1
|
Villagómez Vega A, Gámez Nava JI, Ruiz González F, Pérez Romero M, Trujillo Rangel WÁ, Nuño Arana I. Influence of the Osteogenomic Profile in Response to Alendronate Therapy in Postmenopausal Women with Osteoporosis: A Retrospective Cohort Study. Genes (Basel) 2023; 14:524. [PMID: 36833451 PMCID: PMC9956997 DOI: 10.3390/genes14020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis is a multifactorial disease. Genetic factors play an essential role in contributing to bone mineral density (BMD) variability, which ranges from 60 to 85%. Alendronate is used as the first line of pharmacological treatment for osteoporosis; however, some patients do not respond adequately to therapy with alendronate. AIM The aim of this work was to investigate the influence of combinations of potential risk alleles (genetic profiles) associated with response to anti-osteoporotic treatment in postmenopausal women with primary osteoporosis. METHODS A total of 82 postmenopausal women with primary osteoporosis receiving alendronate (70 mg administered orally per week) for one year were observed. The bone mineral density (BMD; g/cm2) of the femoral neck and lumbar spine was measured. According to BMD change, patients were divided into two groups: responders and non-responders to alendronate therapy. Polymorphic variants in CYP19, ESR1, IL-6, PTHR1, TGFβ, OPG and RANKL genes were determined and profiles were generated from the combination of risk alleles. RESULTS A total of 56 subjects were responders to alendronate and 26 subjects were non-responders. Carriers of the G-C-G-C profile (constructed from rs700518, rs1800795, rs2073618 and rs3102735) were predisposed to response to alendronate treatment (p = 0.001). CONCLUSIONS Our findings highlight the importance of the identified profiles for the pharmacogenetics of alendronate therapy in osteoporosis.
Collapse
Affiliation(s)
- Alejandra Villagómez Vega
- Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara 45425, Mexico
| | - Jorge Iván Gámez Nava
- Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico
- Doctorado en Salud Pública, Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, Guadalajara 44280, Mexico
| | - Francisco Ruiz González
- Clínica de Osteoporosis del Antiguo Hospital Civil “Fray Antonio Alcalde”, División de Medicina Interna, Guadalajara 44280, Mexico
| | - Misael Pérez Romero
- Clínica de Osteoporosis del Antiguo Hospital Civil “Fray Antonio Alcalde”, División de Medicina Interna, Guadalajara 44280, Mexico
| | - Walter Ángel Trujillo Rangel
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara 45425, Mexico
| | - Ismael Nuño Arana
- Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico
- Centro de Investigación Multidisciplinario en Salud, Departamento de Salud y Enfermedad, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara 45425, Mexico
| |
Collapse
|
2
|
Li DX, Ma Z, Szojka ARA, Lan X, Kunze M, Mulet-Sierra A, Westover L, Adesida AB. Non-hypertrophic chondrogenesis of mesenchymal stem cells through mechano-hypoxia programing. J Tissue Eng 2023; 14:20417314231172574. [PMID: 37216035 PMCID: PMC10192798 DOI: 10.1177/20417314231172574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
Cartilage tissue engineering aims to generate functional replacements to treat cartilage defects from damage and osteoarthritis. Human bone marrow-derived mesenchymal stem cells (hBM-MSC) are a promising cell source for making cartilage, but current differentiation protocols require the supplementation of growth factors like TGF-β1 or -β3. This can lead to undesirable hypertrophic differentiation of hBM-MSC that progress to bone. We have found previously that exposing engineered human meniscus tissues to physiologically relevant conditions of the knee (mechanical loading and hypoxia; hence, mechano-hypoxia conditioning) increased the gene expression of hyaline cartilage markers, SOX9 and COL2A1, inhibited hypertrophic marker COL10A1, and promoted bulk mechanical property development. Adding further to this protocol, we hypothesize that combined mechano-hypoxia conditioning with TGF-β3 growth factor withdrawal will promote stable, non-hypertrophic chondrogenesis of hBM-MSC embedded in an HA-hydrogel. We found that the combined treatment upregulated many cartilage matrix- and development-related markers while suppressing many hypertrophic- and bone development-related markers. Tissue level assessments with biochemical assays, immunofluorescence, and histochemical staining confirmed the gene expression data. Further, mechanical property development in the dynamic compression treatment shows promise toward generating functional engineered cartilage through more optimized and longer culture conditions. In summary, this study introduced a novel protocol to differentiate hBM-MSC into stable, cartilage-forming cells.
Collapse
Affiliation(s)
- David Xinzheyang Li
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Zhiyao Ma
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander RA Szojka
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering,
Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Mousa SO, Abd El-Hafez AH, Abu El-Ela MA, Mourad MAF, Saleh RN, Sayed SZ. RANK/RANKL/OPG axis genes relation to cognitive impairment in children with transfusion-dependent thalassemia: a cross-sectional study. BMC Pediatr 2022; 22:435. [PMID: 35858838 PMCID: PMC9297631 DOI: 10.1186/s12887-022-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023] Open
Abstract
Background RANK/RANKL/OPG axis was implicated in many pathological conditions. The study aimed to assess the relationship between the studied RANK, RANKL, and OPG polymorphisms and alleles and cognitive impairment in children with transfusion-dependent thalassemia (TDT). Methods This study included 60 TDT children. Real-time PCR was done for: rs1805034, rs1245811, and rs75404003 polymorphisms for the RANK gene, rs9594782 and rs2277438 polymorphisms for the RANKL gene, and rs207318 polymorphism for the OPG gene. The intelligence quotient (IQ) was assessed using the Wechsler Intelligence Scale for Children-Third Edition. Results TDT children had a low average total IQ, verbal IQ, and borderline performance IQ. RANK rs1805034 (C > T) had a significant effect on total IQ (p = 0.03). Its TT polymorphism and the CT polymorphism of RANKL rs9494782 (C > T) had a significantly lower total IQ (p = 0.01 for both). The G allele of the RANKL rs2277438 (G > A) had a significantly lower total IQ (p = 0.02). RANK rs1805034 (C > T) and RANKL rs2277438 (G > A) significantly affected verbal IQ (p = 0.01 and 0.03). TT genotype of RANK rs1805034 (C > T) had significantly lower verbal IQ (p = 0.002). Furthermore, the GG genotype of RANKL rs2277438 (G > A) had a significantly lower verbal and performance IQ than the AA genotype (p = 0.04 and 0.01 respectively), and its G allele had a significantly lower performance IQ than the A allele (p = 0.02). Conclusion TDT children had low average total and verbal IQ while their performance IQ was borderline. The RANK/RANKL/OPG pathway affects cognition in TDT children, as some of the studied genes’ polymorphisms and alleles had significant effects on total, verbal, and performance IQ of the studied TDT children.
Collapse
Affiliation(s)
- Suzan Omar Mousa
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt.
| | - Asmaa Hosni Abd El-Hafez
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt
| | | | | | - Rasha Nady Saleh
- Department of Neuropsychiatry, Faculty of Medicine, El-Minya, Egypt
| | - Samira Zain Sayed
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt
| |
Collapse
|
4
|
Stapledon CJM, Stamenkov R, Cappai R, Clark JM, Bourke A, Bogdan Solomon L, Atkins GJ. Relationships between the Bone Expression of Alzheimer's Disease-Related Genes, Bone Remodelling Genes and Cortical Bone Structure in Neck of Femur Fracture. Calcif Tissue Int 2021; 108:610-621. [PMID: 33398413 DOI: 10.1007/s00223-020-00796-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
Abstract
Neck of femur (NOF) fracture is a prevalent fracture type amongst the ageing and osteoporotic populations, commonly requiring total hip replacement (THR) surgery. Increased fracture risk has also been associated with Alzheimer's disease (AD) in the aged. Here, we sought to identify possible relationships between the pathologies of osteoporosis and dementia by analysing bone expression of neurotropic or dementia-related genes in patients undergoing THR surgery for NOF fracture. Femoral bone samples from 66 NOF patients were examined for expression of the neurotropic genes amyloid precursor protein (APP), APP-like protein-2 (APLP2), Beta-Secretase Cleaving Enzyme-1 (BACE1) and nerve growth factor (NGF). Relationships were examined between the expression of these and of bone regulatory genes, systemic factors and bone structural parameters ascertained from plain radiographs. We found strong relative levels of expression and positive correlations between APP, APLP2, BACE1 and NGF levels in NOF bone. Significant correlations were found between APP, APLP2, BACE1 mRNA levels and bone remodelling genes TRAP, RANKL, and the RANKL:OPG mRNA ratio, indicative of potential functional relationships at the time of fracture. Analysis of the whole cohort, as well as non-dementia (n = 53) and dementia (n = 13) subgroups, revealed structural relationships between APP and APLP2 mRNA expression and lateral femoral cortical thickness. These findings suggest that osteoporosis and AD may share common molecular pathways of disease progression, perhaps explaining the common risk factors associated with these diseases. The observation of a potential pathologic role for AD-related genes in bone may also provide alternative treatment strategies for osteoporosis and fracture prevention.
Collapse
Affiliation(s)
- Catherine J M Stapledon
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Roumen Stamenkov
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Jillian M Clark
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Spinal Cord Injury Research Centre, Hampstead Rehabilitation Centre, Lightsview, SA, Australia
| | - Alice Bourke
- Department of Gerontology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - L Bogdan Solomon
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Association of Polymorphisms in RANK and RANKL Genes with Osteopenia in Arab Postmenopausal Women. DISEASE MARKERS 2020; 2020:1285216. [PMID: 33376557 PMCID: PMC7746462 DOI: 10.1155/2020/1285216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022]
Abstract
The RANKL/RANK/OPG pathway regulates bone remodelling and turnover. However, the genetic background of bone mineral density (BMD) and osteopenia in Saudi postmenopausal women is yet to be studied. We studied the genetic polymorphism of RANKL/RANK/OPG with BMD and other associated factors in Saudi postmenopausal osteopenic women. A total of 439 (223 osteopenia and 216 control) postmenopausal women were recruited from the orthopaedic department of the King Khalid University Hospital, Riyadh, KSA. Genetic variants of RANK (rs1805034 and rs35211496), RANKL (rs2277438 and rs9533156), and OPG (rs2073618 and rs3102735) were genotyped using RT-PCR. Anthropometrics, bone mineral density, and other bone markers were measured. The levels of bone turnover markers, PTH, and RANKL were found to be significantly different between control and the osteopenia group. The odds ratio of 2.37 (1.00-5.69) for RANK SNP (rs1805034) indicates that subjects with CC genotype are more vulnerable to developing osteopenia as compared to subjects with TT genotype. Similarly, for RANKL SNP (rs2277438), the significant odds ratio of 20.56 (9.82-43.06) indicates that the subjects with GG genotype are at significantly higher risk of having osteopenia compared with the AA genotype subjects. In addition, G allele in rs2277438 also found to be a risk factor for osteopenia 4.54 (3.18-6.49) compared with A allele. However, none of the OPG genotypes shows association with osteopenia. The association of RANK polymorphisms with osteopenia shows its clinical importance in the diagnosis and prognosis of the bone diseases; here, we suggest that the subjects with RANK and RANKL polymorphisms may develop osteoporosis.
Collapse
|
6
|
Xiang-Lin L, Le-Ping L, Rong H, Shu-Qi Z, Zi-Yi Z, Ting P, Hui-Ping L, Guo-Min Z. Effects of Zhuang Gu Zhi Tong Formula on Wnt/β-catenin Osteoporosis Pathway Antagonist SOST in Osteoporosis. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Pepe J, Bonnet N, Herrmann FR, Biver E, Rizzoli R, Chevalley T, Ferrari SL. Interaction between LRP5 and periostin gene polymorphisms on serum periostin levels and cortical bone microstructure. Osteoporos Int 2018; 29:339-346. [PMID: 29038835 DOI: 10.1007/s00198-017-4272-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
UNLABELLED We investigated the interaction between periostin SNPs and the SNPs of the genes assumed to modulate serum periostin levels and bone microstructure in a cohort of postmenopausal women. We identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels and on radial cortical porosity. PURPOSE The purpose of this study is to investigate the interaction between periostin gene polymorphisms (SNPs) and other genes potentially responsible for modulating serum periostin levels and bone microstructure in a cohort of postmenopausal women. METHODS In 648 postmenopausal women from the Geneva Retirees Cohort, we analyzed 6 periostin SNPs and another 149 SNPs in 14 genes, namely BMP2, CTNNB1, ESR1, ESR2, LRP5, LRP6, PTH, SPTBN1, SOST, TGFb1, TNFRSF11A, TNFSF11, TNFRSF11B and WNT16. Volumetric BMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography at the distal radius and tibia. RESULTS Serum periostin levels were associated with radial cortical porosity, including after adjustment for age, BMI, and years since menopause (p = 0.036). Sixteen SNPs in the ESR1, LRP5, TNFRSF11A, SOST, SPTBN1, TNFRSF11B and TNFSF11 genes were associated with serum periostin levels (p range 0.03-0.001) whereas 26 SNPs in 9 genes were associated with cortical porosity at the radius and/or at the tibia. WNT 16 was the gene with the highest number of SNPs associated with both trabecular and cortical microstructure. The periostin SNP rs9547970 was also associated with cortical porosity (p = 0.04). In particular, SNPs in LRP5, ESR1 and near the TNFRSF11A gene were associated with both cortical porosity and serum periostin levels. Eventually, we identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels (interaction p = 0.01) and on radial cortical porosity (interaction p = 0.005). CONCLUSION These results suggest that periostin expression is genetically modulated, particularly by polymorphisms in the Wnt pathway, and is thereby implicated in the genetic variation of bone microstructure.
Collapse
Affiliation(s)
- J Pepe
- Division of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, 1205, Geneva, Switzerland.
- Department of Internal Medicine and Medical Disciplines, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - N Bonnet
- Division of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - F R Herrmann
- Division of Geriatrics, Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - E Biver
- Division of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - R Rizzoli
- Division of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - T Chevalley
- Division of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - S L Ferrari
- Division of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, 1205, Geneva, Switzerland
| |
Collapse
|
8
|
Correa-Rodríguez M, Viatte S, Massey J, Schmidt-RioValle J, Rueda-Medina B, Orozco G. Analysis of SNP-SNP interactions and bone quantitative ultrasound parameter in early adulthood. BMC MEDICAL GENETICS 2017; 18:107. [PMID: 28974197 PMCID: PMC5627468 DOI: 10.1186/s12881-017-0468-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022]
Abstract
Background Osteoporosis individual susceptibility is determined by the interaction of multiple genetic variants and environmental factors. The aim of this study was to conduct SNP-SNP interaction analyses in candidate genes influencing heel quantitative ultrasound (QUS) parameter in early adulthood to identify novel insights into the mechanism of disease. Methods The study population included 575 healthy subjects (mean age 20.41; SD 2.36). To assess bone mass QUS was performed to determine Broadband ultrasound attenuation (BUA, dB/MHz). A total of 32 SNPs mapping to loci that have been characterized as genetic markers for QUS and/or BMD parameters were selected as genetic markers in this study. The association of all possible SNP pairs with QUS was assessed by linear regression and a SNP-SNP interaction was defined as a significant departure from additive effects. Results The pairwise SNP-SNP analysis showed multiple interactions. The interaction comprising SNPs rs9340799 and rs3736228 that map in the ESR1 and LRP5 genes respectively, revealed the lowest p value after adjusting for confounding factors (p-value = 0.001, β (95% CI) = 14.289 (5.548, 23.029). In addition, our model reported others such as TMEM135-WNT16 (p = 0.007, β(95%CI) = 9.101 (2.498, 15.704), ESR1-DKK1 (p = 0.012, β(95%CI) = 13.641 (2.959, 24.322) or OPG-LRP5 (p = 0.012, β(95%CI) = 8.724 (1.936, 15.512). However, none of the detected interactions remain significant considering the Bonferroni significance threshold for multiple testing (p<0.0001). Conclusion Our analysis of SNP-SNP interaction in candidate genes of QUS in Caucasian young adults reveal several interactions, especially between ESR1 and LRP5 genes, that did not reach statistical significance. Although our results do not support a relevant genetic contribution of SNP-SNP epistatic interactions to QUS in young adults, further studies in larger independent populations would be necessary to support these preliminary findings.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016, Granada, Spain.
| | - Sebastien Viatte
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jonathan Massey
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | - Blanca Rueda-Medina
- Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016, Granada, Spain
| | - Gisela Orozco
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
9
|
Ferreira ECS, Bortolin RH, Freire-Neto FP, Souza KSC, Bezerra JF, Ururahy MAG, Ramos AMO, Himelfarb ST, Abreu BJ, Didone TVN, Pedrosa LFC, Medeiros AC, Doi SQ, Brandão-Neto J, Hirata RDC, Rezende LA, Almeida MG, Hirata MH, Rezende AA. Zinc supplementation reduces RANKL/OPG ratio and prevents bone architecture alterations in ovariectomized and type 1 diabetic rats. Nutr Res 2017; 40:48-56. [PMID: 28473060 DOI: 10.1016/j.nutres.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/16/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes mellitus (T1DM) and estrogen deficiency are associated with several alterations in bone turnover. Zinc (Zn) is required for growth, development, and overall health. Zinc has been used in complementary therapy against bone loss in several diseases. We hypothesized that Zn supplementation represents a potential therapy against severe bone loss induced by the combined effect of estrogen deficiency and T1DM. We evaluated the protective effect of Zn against bone alterations in a chronic model of these disorders. Female Wistar rats were ramdomized into 3 groups (5 rats each): control, OVX/T1DM (ovariectomized rats with streptozotocin-induced T1DM), and OVX/T1DM+Zn (OVX/T1DM plus daily Zn supplementation). Serum biochemical, bone histomorphometric, and molecular analyses were performed. Histomorphometric parameters were similar between the control and OVX/T1DM+Zn groups, suggesting that Zn prevents bone architecture alterations. In contrast, the OVX/T1DM group showed significantly lower trabecular width and bone area as well as greater trabecular separation than the control. The OVX/T1DM and OVX/T1DM+Zn groups had significantly higher serum alkaline phosphatase activity than the control. The supplemented group had higher levels of serum-ionized calcium and phosphorus than the nonsupplemented group. The RANKL/OPG ratio was similar between the control and OVX/T1DM+Zn groups, whereas it was higher in the OVX/T1DM group. In conclusion, Zn supplementation prevents bone alteration in chronic OVX/T1DM rats, as demonstrated by the reduced RANKL/OPG ratio and preservation of bone architecture. The findings may represent a novel therapeutic approach to preventing OVX/T1DM-induced bone alterations.
Collapse
Affiliation(s)
- Elaine C S Ferreira
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raul H Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Francisco P Freire-Neto
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla S C Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João F Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Marcela A G Ururahy
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ana M O Ramos
- Department of Clinical Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Silvia T Himelfarb
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Bento J Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Thiago V N Didone
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Lucia F C Pedrosa
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Aldo C Medeiros
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sonia Q Doi
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - José Brandão-Neto
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rosário D C Hirata
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Luciana A Rezende
- Department of Chemistry, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Maria G Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Mario H Hirata
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Adriana A Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
10
|
Singh MM, Kumar R, Tewari S, Agarwal S. Investigation of OPG/RANK/RANKL Genes as a Genetic Marker for Cardiac abnormalities in Thalassemia Major Patients. Ann Hum Genet 2017; 81:117-124. [PMID: 28244588 DOI: 10.1111/ahg.12189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the role of osteoprotegerin (OPG)/RANK/RANKL variants in left ventricular hypertrophy (LVH) and diastolic dysfunction in thalassemia major patients MATERIALS AND METHOD: One hundred and five beta-thalassemia patients who were older than 10 years of age were enrolled for the study. Two-dimensional and M-mode echocardiography analysis was done in all patients. Genotyping for OPG [rs2073617 (950 T>C), rs2073618 (1181G>C)], RANK [(rs1805034(+34694 C>T), rs12458117 (+34901 G>A) and rs75404003 (+35966insdelC)], and RANKL (rs2277438, rs9594782) variants was done using the PCR-RFLP method. Serum OPG levels were estimated by ELISA. RESULTS Mean age of patients was 16.36 ± 5.08 years. LVH and diastolic dysfunction was present in 33 (31.4%) and 24 (22.8%) patients, respectively. Thalassemia patients having minor allele of OPG rs2073618, RANK rs75404003 and RANKL rs9594782 SNPs were at high risk for LVH as suggested by high odds ratio of 2.470, 3.783, and 2.148, respectively; however, none of the SNPs tested were statistically significantly associated after applying Bonferroni corrections for multiple testing adjustment. No significant association of any SNP with diastolic dysfunction was observed. Serum OPG levels were found significantly higher in thalassemia patients with diastolic dysfunction (P = 0.006). CONCLUSION OPG rs2073618, RANK rs75404003, and RANKL rs9594782 SNPs may predispose LVH in thalassemia patients. Patients with diastolic dysfunction showed increased levels of serum OPG.
Collapse
Affiliation(s)
- Mable Misha Singh
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Ravindra Kumar
- Central Research Laboratory, Sri Aurobindo Medical College and Post Graduate Institute Indore, Madhya Pradesh, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
11
|
Krela-Kaźmierczak I, Kaczmarek-Ryś M, Szymczak A, Michalak M, Skrzypczak-Zielińska M, Drwęska-Matelska N, Marcinkowska M, Eder P, Łykowska-Szuber L, Wysocka E, Linke K, Słomski R. Bone Metabolism and the c.-223C > T Polymorphism in the 5'UTR Region of the Osteoprotegerin Gene in Patients with Inflammatory Bowel Disease. Calcif Tissue Int 2016; 99:616-624. [PMID: 27639566 PMCID: PMC5097783 DOI: 10.1007/s00223-016-0192-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/03/2016] [Indexed: 01/02/2023]
Abstract
Osteoporosis is more frequent in inflammatory bowel disease (IBD) patients. A reduction in bone mineral mass in these individuals is caused not only by inflammatory processes in the bowel, because osteoporosis occurs already in very young IBD patients and in newly diagnosed individuals who have not yet undergone any pharmacological treatment. One of individual determinants of the bone turnover parameters is osteoprotegerin (OPG) encoded by the TNFRSF11B gene. The c.-223C > T polymorphism in this gene has been extensively studied in post-menopausal osteoporosis patients. However, no such studies exist for osteoporosis related to IBD. The aim of our study was to determine whether the c.-223C > T (rs2073617) polymorphism in the 5'UTR region of the gene encoding osteoprotegerin is a functional polymorphism which may change the gene expression and resulting OPG levels, and so be associated with osteopenia and osteoporosis, and impaired bone metabolism in Crohn's disease and ulcerative colitis patients. Our study included 198 IBD patients and 41 healthy controls. Lumbar spine and femoral neck bone mineral density, T-score, Z-score as well as OPG, RANKL, vitamin D, calcium and interleukin 4 and 10 concentrations were determined for all study subjects. Genotyping of the TNFRSF11B polymorphic site was performed by restriction fragment length polymorphism technique. Statistical analyses were conducted using Statistica software. Odds ratios, 95 % confidence intervals, and P values were calculated using the HWE calculator. Our results did not allow determining an unequivocal association between the polymorphic variants of the TNFRSF11B 5'UTR region and a susceptibility to osteoporosis in IBD patients. We have shown, however, that the c.-223T allele was twice as more frequent in Crohn's disease (CD) patients than among controls (OR = 1.99, P value = 0.009). Interestingly, average osteoprotegerin levels in CD patients did not significantly differ from those in controls, whereas in ulcerative colitis patients, OPG levels were significantly lower. We have concluded that low OPG levels may be associated with osteoporosis in ulcerative colitis, but it is not correlated with the c.-223C > T polymorphism in the TNFRSF11B gene. In CD patients, in turn, we observed increased RANKL levels. Our observations confirm different pathogeneses of Crohn's disease and ulcerative colitis as well as different molecular backgrounds of osteoporosis associated with these two diseases.
Collapse
Affiliation(s)
- Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Human Nutrition and Internal Diseases, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland.
| | - Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznan, Poland.
| | - Aleksandra Szymczak
- Department of Gastroenterology, Human Nutrition and Internal Diseases, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, University of Medical Sciences, Poznan, Poland
| | | | - Natalia Drwęska-Matelska
- Department of Biochemistry and Biotechnology, University of Life Sciences in Poznań, Poznan, Poland
| | | | - Piotr Eder
- Department of Gastroenterology, Human Nutrition and Internal Diseases, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Lilianna Łykowska-Szuber
- Department of Gastroenterology, Human Nutrition and Internal Diseases, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Ewa Wysocka
- Department of Laboratory Diagnostics, University of Medical Sciences, Poznan, Poland
| | - Krzysztof Linke
- Department of Gastroenterology, Human Nutrition and Internal Diseases, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznan, Poland
- Department of Biochemistry and Biotechnology, University of Life Sciences in Poznań, Poznan, Poland
| |
Collapse
|
12
|
Xue JB, Zhan XL, Wang WJ, Yan YG, Liu C. OPG rs2073617 polymorphism is associated with upregulated OPG protein expression and an increased risk of intervertebral disc degeneration. Exp Ther Med 2016; 12:702-710. [PMID: 27446264 PMCID: PMC4950610 DOI: 10.3892/etm.2016.3342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/11/2016] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the associations between three distinct osteoprotegerin (OPG) gene polymorphisms and the risk of intervertebral disc degeneration (IDD). A total of 200 IDD patients and 200 healthy controls were recruited from the Department of Spine Surgery at the First Affiliated Hospital of the University of South China (Hengyang, China) between January 2013 and May 2014. The allele, genotype and haplotype frequency distributions of three OPG polymorphisms in the study and control populations were analyzed by polymerase chain reaction prior to restriction fragment length polymorphism or high resolution melting assays. In addition, serum OPG levels were measured via an ELISA. The genotype and allele frequencies of the OPG rs2073617 polymorphisms were significantly higher in the IDD patients, as compared with the control group (P<0.05). Furthermore, carriers of the C allele exhibited a higher risk of IDD, as compared with carriers of the T allele (P<0.001). Conversely, the genotype and allele frequencies of the two other gene polymorphisms, rs2073618 and rs3102735, showed no significant differences between the patients and controls (P>0.05). The serum OPG levels were significantly higher in IDD patients with TT, TC and CC genotypes at the OPG rs2073617 polymorphism, as compared with the control group (P<0.05). Logistic-regression analysis suggested that high serum levels of OPG were positively correlated with IDD risk, whereas the T-C-A, T-G-A and T-G-G haplotypes were negatively correlated with IDD risk (P<0.05). Furthermore, the G-T-G haplotype was associated with protection against IDD (P=0.008), whereas the G-C-G haplotype was associated with an elevated susceptibility to IDD (P=0.007). The results of the present study suggested that OPG rs2073617 polymorphisms and upregulated serum levels of OPG were associated with an increased risk of IDD, whereas the T-C-A, T-G-A and T-G-G haplotypes were protective factors for IDD. The results of the present study suggested that the OPG gene polymorphism may have an important role in the progression of IDD, and its serum level may function as a valuable predictive indicator of the severity of degenerative disc diseases.
Collapse
Affiliation(s)
- Jing-Bo Xue
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China; Department of Spine Surgery, The First Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xin-Li Zhan
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chong Liu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
13
|
Mohamed RH, Mohamed RH, El-Shahawy EE. Relationship BetweenRANKandRANKLGene Polymorphisms with Osteoporosis in Rheumatoid Arthritis Patients. Genet Test Mol Biomarkers 2016; 20:249-54. [DOI: 10.1089/gtmb.2015.0227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Randa H. Mohamed
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha H. Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman E. El-Shahawy
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
OPG, RANKL, and RANK gene polymorphisms and the bone mineral density response to alendronate therapy in postmenopausal Chinese women with osteoporosis or osteopenia. Pharmacogenet Genomics 2016; 26:12-9. [DOI: 10.1097/fpc.0000000000000181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Xu Y, Ma X, An J, Ding J, Dai G, Liu Z, Song Z, Lin N. Treatment with QiBaoMeiRan, a Chinese herbal formula, prevents bone loss in ovariectomized rat. Climacteric 2015; 19:98-106. [DOI: 10.3109/13697137.2015.1053861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Wang J, Lu K, Song Y, Zhao S, Ma W, Xuan Q, Tang D, Zhao H, Liu L, Zhang Q. RANKL and OPG Polymorphisms Are Associated with Aromatase Inhibitor-Related Musculoskeletal Adverse Events in Chinese Han Breast Cancer Patients. PLoS One 2015. [PMID: 26218592 PMCID: PMC4547828 DOI: 10.1371/journal.pone.0133964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Breast cancer patients treated with aromatase inhibitors (AIs) may experience musculoskeletal adverse events (MS-AEs). Several studies have confirmed that the RANKL/RANK/OPG signaling pathway plays a dominant role in bone health. Therefore, this study aimed to analyze the relationship between the serum levels of RANKL, OPG and their SNPs (single nucleotide polymorphisms) with AI-related MS-AEs. Methodology and Principal Findings Patients with early stage, hormone-sensitive breast cancer who were receiving AI therapy were enrolled. We included 208 cases with AI-related MS-AEs and 212 without (controls). The levels of estradiol, bone-turnover markers, multiple inflammatory cytokines, RANKL,OPG and lumbar spine BMD were measured, and questionnaires were completed. We analyzed 29 SNPs of RANKL, RANK and OPG using Sequenom MassARRAY assays and PCR-based TaqMan assays. The levels of bone-turnover markers and RANKL and the ratio of RANKL/OPG were higher in patients with AI-related MS-AEs than controls (all p < 0.05). A genetic assay showed that the RANKL SNP rs7984870 and OPG SNP rs2073618 were associated with AI-related MS-AEs. In patients with AI-related MS-AEs, rs7984870 CC and rs2073618 CC were risk genotypes. Carriers of the rs7984870 CC genotype were more likely to have a higher RANKL level and RANKL/OPG ratio than carriers of the GG genotype, and carriers of the rs2073618 CC genotype were more likely to have a lower OPG level and a higher RANKL/OPG ratio than carriers of the GG genotype (all p < 0.05). Moreover, risk genotypes were associated with higher levels of serum CTX and PINP and a lower lumbar spine BMD (all p < 0.05). Conclusions and Significance In conclusion, the RANKL and OPG risk genotypes synergize to negatively impact bone health and predispose breast cancer patients to AI-related MS-AEs.
Collapse
Affiliation(s)
- Jingxuan Wang
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Kangping Lu
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Ying Song
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Shu Zhao
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Wenjie Ma
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Qijia Xuan
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Dabei Tang
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhao
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Lei Liu
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Qingyuan Zhang
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
17
|
Mencej-Bedrač S, Zupan J, Mlakar SJ, Zavratnik A, Preželj J, Marc J. Raloxifene pharmacodynamics is influenced by genetic variants in the RANKL/RANK/OPG system and in the Wnt signaling pathway. ACTA ACUST UNITED AC 2014; 29:111-4. [DOI: 10.1515/dmdi-2013-0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/27/2014] [Indexed: 11/15/2022]
|
18
|
Ye XL, Lu CF. Association of polymorphisms in the leptin and leptin receptor genes with inflammatory mediators in patients with osteoporosis. Endocrine 2013; 44:481-8. [PMID: 23460508 DOI: 10.1007/s12020-013-9899-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/02/2013] [Indexed: 12/16/2022]
Abstract
Bone mass and inflammation are implicated in the pathogenesis of osteoporosis. We hypothesized that leptin and leptin receptor gene might be associated with osteoporosis by activating the inflammatory pathway. Therefore, we analyzed polymorphisms of the leptin (gene symbol, LEP) and leptin receptor (gene symbol, LEPR) genes and determined their associations with proinflammatory cytokine levels in patients with osteoporosis. We assessed polymorphisms in LEP (-2548G > A) and LEPR (Lys109Arg, Gln223Arg, and Lys656Asn) and calculated odds ratios for the genotype and allele distributions between patients and controls. Serum leptin, soluble leptin receptor, interleukin (IL)-1, IL-6, IL-7, and tumor necrosis factor (TNF) levels were measured by enzyme-linked immunosorbent assays (ELISA) and were verified by in vitro lymphocyte proliferation assays and ELISAs. We found a higher frequency of the A allele for LEP at -2548 in patients with osteoporosis compared with the control group. The A allele was associated with differences in serum leptin, soluble leptin receptor, IL-1, IL-6, and TNF levels compared with the wild-type G allele (p < 0.05). The G allele in Lys109Arg and Gln223Arg was associated with increased risk of osteoporosis and with differences in serum leptin, soluble leptin receptor, IL-1, IL-6, and TNF levels compared with the wild-type A allele (p < 0.05). The Lys656Asn genotype was not associated with the risk of osteoporosis. In vitro lymphocyte proliferation assays and ELISAs confirmed these results. Polymorphisms in LEP and LEPR are associated with increased risk of osteoporosis, possibly by increasing the expression of proinflammatory cytokines.
Collapse
Affiliation(s)
- Xing L Ye
- P.E. Department, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China,
| | | |
Collapse
|
19
|
Wu S, Liu Y, Zhang L, Han Y, Lin Y, Deng HW. Genome-wide approaches for identifying genetic risk factors for osteoporosis. Genome Med 2013; 5:44. [PMID: 23731620 PMCID: PMC3706967 DOI: 10.1186/gm448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis, the most common type of bone disease worldwide, is clinically characterized by low bone mineral density (BMD) and increased susceptibility to fracture. Multiple genetic and environmental factors and gene-environment interactions have been implicated in its pathogenesis. Osteoporosis has strong genetic determination, with the heritability of BMD estimated to be as high as 60%. More than 80 genes or genetic variants have been implicated in risk of osteoporosis by hypothesis-free genome-wide studies. However, these genes or genetic variants can only explain a small portion of BMD variation, suggesting that many other genes or genetic variants underlying osteoporosis risk await discovery. Here, we review recent progress in genome-wide studies of osteoporosis and discuss their implications for medicine and the major challenges in the field.
Collapse
Affiliation(s)
- Shuyan Wu
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Yongjun Liu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| | - Lei Zhang
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China ; Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| | - Yingying Han
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Yong Lin
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Hong-Wen Deng
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China ; Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Yang TL, Guo Y, Li J, Zhang L, Shen H, Li SM, Li SK, Tian Q, Liu YJ, Papasian CJ, Deng HW. Gene-gene interaction between RBMS3 and ZNF516 influences bone mineral density. J Bone Miner Res 2013; 28:828-37. [PMID: 23045156 PMCID: PMC4127986 DOI: 10.1002/jbmr.1788] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/25/2012] [Accepted: 10/01/2012] [Indexed: 12/28/2022]
Abstract
Osteoporosis is characterized by low bone mineral density (BMD), a highly heritable trait that is determined, in part, by the actions and interactions of multiple genes. Although an increasing number of genes have been identified to have independent effects on BMD, few studies have been performed to identify genes that interact with one another to affect BMD. In this study, we performed gene-gene interaction analyses in selected candidate genes in individuals with extremely high versus low hip BMD (20% tails of the distributions), in two independent U.S. Caucasian samples. The first sample contained 916 unrelated subjects with extreme hip BMD Z-scores selected from a population composed of 2286 subjects. The second sample consisted of 400 unrelated subjects with extreme hip BMD Z-scores selected from a population composed of 1000 subjects. Combining results from these two samples, we found one interacting gene pair (RBMS3 versus ZNF516) which, even after Bonferroni correction for multiple testing, showed consistently significant effects on hip BMD. RMBS3 harbored two single-nucleotide polymorphisms (SNPs), rs6549904 and rs7640046, both of which had significant interactions with an SNP, rs4891159, located on ZNF516 (p = 7.04 × 10(-11) and 1.03 × 10(-10) ). We further validated these results in two additional samples of Caucasian and African descent. The gene pair, RBMS3 versus ZNF516, was successfully replicated in the Caucasian sample (p = 8.07 × 10(-3) and 2.91 × 10(-3) ). For the African sample, a significant interaction was also detected (p = 0.031 and 0.043), but the direction of the effect was opposite to that observed in the three Caucasian samples. By providing evidence for genetic interactions underlying BMD, this study further delineates the genetic architecture of osteoporosis.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jian Li
- School of Public Health and Tropical Medicine, Tulane University New Orleans, LA 70112, USA
| | - Lei Zhang
- Center of Systematic Biomedical Research, University of Shanghai for Science and Technology, Shanghai 200093 P. R. China
| | - Hui Shen
- School of Public Health and Tropical Medicine, Tulane University New Orleans, LA 70112, USA
| | - Siyang M. Li
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Siyuan K. Li
- School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Qing Tian
- School of Public Health and Tropical Medicine, Tulane University New Orleans, LA 70112, USA
| | - Yong-Jun Liu
- School of Public Health and Tropical Medicine, Tulane University New Orleans, LA 70112, USA
| | | | - Hong-Wen Deng
- School of Public Health and Tropical Medicine, Tulane University New Orleans, LA 70112, USA
- Center of Systematic Biomedical Research, University of Shanghai for Science and Technology, Shanghai 200093 P. R. China
| |
Collapse
|
21
|
Wu Y, Liu J, Guo H, Luo Q, Yu Z, Liao E, Zu X. Establishment of OPG Transgenic Mice and the Effect of OPG on Bone Microarchitecture. Int J Endocrinol 2013; 2013:125932. [PMID: 23606836 PMCID: PMC3623394 DOI: 10.1155/2013/125932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/05/2013] [Indexed: 01/27/2023] Open
Abstract
Osteoprotegerin (OPG) plays a determinant role in regulating bone metabolism, but the effect of OPG on bone microarchitecture needs to be further elucidated. We attempted to construct pCI-hOPGp-mOPG vector containing human OPG promoter and FLAG tag and to microinject vector into fertilized zygotes from C57BL/6J × CBA mice to prepare transgenic mice. The OPG transgenic positive mice were identified by PCR and western blotting. Twelve-week-old OPG transgenic mice (OPG-Tg mice) and wild-type mice (WT mice) were utilized in the study of bone microarchitecture. Microcomputed tomography (micro-CT) data showed that compared with WT mice, the tibia of OPG-Tg mice showed an increased volumetric BMD (vBMD), tissue BMD (tBMD), trabecular thickness (Tb.Th), and trabecular number (Tb.N), and a decreased trabecular separation (Th.Sp) (P < 0.05) . The cortical bone microarchitecture parameters, such as cortical area (Ct.Ar), cortical thickness (Ct.Th), cortical BMD (Ct.BMD), cortical BMC (Ct.BMC), BMD, and BMC of femur, were increased, and the inner perimeter (In.Pm) was decreased, in OPG-Tg mice, compared to those in WT mice (P < 0.05). The established OPG transgenic mouse model could be valuable for further studying the biological significance and gene regulation of OPG in vivo.
Collapse
Affiliation(s)
- Ying Wu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
| | - Hui Guo
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
| | - Qiong Luo
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
| | - Ziying Yu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
| | - Eryuan Liao
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
| |
Collapse
|
22
|
Curcumin Protects against Ovariectomy-Induced Bone Changes in Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:174916. [PMID: 23049604 PMCID: PMC3463175 DOI: 10.1155/2012/174916] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/30/2012] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a metabolic disease affecting both men and women especially in postmenopausal women. Curcumin possesses many medicinal properties. In this study, thirty two female Sprague-Dawley rats were used to determine the potential effect of curcumin in prevention of bone loss following ovariectomy. The animals were divided into Sham group, ovariectomised control, ovariectomised treated with curcumin 110 mg/kg and ovariectomised treated with Premarin 100 μg/kg. The treatments were given via daily oral gavages for 60 days. The structural parameters such as bone volume, trabecular number, trabecular thickness and trabecular separation were found to be deteriorated in ovariectomised rats compared to Sham group. Moreover, the reduced osteoblast count, the increased osteoclast count and increased eroded surface were found in ovariectomised groups. Treatment with curcumin was able to reverse all these ovariectomy-induced deteriorations. Curcumin treatment was as effective as Premarin in most parameters except the bone volume and eroded surface, which were better than Premarin. The high dose of curcumin treatment was not only able to reduce the osteoclast number but also increase the osteoblast count. Therefore, the potential effect of curcumin can be applied as an alternative to oestrogen for prevention of postmenopausal osteoporosis.
Collapse
|
23
|
Rojo Venegas K, Aguilera Gómez M, Eisman JA, García Sánchez A, Faus Dader MJ, Calleja Hernández MA. Pharmacogenetics of osteoporosis-related bone fractures: moving towards the harmonization and validation of polymorphism diagnostic tools. Pharmacogenomics 2011; 11:1287-303. [PMID: 20860468 DOI: 10.2217/pgs.10.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is one of the most common skeletal chronic conditions in developed countries, hip fracture being one of its major healthcare outcomes. There is considerable variation in the implementation of current pharmacological treatment and prevention, despite consistent recommendations and guidelines. Many studies have reported conflicting findings of genetic associations with bone density and turnover that might predict fracture risk. Moreover, it is not clear whether genetic differences exist in relation to the morbidity and efficiency of the pharmacotherapy treatments. Clinical response, including beneficial and adverse events associated with osteoporosis treatments, is highly variable among individuals. In this context, the present article intends to summarize putative candidate genes and genome-wide association studies that have been related with BMD and fracture risk, and to draw the attention to the need for pharmacogenetic methodology that could be applicable in clinical translational research after an adequate validation process. This article mainly compiles analysis of important polymorphisms in osteoporosis documented previously, and it describes the simple molecular biology tools for routine genotype acquisition. Validation of methods for the easy, fast and accessible identification of SNPs is necessary for evolving pharmacogenetic diagnostic tools in order to contribute to the discovery of clinically relevant genetic variation with an impact on osteoporosis and its personalized treatment.
Collapse
Affiliation(s)
- Karen Rojo Venegas
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, CP:18014, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Roshandel D, Holliday KL, Pye SR, Boonen S, Borghs H, Vanderschueren D, Huhtaniemi IT, Adams JE, Ward KA, Bartfai G, Casanueva F, Finn JD, Forti G, Giwercman A, Han TS, Kula K, Lean ME, Pendleton N, Punab M, Silman AJ, Wu FC, Thomson W, O'Neill TW. Genetic variation in the RANKL/RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men. J Bone Miner Res 2010; 25:1830-8. [PMID: 20205168 DOI: 10.1002/jbmr.78] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study was to determine if single-nucleotide polymorphisms (SNPs) in RANKL, RANK, and OPG influence bone turnover and bone mineral density (BMD) in men. Pairwise tag SNPs (r(2) > or = 0.8) were selected for RANKL, RANK, and OPG and their 10-kb flanking regions. Selected tag SNPs plus five SNPs near RANKL and OPG, associated with BMD in published genome-wide association studies (GWAS), were genotyped in 2653 men aged 40 to 79 years of age recruited for participation in a population-based study of male aging, the European Male Ageing Study (EMAS). N-terminal propeptide of type I procollagen (PINP) and C-terminal cross-linked telopeptide of type I collagen (CTX-I) serum levels were measured in all men. BMD at the calcaneus was estimated by quantitative ultrasound (QUS) in all men. Lumbar spine and total-hip areal BMD (BMD(a)) was measured by dual-energy X-ray absorptiometry (DXA) in a subsample of 620 men. Multiple OPG, RANK, and RANKL SNPs were associated with bone turnover markers. We also identified a number of SNPs associated with BMD, including rs2073618 in OPG and rs9594759 near RANKL. The minor allele of rs2073618 (C) was associated with higher levels of both PINP (beta = 1.83, p = .004) and CTX-I (beta = 17.59, p = 4.74 x 10(-4)), and lower lumbar spine BMD(a) (beta = -0.02, p = .026). The minor allele of rs9594759 (C) was associated with lower PINP (beta = -1.84, p = .003) and CTX-I (beta = -27.02, p = 6.06 x 10(-8)) and higher ultrasound BMD at the calcaneus (beta = 0.01, p = .037). Our findings suggest that genetic variation in the RANKL/RANK/OPG signaling pathway influences bone turnover and BMD in European men.
Collapse
Affiliation(s)
- Delnaz Roshandel
- Arthritis Research UK, Epidemiology Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|