1
|
Ishii H, Hattori Y, Ozawa H. Estrogen Receptor α Isoforms Generated by Alternative Use of Cryptic Exons. J NIPPON MED SCH 2023; 90:364-371. [PMID: 37558429 DOI: 10.1272/jnms.jnms.2023_90-507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Estrogen receptor α (ERα) regulates several physiological functions. In pathophysiological conditions, ERα is involved in the development and progression of estrogen-sensitive tumors. The ERα gene contains multiple 5'-untranslated exons and eight conventional coding exons and presents multiple isoforms generated by alternative promoter usage and alternative splicing. This gene also possesses non-conventional exons in the 3'- and intronic regions, and alternative use of cryptic exons contributes to further diversity of ERα mRNAs and proteins. Recently, the genomic organization of ERα genes and the splicing profiles of their transcripts were comparatively analyzed in humans, mice, and rats, and multiple ERα isoforms with distinct structures and functions were identified. These transcripts contain cryptic sequences that encode insertion-containing or truncated ERα proteins. In particular, alternative cryptic exons with in-frame stop codons yield transcripts encoding C-terminally-truncated ERα proteins. The C-terminally-truncated ERα isoforms lack part or all of the ligand-binding domain but possess an isoform-specific sequence. Some of these isoforms exhibit constitutive transactivation and resistance to estrogen receptor antagonists. Although numerous studies have reported conflicting results regarding their functions, the critical determinant for their gain-of-function has been identified structurally. Here we review recent progress in ERα variant research concerning the genomic organization of ERα genes, splicing profiles of ERα transcripts, and transactivation properties of ERα isoforms.
Collapse
Affiliation(s)
- Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
2
|
Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions. Cells 2023; 12:cells12060895. [PMID: 36980236 PMCID: PMC10047206 DOI: 10.3390/cells12060895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The importance of estrogenic signaling for a broad spectrum of biological processes, including reproduction, cancer development, energy metabolism, memory and learning, and so on, has been well documented. Among reported estrogen receptors, estrogen receptor alpha (ERα) has been known to be a major mediator of cellular estrogenic signaling. Accumulating evidence has shown that the regulations of ERα gene transcription, splicing, and expression across the tissues are highly complex. The ERα promoter region is composed of multiple leader exons and 5′-untranslated region (5′-UTR) exons. Differential splicing results in multiple ERα proteins with different molecular weights and functional domains. Furthermore, various post-translational modifications (PTMs) further impact ERα cellular localization, ligand affinity, and therefore functionality. These splicing isoforms and PTMs are differentially expressed in a tissue-specific manner, mediate certain aspects of ERα signaling, and may work even antagonistically against the full-length ERα. The fundamental understanding of the ERα splicing isoforms in normal physiology is limited and association studies of the splicing isoforms and the PTMs are scarce. This review aims to summarize the functional diversity of these ERα variants and the PTMs in normal physiological processes, particularly as studied in transgenic mouse models.
Collapse
|
3
|
Ishii H, Hattori Y, Ozawa H. Identification of Novel C-Terminally Truncated Estrogen Receptor β Variant Transcripts and Their Distribution in Humans. J NIPPON MED SCH 2021; 88:54-62. [DOI: 10.1272/jnms.jnms.2021_88-105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
4
|
Ishii H, Hattori Y, Ozawa H. Identification of a novel C-terminally truncated estrogen receptor α variant (ERαi34) with constitutive transactivation and estrogen receptor antagonist resistance. Mol Cell Endocrinol 2020; 503:110693. [PMID: 31881246 DOI: 10.1016/j.mce.2019.110693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022]
Abstract
Constitutively active estrogen receptor α (ERα) variants with C-terminal truncation are candidate molecules for gain of both endocrine- and chemotherapy-resistance in estrogen-sensitive tumors. Our previous reports using artificially truncated ERα constructs demonstrated that ERα variants encoded in 1-2-3-cryptic exon- and 1-2-3-4-cryptic exon-types of transcripts have potentials to display constitutive transactivation of an estrogen response element reporter. However, naturally occurring 1-2-3-cryptic exon-type ERα variants have not been cloned yet. Therefore, the present study was designed to identify naturally occurring ERα variants encoded in 1-2-3-cryptic exon-type ERα transcripts. We cloned a novel C-terminally truncated ERα variant (ERαi34) encoded in a 1-2-3-i34 transcript from MCF-7 cells and characterized its constitutive and ER antagonist-resistant transactivation in transfected cells. Stable transfection of the variant into MCF-7 cells augmented basal cell proliferation insensitive to fulvestrant. Collectively, we validated the structure-based mechanisms underlying constitutive and ER antagonist-resistant transactivation by C-terminally truncated ERα variants.
Collapse
Affiliation(s)
- Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
5
|
Schreihofer DA, Duong P, Cunningham RL. N-terminal truncations in sex steroid receptors and rapid steroid actions. Steroids 2018; 133:15-20. [PMID: 29104096 PMCID: PMC5864524 DOI: 10.1016/j.steroids.2017.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/14/2023]
Abstract
Sex steroid receptors act as ligand activated nuclear transcription factors throughout the body, including the brain. However, post-translational modification of these receptors can direct them to extranuclear sites, including the plasma membrane, where they are able to initiate rapid signaling. Because of the conserved domain structure of these receptors, alternative exon splicing can result in proteins with altered nuclear and extranuclear actions. Although much attention has focused on internal and C-terminal splice variants, both estrogen and androgen receptors undergo N-terminal truncations, as well. These truncated proteins not only influence the transcriptional activity of the full-length receptors, but also associate with caveolin and initiate signaling at the plasma membrane. Such actions may have important physiological consequences in neuronal, endothelial, and cancer signaling and cell survival.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76244, USA
| | - Phong Duong
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76244, USA
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76244, USA.
| |
Collapse
|
6
|
Ishii H, Hattori Y, Munetomo A, Watanabe H, Sakuma Y, Ozawa H. Characterization of rodent constitutively active estrogen receptor α variants and their constitutive transactivation mechanisms. Gen Comp Endocrinol 2017; 248:16-26. [PMID: 28412386 DOI: 10.1016/j.ygcen.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/24/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022]
Abstract
Estrogen receptor α (ERα) mRNAs exhibit remarkable heterogeneity owing to complicated alternative splicing. Some encode C-terminally-truncated ERα proteins, which display ligand-independent transactivation or dominant-negative activity. We previously characterized C-terminally-truncated ERα mRNA variants with cryptic sequences in humans and mice, and demonstrated that helices in the ligand-binding domains (LBDs) of ERα variants contribute to ligand-independent transcriptional activity. However, existence of non-conventional coding exons and generation of constitutively active ERα variants have remained to be examined in rats. To comparatively analyze modular organization and splicing profiles of the ERα genes, the range of C-terminally-truncated ERα variants was explored in rats and mice using rapid amplification of cDNA ends and RT-PCR cloning. Furthermore, their functions were determined in transiently transfected cells using expression constructs and luciferase reporter assays. Multiple cryptic exons and C-terminally-truncated ERα variant mRNAs were identified in rats and mice. Naturally occurring and artificially truncated variants/constructs lacking helix 5 potentially exhibited gain-of-function in transfected cells. Although cryptic exons and splicing profiles were poorly conserved among humans, mice, and rats, constitutively active variants were generated from the ERα genes. Moreover, the primary mechanism of ligand-independent activation by C-terminally-truncated ERα variants is C-terminus to helix 5 deletion in the LBD. This comparative study documented the complexity of ERα genes, mRNAs, and proteins, and further determined the underlying structural basis of ligand-independent activation by C-terminally-truncated ERα variants.
Collapse
Affiliation(s)
- Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Neurosurgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | - Arisa Munetomo
- Laboratory of Behavior Neuroscience, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| | - Hiroshi Watanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | - Yasuo Sakuma
- University of Tokyo Health Sciences, 4-11 Ochiai, Tama, Tokyo 206-0033, Japan.
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
7
|
Hattori Y, Ishii H, Munetomo A, Watanabe H, Morita A, Sakuma Y, Ozawa H. Human C-terminally truncated ERα variants resulting from the use of alternative exons in the ligand-binding domain. Mol Cell Endocrinol 2016; 425:111-22. [PMID: 26835991 DOI: 10.1016/j.mce.2016.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
Abstract
The nuclear receptor genes contain alternative internal and terminal exons, with alternative exon incorporation yielding mRNA variants that encode various receptor types, including some with C-terminal truncation that exhibit constitutive activation or dominant-negative transcriptional transactivation. However, C-terminally truncated estrogen receptor α (ERα) variants with alternative sequences have rarely been reported in humans. Therefore, we assessed human ERα genomic organization and alternative splicing profiles, and identified both alternative exons and C-terminally truncated ERα variants. These naturally occurring C-terminally truncated ERα proteins were localized in the nuclei of transfected cells. In addition, ERαi45c and ERαΔ5 variants exhibited constitutive transactivation of an estrogen responsive element-driven promoter in transfected cells. We manufactured expression vectors encoding artificially truncated ERα constructs and evaluated their transactivation abilities to establish mechanisms determining the constitutive activity and dominant-negative properties of truncated variants. Lack of the region encoded in exon 8 eliminated basal and ligand-induced transcriptional transactivation. The C-terminally truncated ERα variants/constructs containing the helices 5 in their ligand-binding domains did not exhibit constitutive transactivation. Furthermore, we demonstrated that truncation from C-termini to helices 5 in the variant ligand-binding domains was required for constitutive activation and found that the remnant regions of the ligand-binding domains and variant-specific sequences influenced transcriptional transactivation efficiency. In conclusion, we elucidated the structural and functional features of novel C-terminally truncated ERα variants and revealed the mechanisms underlying constitutive transactivation by C-terminally truncated nuclear receptor variants.
Collapse
Affiliation(s)
- Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Neurosurgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Arisa Munetomo
- Laboratory of Behavior Neuroscience, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Hiroshi Watanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Akio Morita
- Department of Neurosurgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yasuo Sakuma
- University of Tokyo Health Sciences, 4-11 Ochiai, Tama, Tokyo 206-0033, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
8
|
Sołtysik K, Czekaj P. ERα36--Another piece of the estrogen puzzle. Eur J Cell Biol 2015; 94:611-25. [PMID: 26522827 DOI: 10.1016/j.ejcb.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Although the nuclear action of estrogen receptors (ER) is a well-known fact, evidence supporting membrane estrogen receptors is steadily accumulating. New ER variants of unrecognized function have been discovered. ERα is a product of the ESR1 gene. It serves not only as a template for the full-length 66kDa protein, but also for smaller isoforms which exist as independent receptors. The recently discovered ERα36 (36kDa), consisting of 310 amino acids of total 595 ERα66 protein residues, is an example of that group. The transcription initiation site is identified in the first intron of the ESR1 gene. C-Terminal 27 amino acids are encoded by previously unknown exon 9. The presence of this unique C-terminal sequence creates an opportunity for the production of selective antibodies. ERα36 has been shown to have a high affinity to the cell membrane and as much as 90% of the protein can be bound with it. Post-translational palmitoylation is suspected to play a crucial role in ERα36 anchoring to the cell membrane. In silico analysis suggests the existence of a potential transmembrane domain in ERα36. ERα36 was found in most cells of animals at various ages, but its exact physiological function remains to be fully elucidated. It seems that cells traditionally considered as being deprived of ER are able to respond to hormonal stimulation via the ERα36 receptor. Moreover, ERα36 displays unique pharmacological properties and its action may be behind antiestrogen resistance. The use of ERα36 in cancer diagnosis gives rise to great expectations.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Students Scientific Society, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
9
|
Characterization of the fundamental properties of the N-terminal truncation (Δ exon 1) variant of estrogen receptor α in the rat. Gene 2015; 571:117-25. [DOI: 10.1016/j.gene.2015.06.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/02/2015] [Accepted: 06/22/2015] [Indexed: 02/05/2023]
|
10
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
11
|
Cotter KA, Yershov A, Novillo A, Callard GV. Multiple structurally distinct ERα mRNA variants in zebrafish are differentially expressed by tissue type, stage of development and estrogen exposure. Gen Comp Endocrinol 2013; 194:217-29. [PMID: 24090614 PMCID: PMC3862120 DOI: 10.1016/j.ygcen.2013.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/04/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
It is well established that estrogen-like environmental chemicals interact with the ligand-binding site of estrogen receptors (ERs) to disrupt transcriptional control of estrogen responsive targets. Here we investigate the possibility that estrogens also impact splicing decisions on estrogen responsive genes, such as that encoding ERα itself. Targeted PCR cloning was applied to identify six ERα mRNA variants in zebrafish. Sequencing revealed alternate use of transcription and translation start sites, multiple exon deletions, intron retention and alternate polyadenylation. As determined by quantitative (q)PCR, N-terminal mRNA variants predicting long (ERαA(L)) and short (ERα(S)) isoforms were differentially expressed by tissue-type, sex, stage of development and estrogen exposure. Whereas ERα(L) mRNA was diffusely distributed in liver, brain, heart, eye, and gonads, ERα(S) mRNA was preferentially expressed in liver (female>male) and ovary. Neither ERα(L) nor ERα(S) transcripts varied significantly during development, but 17β-estradiol selectively increased accumulation of ERα(S) mRNA (∼170-fold by 120 hpf), an effect mimicked by bisphenol-A and diethylstilbestrol. Significantly, a C-truncated variant (ERα(S)-Cx) lacking most of the ligand binding and AF-2 domains was transcribed exclusively from the short isoform promoter and was similar to ERα(S) in its tissue-, stage- and estrogen inducible expression. These results support the idea that promoter choice and alternative splicing of the esr1 gene of zebrafish are part of the autoregulatory mechanism by which estrogen modulates subsequent ERα expression, and further suggest that environmental estrogens could exert some of their toxic effects by altering the relative abundance of structurally and functionally distinct ERα isoforms.
Collapse
Affiliation(s)
- Kellie A. Cotter
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Anya Yershov
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Apolonia Novillo
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Gloria V. Callard
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
- Corresponding author: (617-353-8980)
| |
Collapse
|
12
|
Srivastava DP, Woolfrey KM, Penzes P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol Rev 2013; 65:1318-50. [PMID: 24076546 PMCID: PMC3799233 DOI: 10.1124/pr.111.005272] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits, contributing to cognition, with potential relevance for the development of novel estrogenic-based therapies for neurodevelopmental or neurodegenerative disorders.
Collapse
Affiliation(s)
- Deepak P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, 125 Coldharbour Lane, The James Black Centre, Institute of Psychiatry, King's College London, London, SE5 9NU, UK.
| | | | | |
Collapse
|
13
|
Ishii H, Kobayashi M, Munetomo A, Miyamoto T, Sakuma Y. Novel splicing events and post-transcriptional regulation of human estrogen receptor α E isoforms. J Steroid Biochem Mol Biol 2013; 133:120-8. [PMID: 23032375 DOI: 10.1016/j.jsbmb.2012.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 12/01/2022]
Abstract
Expression of the estrogen receptor α (ERα) gene is subject to complex regulation. To elucidate the mechanisms of this regulation, the genomic organization and the physiological role of the multiple 5'-untranslated regions (5'-UTRs) must be determined. Here, we investigated the expression and splicing patterns of the human ERα E isoforms. We identified two novel untranslated exons, N1 and N2, in the 5'-region of the human ERα gene and multiple E isoform mRNA variants generated by alternative usage of non-coding internal exons. Expression of the N1-containing variants was observed only in the human breast adenocarcinoma cell line, MCF7, while the N2-containing variants were expressed in the adult liver and MCF7 cells. We examined post-transcriptional regulation of the variant mRNAs using luciferase reporter assays and quantitative PCR. The insertion of untranslated internal exons into the 5'-UTRs of the E isoforms reduced their translation efficiency, but barely influenced mRNA turnover. Our results indicate that the genomic organization of the human ERα gene and the splicing profiles of the human ERα E isoforms are more complicated than previously reported. Furthermore, the 5'-UTRs of the E isoforms post-transcriptionally control human ERα expression mainly through translational repression.
Collapse
Affiliation(s)
- Hirotaka Ishii
- Department of Physiology, Nippon Medical School, 1 Sendagi, Tokyo 113-8602, Japan.
| | | | | | | | | |
Collapse
|
14
|
Ishii H, Sakuma Y. Complex organization of the 5'-untranslated region of the mouse estrogen receptor α gene: identification of numerous mRNA transcripts with distinct 5'-ends. J Steroid Biochem Mol Biol 2011; 125:211-8. [PMID: 21397022 DOI: 10.1016/j.jsbmb.2011.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 01/24/2023]
Abstract
The 5'-untranslated region (5'-UTR) of the estrogen receptor α (ERα) gene plays an important role in determining its tissue-specific expression. We examined the 5'-UTRs of the mouse ERα mRNA variants in depth using the Basic Local Alignment Search Tool (BLAST), rapid amplification of 5'-cDNA ends (5'-RACE) and RT-PCR. We demonstrated the presence of multiple variants containing unique 5'-UTRs. We mapped the cDNA sequences onto the mouse genome, and found that both alternative splicing from four different leader exons (A, C, F1, and H) to exon 1, and combinations of 12 internal exons (X1, X2, X3, X4, F2/X5, X6, X7, X8, X9, X10, X11, and B) generate multiple ERα transcripts. Mouse exon B, that has homologies with human exon B and rat exon 0T, was used as an internal exon, not as a leader exon. RT-PCR analysis revealed distinct expression patterns of the variants, suggesting that the alternative promoter usage and alternative splicing are regulated in a tissue-specific manner. Our results indicate that the genomic organization of the mouse ERα gene is complicated as previously shown in the rat ERα gene. In addition, both alternative promoter usage and alternative splicing contribute to the remarkable mRNA diversity of the mouse ERα gene.
Collapse
Affiliation(s)
- Hirotaka Ishii
- Department of Physiology, Nippon Medical School, 1 Sendagi, Bunkyo, Tokyo 113-8602, Japan.
| | | |
Collapse
|