To investigate this question, we analyzed the molecular and functional consequences of aldosterone exposure in a transgenic mouse model with constitutive cardiomyocyte-specific overexpression of a mutant EGFR acting as a dominant negative protein (DN-EGFR). As previously reported, Angiotensin II-mediated cardiac remodelling was prevented in DN-EGFR mice. However, when chronic MR activation was induced by aldosterone-salt-uninephrectomy, cardiac hypertrophy was similar between control littermates and DN-EGFR. In the same way, mRNA expression of markers of cardiac remodelling such as ANF, BNF or β-Myosin Heavy Chain as well as Collagen 1a and 3a was similarly induced in DN-EGFR mice and their CT littermates. Our findings confirm the role of EGFR in AngII mediated cardiac hypertrophy, and highlight that EGFR is not involved in vivo in the damaging effects of aldosterone on cardiac function and remodelling.
Collapse
Affiliation(s)
- Smail Messaoudi
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
| | - An Di Zhang
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
| | - Violaine Griol-Charhbili
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
| | - Brigitte Escoubet
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
- University Denis Diderot, Paris 7, Paris, France
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Nicolette Farman
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
| | - Frederic Jaisser
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Zhang ZH, Yu Y, Wei SG, Felder RB. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent. Am J Physiol Heart Circ Physiol 2011; 302:H742-51. [PMID: 22081704 DOI: 10.1152/ajpheart.00856.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, owa City, IA52242, USA.
| | | | | | | |
Collapse
|
31
|
Alzamora R, O'Mahony F, Harvey BJ. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon. Steroids 2011; 76:867-76. [PMID: 21600231 DOI: 10.1016/j.steroids.2011.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/18/2011] [Accepted: 04/26/2011] [Indexed: 11/26/2022]
Abstract
Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17β-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17β-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17β-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCδ activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17β-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17β-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCδ-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17β-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland
| | | | | |
Collapse
|
32
|
Abstract
The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| | | |
Collapse
|
33
|
McEneaney V, Dooley R, Yusef YR, Keating N, Quinn U, Harvey BJ, Thomas W. Protein kinase D1 modulates aldosterone-induced ENaC activity in a renal cortical collecting duct cell line. Mol Cell Endocrinol 2010; 325:8-17. [PMID: 20434520 DOI: 10.1016/j.mce.2010.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 01/31/2023]
Abstract
Aldosterone treatment of M1-CCD cells stimulated an increase in epithelial Na(+) channel (ENaC) alpha-subunit expression that was mainly localized to the apical membrane. PKD1-suppressed cells constitutively expressed ENaCalpha at low abundance, with no increase after aldosterone treatment. In the PKD1-suppressed cells, ENaCalpha was mainly localized proximal to the basolateral surface of the epithelium both before and after aldosterone treatment. Apical membrane insertion of ENaCbeta in response to aldosterone treatment was also sensitive to PKD1 suppression as was the aldosterone-induced rise in the amiloride-sensitive, trans-epithelial current (I(TE)). The interaction of the mineralocorticoid receptor (MR) with specific elements in the promoters of aldosterone responsive genes is stabilized by ligand interaction and phosphorylation. PKD1 suppression inhibited aldosterone-induced SGK-1 expression. The nuclear localization of MR was also blocked by PKD1 suppression and MEK antagonism implicating both these kinases in MR nuclear stabilization. PKD1 thus modulates aldosterone-induced ENaC activity through the modulation of sub-cellular trafficking and the stabilization of MR nuclear localization.
Collapse
Affiliation(s)
- Victoria McEneaney
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Aldosterone regulates blood pressure through its effects on the cardiovascular system and kidney. Aldosterone can also contribute to the development of hypertension that leads to chronic pathologies such as nephropathy and renal fibrosis. Aldosterone directly modulates renal cell proliferation and differentiation as part of normal kidney development. The stimulation of rapidly activated protein kinase cascades is one facet of how aldosterone regulates renal cell growth. These cascades may also contribute to myofibroblastic transformation and cell proliferation observed in pathological conditions of the kidney. Polycystic kidney disease is a genetic disorder that is accelerated by hypertension. EGFR-dependent proliferation of the renal epithelium is a factor in cyst development and trans-activation of EGFR is a key feature in initiating aldosterone-induced signalling cascades. Delineating the components of aldosterone-induced signalling cascades may identify novel therapeutic targets for proliferative diseases of the kidney.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | |
Collapse
|
35
|
Grossmann C, Husse B, Mildenberger S, Schreier B, Schuman K, Gekle M. Colocalization of mineralocorticoid and EGF receptor at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:584-90. [DOI: 10.1016/j.bbamcr.2010.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/08/2010] [Accepted: 02/22/2010] [Indexed: 01/06/2023]
|
36
|
Vinson GP, Coghlan JP. Expanding view of aldosterone action, with an emphasis on rapid action. Clin Exp Pharmacol Physiol 2010; 37:410-6. [PMID: 20409082 DOI: 10.1111/j.1440-1681.2010.05352.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
37
|
McEneaney V, Dooley R, Harvey BJ, Thomas W. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation. J Steroid Biochem Mol Biol 2010; 118:18-28. [PMID: 19804826 DOI: 10.1016/j.jsbmb.2009.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/29/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1/2-dependent. Aldosterone induced the rapid activation of ERK1/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1/2 was inhibited in cells suppressed in the expression of PKD1.
Collapse
Affiliation(s)
- Victoria McEneaney
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | |
Collapse
|
38
|
Grossmann C, Gekle M. New aspects of rapid aldosterone signaling. Mol Cell Endocrinol 2009; 308:53-62. [PMID: 19549592 DOI: 10.1016/j.mce.2009.02.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/22/2009] [Accepted: 02/17/2009] [Indexed: 12/20/2022]
Abstract
Aldosterone, the endogenous ligand of the mineralocorticoid receptor (MR) in humans, is a steroid hormone that regulates salt and water homeostasis. Recently, additional pathophysiological effects in the renocardiovascular system have been identified. Besides genomic effects mediated by activated MR, rapid aldosterone actions that are independent of translation and transcription have been documented. While these nongenomic actions influence electrolyte homeostasis, pH and cell volume in classical MR target organs, they also participate in pathophysiological effects in the renocardiovascular system causing endothelial dysfunction, inflammation and remodeling. The mechanisms conveying these rapid effects consist of a multitude of signaling molecules and include a cross-talk with genomic aldosterone effects as well as with angiotensin II and epidermal growth factor receptor signaling. Rapid corticosteroid signaling via the MR has also been demonstrated in the brain. Altogether, the function of nongenomic aldosterone effects seems to be to modulate other signaling cascades, depending on the surrounding milieu.
Collapse
Affiliation(s)
- C Grossmann
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle/Saale, Germany.
| | | |
Collapse
|
39
|
Huang S, Zhang A, Ding G, Chen R. Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am J Physiol Renal Physiol 2009; 296:F1323-33. [DOI: 10.1152/ajprenal.90428.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aldosterone (Aldo) stimulates glomerular mesangial cell (MC) proliferation, in part, through an ERK1/2-dependent pathway. In this study, we examined whether Aldo activation of ERK1/2 in MC is mediated through redox-dependent EGF receptor (EGFR) transactivation, as well as the involvement of other signaling mechanisms in Aldo-induced MC proliferation. Aldo increased human MC proliferation, as determined by [3H]thymidine incorporation and cell counts. This increase in proliferation was blocked by inhibition of the mineralocorticoid receptor (MR). Continuing our observations downstream in the signaling pathway, we examined the ability of Aldo to activate both the Ras/MAPK and the PI3K signaling pathways. Aldo increased Ki-RasA and Ki-RasA:GTP levels, and sequentially phosphorylated c-Raf, MAPK kinase (MEK1/2), and ERK1/2. Ki-RasA small interfering RNA (siRNA), the c-Raf inhibitor GW5074, and the MEK1/2 inhibitor PD98059 reduced Aldo-induced cell proliferation by ∼65%. Aldo also increased phosphorylation of PI3K, Akt, the mammalian target of rapamycin (mTOR), and the 70-kDa ribosomal S6 kinase (p70S6K1). Inhibition of the PI3K pathways by the selective PI3K inhibitor LY 294002, an Akt inhibitor, or the mTOR inhibitor rapamycin reduced cell proliferation by 51%. Combining LY 294002 and PD98059 completely blocked Aldo-induced MC proliferation. Next, we confirmed that Aldo exerts its effect on MAPK and PI3K activation, as well as on cell proliferation, by activating the EGFR. Pretreatment with the EGFR antagonist AG1478 inhibited MC proliferation, as well as the activation of Ras/MAPK and PI3K/Akt, suggesting that Ras/MAPK and PI3K/Akt activation occur downstream of EGFR activation. Finally, we examined the role of reactive oxygen species (ROS) in Aldo-induced transactivation of the EGFR. Aldo-induced ROS were predominantly generated by mitochondria. Pretreatment with the antioxidant N-acetyl-l-cysteine, catalase, SOD, mitochondrial respiratory chain complex I inhibitor rotenone (Rot), NADPH oxidase inhibitor apocynin, and DPI significantly inhibited Aldo-stimulated MC proliferation as well as EGFR transactivation. However, Rot reduced MC proliferation more potently than apocynin and DPI. In conclusion, Aldo stimulated cell proliferation through MR-mediated, redox-sensitive EGFR transactivation, which was dependent on the Ki-RasA/c-Raf/MEK/ERK and PI3K/Akt/mTOR/p70S6K1 signaling pathways in human MCs.
Collapse
|
40
|
Requirement of protein kinase D1 for pathological cardiac remodeling. Proc Natl Acad Sci U S A 2008; 105:3059-63. [PMID: 18287012 DOI: 10.1073/pnas.0712265105] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The adult heart responds to biomechanical stress and neurohormonal signaling by hypertrophic growth, accompanied by fibrosis, diminished pump function, and activation of a fetal gene program. Class II histone deacetylases (HDACs) suppress stress-dependent remodeling of the heart via their association with the MEF2 transcription factor, an activator of heart disease. Protein kinase D (PKD) is a stress-responsive kinase that phosphorylates class II HDACs, resulting in their dissociation from MEF2 with consequent activation of MEF2 target genes. To test whether PKD1 is required for pathological cardiac remodeling in vivo, we generated mice with a conditional PKD1-null allele. Mice with cardiac-specific deletion of PKD1 were viable and showed diminished hypertrophy, fibrosis, and fetal gene activation as well as improved cardiac function in response to pressure overload or chronic adrenergic and angiotensin II signaling. We conclude that PKD1 functions as a key transducer of stress stimuli involved in pathological cardiac remodeling in vivo.
Collapse
|
41
|
McEneaney V, Harvey BJ, Thomas W. Aldosterone regulates rapid trafficking of epithelial sodium channel subunits in renal cortical collecting duct cells via protein kinase D activation. Mol Endocrinol 2008; 22:881-92. [PMID: 18202152 DOI: 10.1210/me.2007-0225] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aldosterone elicits rapid physiological responses in target tissues such as the distal nephron through the stimulation of cell signaling cascades. We identified protein kinase D (PKD1) as an early signaling response to aldosterone treatment in the M1-cortical collecting duct (M1-CCD) cell line. PKD1 activation was blocked by the PKC inhibitor chelerythrine chloride and by rottlerin, a specific inhibitor of PKCdelta. The activation of PKCdelta and PKCepsilon coincided with PKD1 activation and while a complex was formed between PKD1 and PKCepsilon after aldosterone treatment, there was a concurrent reduction in PKD1 association with PKCdelta. A stable PKD1 knockdown M1-CCD-derrived clone was developed in which PKD1 expression was 90% suppressed by gene silencing with a PKD1-specific siRNA. The effect of aldosterone treatment on the subcellular distribution of enhanced cyan fluorescent protein (eCFP)-tagged epithelial sodium channel (ENaC) subunits in wild type (WT) and PKD1 suppressed cells was examined using confocal microscopy. In an untreated confluent monolayer of M1-CCD cells, alpha, beta, and gamma ENaC subunits were evenly distributed throughout the cytoplasm of WT and PKD1-suppressed cells. After 2 min treatment, aldosterone stimulated the localization of each of the ENaC subunits to discrete regions within the cytoplasm of WT cells. The translocation of eCFP-ENaC subunits in WT cells was inhibited by rottlerin and the mineralocorticoid receptor (MR) antagonist spironolactone. No subcellular translocation of eCFP-ENaC subunits was observed in PKD1-suppressed cells treated with aldosterone. These data demonstrate the involvement of a novel MR/PKCdelta /PKD1 signaling cascade in the earliest ENaC subunit intracellular trafficking events that follow aldosterone treatment.
Collapse
Affiliation(s)
- Victoria McEneaney
- Department of Molecular Medicine, Royal College of Surgeons in Ireland Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
42
|
Aldosterone-stimulated PKC signalling cascades: from receptor to effector. Biochem Soc Trans 2007; 35:1049-51. [DOI: 10.1042/bst0351049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aldosterone plays an important role in the regulation of blood pressure. The effects of this hormone have classically been described in terms of the transcriptional regulation of genes that facilitate electrolyte transport, particularly across high-resistance epithelia. The protein kinase signalling cascades that are rapidly activated in response to aldosterone are emerging as important modulators of the transcriptional response, and may serve to prime cells for the subsequent transcriptional changes. The activation of protein kinase D through an epidermal growth factor receptor transactivation pathway by aldosterone in renal cells has the potential to impact on cell trafficking events that regulate transporter activity.
Collapse
|
43
|
Abstract
Rapid signalling responses stimulated by steroid hormones have been detected in various tissues including the nephron. The significance of these responses in modulating the physiological effects elicited by mineralocorticoids, glucocorticoids and the reproductive hormones in the kidney is now becoming more evident. This review outlines how rapid signalling responses stimulated by these hormones are coupled to the regulation of membrane transport targets that impact upon the reabsorptive and excretory functions of the kidney.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Republic of Ireland
| | | | | |
Collapse
|