1
|
Li M, Zhao B, Wang J, Zhang H, Yang Y, Song S, Psifidi A, Wu W, Loor JJ, Xu C. Caveolin 1 in bovine liver is associated with fatty acid-induced lipid accumulation and the ER unfolded protein response: role in fatty liver development. J Dairy Sci 2024:S0022-0302(24)01178-0. [PMID: 39343220 DOI: 10.3168/jds.2024-25349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
Disruption of endoplasmic reticulum (ER) homeostasis, i.e., ER stress, is intrinsically linked with lipid metabolism disorders in dairy cows. Caveolin 1 (CAV1) is a ubiquitously-expressed membrane-associated scaffolding protein involved in regulating the secretory pathway within the ER. Whether inhibiting the activity of CAV1 affects the ER and its potential role in hepatic lipid deposition in dairy cows is unknown. Biopsies of liver tissue from Holstein cows (days in milk: median = 13 d, range = 5 to 21) diagnosed as healthy (n = 6, hepatic TAG levels < 1%, milk production: median = 38.9 kg/day, Interquartile range = 38.0 and 40.8) or suffering from fatty liver (n = 6, hepatic TAG levels > 5%, milk production: median = 36.6 kg/day, Interquartile range = 35.7 and 38.1) revealed that fatty liver was associated with lower abundance of CAV1 gene and protein, higher phosphorylation (p) levels of PERK and IRE1α, and increased abundance of ATF6, GRP78, CHOP protein, and several unfolded protein response (UPR) genes (ATF4, sXBP1, and GRP78). Proteins related to de novo fatty acid synthesis, including ACC1, SREBP-1c, PPARγ, and downstream targets genes of SREBP1 (ACACA and FASN) also had greater abundance. This in vivo analysis highlighted a mechanistic link between CAV1 protein abundance, ER stress, and lipid metabolism during fatty liver. A mechanistic study was then performed in vitro with primary hepatocytes isolated from 5 healthy calves (weight, 40-45 kg; 1 d old). Initially, hepatocytes were treated with FFA (1.2 mM) for 1, 3, 6, or 12 h. FFA treatment reduced CAV1 protein abundance linearly while it reduced abundance of ER stress-related proteins, p-IRE1α, p-PERK, GRP78, ATF6, and CHOP. Proteins related to de novo fatty acid synthesis (ACC1, SREBP-1c, PPARγ) also increased linearly, and lipid droplets accumulated progressively over time following FFA treatment. Subsequently, to assess the role of CAV1 in FFA-induced ER stress and de novo fatty acid synthesis, hepatocytes were transfected with pCMV-CAV1 (cattle)-3 × FLAG-Neo (pc-CAV1) plasmid to overexpress CAV1 or with siRNA to silence CAV1 (siCAV1) transcription. Overexpression of CAV1 alleviated ER stress by reducing levels of p-PERK and p-IRE1α, as well as the protein abundance of ATF6, GRP78, CHOP, and several UPR genes (GRP78, ATF4, and sXBP1). Similarly, CAV1 overexpression decreased protein abundance of ACC1, SREBP-1c, PPARγ, and downstream targets genes of SREBP1 (ACACA and FASN). Conversely, silencing CAV1 exacerbated FFA-induced ER stress and de novo fatty acid synthesis. Considering the negative role of FFA-induced ER stress on lipid accumulation in hepatocytes, a second in vitro experiment involved hepatocytes treated with 0.5 μg/mL tunicamycin (TM, a typical ER stress inducer) for 24 h with or without overexpressing CAV1 (pc-CAV1). Overexpressing caveolin 1 reversed TM-induced increases in mRNA and protein associated with ER stress and de novo fatty acid synthesis. Furthermore, use of hepatocytes transfected with pc-CAV1 for 48 h and subjected to co-immunoprecipitation revealed that CAV1 interacts with IRE1α and ATF6. Overall, the data suggest that CAV1 may help reduce hepatic ER stress and mitigate fatty acid synthesis by binding to and inhibiting IRE1α and ATF6 signaling.
Collapse
Affiliation(s)
- Ming Li
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Bichen Zhao
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Huijing Zhang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Shihao Song
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, United Kingdom
| | - Wenda Wu
- School of Food and Biological Engineering, University of Technology, Hefei 230009, China
| | - Juan J Loor
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China..
| |
Collapse
|
2
|
Ping S, Xuehu M, Chunli H, Xue F, Yanhao A, Yun M, Yanfen M. Multiomics reveals blood differential metabolites and differential genes in the early onset of ketosis in dairy cows. Genomics 2024; 116:110927. [PMID: 39187030 DOI: 10.1016/j.ygeno.2024.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Ketosis-a metabolic state characterized by elevated levels of ketone bodies in the blood or urine-reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR-key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively-can be used as key marker genes for determining the early onset of ketosis in dairy cows.
Collapse
Affiliation(s)
- Sha Ping
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Xuehu
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Hu Chunli
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Feng Xue
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - An Yanhao
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Yun
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Yanfen
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Fava S, Reiff S. Association of body mass index and blood pressure variability with 10-year mortality and renal disease progression in type 2 diabetes. Acta Diabetol 2024; 61:747-754. [PMID: 38438789 PMCID: PMC11101579 DOI: 10.1007/s00592-024-02250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Variability in biological parameters may be associated with adverse outcomes. The aim of the study was to determine whether variability in body mass index (BMI) and blood pressure is associated with all-cause, cardiovascular mortality and cancer mortality or with renal disease progression in subjects with type 2 diabetes. METHODS The diabetes database was accessed, and all the information on patient visits (consultations) carried out in the study period (1 January 2008-31 December 2019) was extracted and linked to the laboratory database and the mortality register. RESULTS The total number of patients included in the study population was 26,261, of whom 54.4% were male. Median (interquartile range, IQR) age was 60.2 (51.8-68.3) years. The coefficient of variability of BMI was independently associated with increased all-cause and cardiovascular, but not cancer, mortality. Glycated haemoglobin (HbA1c) was associated with increased all-cause, cardiovascular, and cancer mortality as well as with renal progression. Variability in systolic blood pressure, diastolic blood pressure, and pulse pressure was associated with increased all-cause and cardiovascular mortality in bivariate, but not in multivariate, analyses. CONCLUSIONS Variability in BMI was associated with increased all-cause and cardiovascular, but not cancer, mortality in a large real-world contemporary population. Our results also confirm the association of HbA1c with increased all-cause, cardiovascular, and cancer mortality as well as with renal progression.
Collapse
Affiliation(s)
- Stephen Fava
- University of Malta Medical School, Msida, MSD 2090, Malta.
| | - Sascha Reiff
- Department for Policy in Health, Valletta, Malta
| |
Collapse
|
4
|
Li CY, Lin WC, Moonmanee T, Chan JPW, Wang CK. The Protective Role of Vitamin E against Oxidative Stress and Immunosuppression Induced by Non-Esterified Fatty Acids in Bovine Peripheral Blood Leukocytes. Animals (Basel) 2024; 14:1079. [PMID: 38612319 PMCID: PMC11011009 DOI: 10.3390/ani14071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
High levels of non-esterified fatty acids (NEFAs) during the transition period lead to increased oxidative stress and immunosuppression in cows. Feeding them a vitamin-E-supplemented diet reduces reactive oxygen species (ROS) levels in the blood and diminishes immunosuppression in the transition period. However, whether the restoration of immune cell function occurs through the direct action of vitamin E in cells is still a topic that requires further discussion. Therefore, in this experiment, we aimed to investigate the effect of NEFAs on peripheral blood leukocytes (PBLs) and whether vitamin E mitigates the impact of NEFAs. We employed three groups: (1) blank, (2) NEFA only, and (3) pre-culturing with vitamin E before NEFA treatment (VENEFA). In peripheral blood mononuclear cells (PBMCs), there were no differences in vitamin E content among the three groups. However, in the vitamin E pre-treatment group, the vitamin E levels of polymorphonuclear neutrophils (PMNs) were significantly higher than those in the other two groups. NEFA levels increased malondialdehyde (MDA) levels in PBMCs, but pre-treatment with vitamin E reduced accumulation of MDA levels. Regarding the expression of proinflammatory genes, NEFAs increased the expression of interleukin-1β in PBMCs and colony-stimulating factor 2 in PMNs. Vitamin E pre-treatment restored the increase in interleukin-1β levels caused by NEFAs in PBMCs. None of the groups affected the phagocytosis of PMNs. Few studies have confirmed that NEFAs cause oxidative stress in bovine PBLs. In summary, this study found that NEFAs induce oxidative stress in PBLs and alter the expression of inflammation-related genes; meanwhile, vitamin E can reduce some of the effects caused by NEFAs. This result may suggest that vitamin E can assist bovine PBLs in resisting the immune suppression caused by an NEB during the transition period.
Collapse
Affiliation(s)
- Cheng-Yan Li
- Department of Animal Science, National Chung Hsing University, Taichung 402202, Taiwan; (C.-Y.L.); (W.-C.L.)
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Wei-Chen Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402202, Taiwan; (C.-Y.L.); (W.-C.L.)
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tossapol Moonmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jacky Peng-Wen Chan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Chien-Kai Wang
- Department of Animal Science, National Chung Hsing University, Taichung 402202, Taiwan; (C.-Y.L.); (W.-C.L.)
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
5
|
Zhang D, Ding H, Liu C, Huang Y, Tai W, Feng S, Wang X, Zhao C, Li Y. Circulating exosome-mediated AMPKα-SIRT1 pathway regulates lipid metabolism disorders in calf hepatocytes. Res Vet Sci 2024; 169:105177. [PMID: 38350170 DOI: 10.1016/j.rvsc.2024.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.
Collapse
Affiliation(s)
- Daoliang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Hongyan Ding
- Research Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui Province 230031, China
| | - Chang Liu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Wenjun Tai
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| |
Collapse
|
6
|
Salama AF, El-Far AH, Anbar EA, El-Naggar SA, Elshazli RM, Elmetwalli A. Gingerol and/or sorafenib attenuates the DAB-induced HCC and hepatic portal vein dilatation via ATG4/CASP3 and COIIV/COX-2/NF-κB expression. Med Oncol 2024; 41:57. [PMID: 38228916 PMCID: PMC10791832 DOI: 10.1007/s12032-023-02284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
Ginger (Gin) has numerous therapeutic properties. One of Gin's most potent components is 6-gingerol, a naturally occurring phenol. This study aimed to investigate the therapeutic impact of gingerol and/or sorafenib on the ATG4/CASP3 and COIIV/COX-2/NF-B Expression as a potential therapy for DAB-induced HCC. Gin was administered to HCC mice induced by p-Dimethylaminoazobenzene (DAB) alone or combined with sorafenib (Sor). Superoxide dismutase (SOD), catalase (CAT), and oxidative stress malondialdehyde (MDA), as well as biochemical markers including AST, ALT, ALP, Albumin, and Bilirubin, were examined. The expression of oncogenes (COIIV, COX-2, NF-κB, and survivin) and tumor suppressor genes (ATG4 and CASP3) was evaluated using qPCR. According to the results, the levels of MDA have been markedly decreased, while SOD and CAT have been increased. Further, the expression levels of tumor suppressor genes were upregulated, whereas the expression levels of oncogene genes were downregulated. Furthermore, in a dose-dependent manner, gingerol has shown the potential to alleviate hepatic portal vein (PV) dilatation and could offer a reliable therapy for HCC. This suggests combining the two compounds may be more effective than alone and that Gin could be a promising therapeutic option for HCC. The binding of Gin and Sor to the active sites of the target genes prevents them from functioning normally, which in turn stops the pathways from carrying out their oncogenic functions. Additionally, COX-2 inhibition reduces the production of certain pro-inflammatory compounds, which further averts oncogenesis. Conclusively, this study indicated that Gin has cytoprotective properties and anti-cancer activity that may be related to controlling oxidative stress. This effect may be achieved by suppressing the COIIV/COX-2/NF-κB pathway and upregulating the ATG4 /CASP3 pathways.
Collapse
Affiliation(s)
- Afrah Fatthi Salama
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Esraa Ali Anbar
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sabry Ali El-Naggar
- Physiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Science, Faculty of Physical Therapy, Hours University, New Damietta, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| |
Collapse
|
7
|
Lopaschuk GD, Dyck JRB. Ketones and the cardiovascular system. NATURE CARDIOVASCULAR RESEARCH 2023; 2:425-437. [PMID: 39196044 DOI: 10.1038/s44161-023-00259-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 08/29/2024]
Abstract
Ketone bodies, the main one being β-hydroxybutyrate, have emerged as important regulators of the cardiovascular system. In healthy individuals, as well as in individuals with heart failure or post-myocardial infarction, ketones provide a supplemental energy source for both the heart and the vasculature. In the failing heart, this additional energy may contribute to improved cardiac performance, whereas increasing ketone oxidation in vascular smooth muscle and endothelial cells enhances cell proliferation and prevents blood vessel rarefication. Ketones also have important actions in signaling pathways, posttranslational modification pathways and gene transcription; many of which modify cell proliferation, inflammation, oxidative stress, endothelial function and cardiac remodeling. Attempts to therapeutically increase ketone delivery to the cardiovascular system are numerous and have shown mixed results in terms of effectiveness. Here we review the bioenergetic and signaling effects of ketones on the cardiovascular system, and we discuss how ketones can potentially be used to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Orquera-Arguero KG, Casasús I, Ferrer J, Blanco M. Beef cows' performance and metabolic response to short nutritional challenges in different months of lactation. Res Vet Sci 2023; 159:26-34. [PMID: 37062229 DOI: 10.1016/j.rvsc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Lactating cows can react to changes in nutrient availability with a range of behavioural and physiological mechanisms, which may differ among lactation stages. We investigated the effects of short feed restriction and refeeding periods on beef cows' performance and metabolic status in different months of lactation. For this, Parda de Montaña beef cows [n = 31; 626 ± 47.7 kg body weight (BW)] were subjected to short nutritional restriction and refeeding cycles, which were repeated in months 2, 3 and 4 of lactation. Each month, cows were consecutively fed a diet to meet 100% of their energy and protein requirements during a 4-day basal period, 55% during a 4-day restriction period, and again 100% during a 4-day refeeding period. The performance (energy balance, BW, milk yield and composition) and plasma metabolite concentrations (glucose, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), urea and malondialdehyde) were measured daily. Most of the traits were significantly affected by the interaction between feeding period and lactation month. Feed restriction induced milk yield loss, decreased milk protein and increased milk urea contents to different extents. The plasma NEFA concentrations rose with restriction in months 2, 3 and 4 but BHB and urea concentrations increased only in month 4. Most of these metabolites lowered to basal values during refeeding. These results suggest that beef cows use different adaptation strategies to cope with nutritional challenges as lactation advances, body fat mobilisation predominates in early lactation and protein catabolism prevails at later stages.
Collapse
Affiliation(s)
- Karina G Orquera-Arguero
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Isabel Casasús
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Javier Ferrer
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Mireia Blanco
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
| |
Collapse
|
9
|
Zhang C, Shao Q, Liu M, Wang X, Loor JJ, Jiang Q, Cuan S, Li X, Wang J, Li Y, He L, Huang Y, Liu G, Lei L. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver. J Dairy Sci 2023; 106:2700-2715. [PMID: 36823013 DOI: 10.3168/jds.2022-22021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/24/2022] [Indexed: 02/23/2023]
Abstract
Fatty liver (i.e., hepatic lipidosis) is a prevalent metabolic disorder in dairy cows during the transition period, characterized by excess hepatic accumulation of triglyceride (TG), tissue dysfunction, and cell death. Detailed pathological changes, particularly hepatic fibrosis, during fatty liver remain to be determined. Liver fibrosis occurs as a consequence of liver damage, resulting from the excessive accumulation of extracellular matrix, which distorts the architecture of the normal liver, compromising its normal synthetic and metabolic functions. Thus, we aimed to investigate liver fibrosis status and its potential causal factors including oxidative stress, hepatocyte apoptosis, and production of inflammatory cytokines in the liver of cows with fatty liver. Forty-five dairy cows (parity, 3-5) were selected, and liver biopsy and blood were collected on the second week postpartum (days in milk, 10-14 d). On the basis of the degree of lipid accumulation in liver, selected cows were categorized into normal (n = 25; TG <1% wet wt), mild fatty liver (n = 15; 1% ≤ TG <5% wet wt), and moderate fatty liver (n = 5; 5% ≤ TG <10% wet wt). Compared with normal cows, blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, along with alanine aminotransferase and aspartate aminotransferase activities, were greater in the cows with fatty liver (mild and moderate). Hepatic extracellular matrix deposition, as indicated by Picrosirius red staining, was greater in cows with fatty liver than those with normal ones. In addition, we observed an increased proportion of collagen type I fiber in extracellular matrix with increased lipid accumulation in the liver. Compared with normal cows, the area of α-smooth muscle actin (α-SMA)-positive staining along with the mRNA abundance of collagen type I α 1 (COL1A1), ACTA2 (gene encoding α-SMA), and transforming growth factor-β (TGFB) were greater in cows with fatty liver. Compared with normal cows, hepatic contents of malondialdehyde, glutathione disulfide, and 8-isoprostane were greater, whereas total antioxidant capacity, the hepatic content of glutathione, and activities of antioxidant indicators, including superoxide dismutase, glutathione peroxidase, and catalase, were lower in cows with fatty liver. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells and abundance of apoptosis-related molecules BAX, CASP3, CASP8, and CASP9 were greater in cows with fatty liver. However, mRNA abundance of the anti-apoptotic gene BCL2 did not differ. The mRNA abundance of pro-inflammatory cytokines including tumor necrosis factor-α (TNFA), interleukin-1β (IL1B), and interleukin-6 (IL6) was greater in the liver of cows with fatty liver. Overall, the present study indicated that fibrosis is a common pathological response to liver damage and is associated with oxidative stress, hepatocyte death, and inflammation.
Collapse
Affiliation(s)
- Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Qi Shao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xueying Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Shunan Cuan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yuanxiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| | - Lin Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
10
|
Li C, Huang J, Chen X, Yan Y, Li L, Zhao W. Transcriptome Analysis Reveals That NEFA and β-Hydroxybutyrate Induce Oxidative Stress and Inflammatory Response in Bovine Mammary Epithelial Cells. Metabolites 2022; 12:1060. [PMID: 36355143 PMCID: PMC9696823 DOI: 10.3390/metabo12111060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/18/2023] Open
Abstract
Non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) are the metabolites of fat mobilization initiated by negative energy balance (NEB) during the perinatal period in dairy cows, which have an adverse effect on cell physiology of various bovine cell types. The aim of this study was to explore the biological roles of NEFA and BHBA on provoking oxidative stress and inflammatory responses in bovine mammary epithelial cells (BMECs). RNA sequencing analysis showed that there are 1343, 48, and 1725 significantly differentially expressed genes (DEGs) in BMECs treated with NEFA, BHBA and their combination. GO functional analysis revealed that the DEGs were significantly enriched in "response to oxidative stress" and "inflammatory response". Further study demonstrated that NEFA and BHBA elevated the malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation and reduced the total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activity to cause oxidative stress. In addition, expression of inflammatory markers (NO, TNF-α, IL-6, and IL-1β) were increased after NEFA and BHBA stimulation. Mechanistically, our data showed that NEFA and BHBA activated the MAPK signaling pathway. Collectively, our results indicate that NEFA and BHBA induce oxidative stress and inflammatory response probably via the MAPK signaling pathway in BMECs.
Collapse
Affiliation(s)
- Chengmin Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Junpeng Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiangxing Chen
- Zibo Service Center for Animal Husbandry and Fishery, Zibo 255000, China
| | - Yexiao Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiguo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
11
|
Yang Z, Luo F, Liu G, Luo Z, Ma S, Gao H, He H, Tao J. Plasma Metabolomic Analysis Reveals the Relationship between Immune Function and Metabolic Changes in Holstein Peripartum Dairy Cows. Metabolites 2022; 12:953. [PMID: 36295855 PMCID: PMC9611258 DOI: 10.3390/metabo12100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy cows undergo dynamic physiological changes from late gestation to early lactation, including metabolic changes and immune dysfunction. The aim of this study was to investigate the relationship between immune function and metabolic changes in peripartum dairy cows. Fifteen healthy Holstein dairy cows were enrolled 14 days prior to parturition, and plasma was collected on day −7, 0, 7, and 21 relative to calving. Plasma non-esterified fatty acids (NEFAs), glucose, β-hydroxybutyric acid (BHBA), immunoglobulin G (IgG), tumor necrosis factor alpha (TNF-α), and interleukin-2 levels were measured, and metabolic profiles were determined using ultra-high-performance liquid chromatography−quadrupole time-of-flight mass spectrometry. The data were analyzed using Tukey−Kramer adjustment for multiple comparisons, and multivariate and univariate statistical analyses were performed to screen for differential metabolites. The results showed that the concentrations of NEFAs, glucose, BHBA, and TNF-α in the plasma significantly increased and concentrations of IgG and interleukin-2 in plasma significantly decreased from −7 d to the calving day (p < 0.05). Additionally, the concentrations of glucose, IgG, and TNF-α significantly decreased from 0 to +7 d, and concentrations of NEFAs decreased significantly from +7 to +21 d (p < 0.05). The following six primary metabolic pathways were identified in all time point comparisons, and L-glutamate, linoleic acid, taurine, and L-tryptophan were involved in these major metabolic pathways. Correlation and pathway analyses indicated that a negative energy balance during the transition period adversely affects immune responses in cows, and L-tryptophan exerts immunomodulatory effects through the Trp-Kyn pathway, resulting in depletion of Trp and elevation of Kyn.
Collapse
Affiliation(s)
- Zhuo Yang
- Agriculture College, Ningxia University, Yinchuan 750021, China
| | - Fang Luo
- Agriculture College, Ningxia University, Yinchuan 750021, China
| | - Guolin Liu
- Agriculture College, Ningxia University, Yinchuan 750021, China
| | - Zhengzhong Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sijia Ma
- Agriculture College, Ningxia University, Yinchuan 750021, China
| | - Hang Gao
- Agriculture College, Ningxia University, Yinchuan 750021, China
| | - Hailong He
- Agriculture College, Ningxia University, Yinchuan 750021, China
| | - Jinzhong Tao
- Agriculture College, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
12
|
Fang Z, Gao W, Jiang Q, Loor JJ, Zhao C, Du X, Zhang M, Song Y, Wang Z, Liu G, Li X, Lei L. Targeting IRE1α and PERK in the endoplasmic reticulum stress pathway attenuates fatty acid-induced insulin resistance in bovine hepatocytes. J Dairy Sci 2022; 105:6895-6908. [PMID: 35840398 DOI: 10.3168/jds.2021-21754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) stress can be induced by various stimuli and triggers the unfolded protein response to activate intracellular signaling pathways that are mediated by 3 ER-resident sensors: inositol requiring protein-1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription factor-6 (ATF6). In nonruminants, ER stress plays a critical role in hepatic insulin resistance. However, whether ER stress plays a role in nonesterified fatty acid (NEFA)-induced hepatic insulin resistance in dairy cows is still unknown. Experiments were conducted using primary bovine hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h. Treatment with NEFA elevated abundance of phosphorylated IRE1α and PERK, and cleavage of ATF6, along with the ER stress-associated genes XBP1, ATF4, and DNAJC3, resulting in both linear and quadratic effects. Furthermore, ER Tracker red staining and transmission electron microscopy results indicated that ER was dilated and degranulated in response to NEFA treatment, suggesting that ER stress was induced by NEFA treatment in bovine hepatocytes. Second, to assess the effect of ER stress on NEFA-induced insulin resistance, hepatocytes were treated with different concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 5 h with or without tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress). Here, NEFA induced insulin resistance by increasing the abundance of insulin receptor substrate-1 (IRS1) phosphorylation at the inhibitory residue Ser 307 (S307) and decreasing the abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in a dose-dependent manner. This was accompanied by upregulation of an abundance of gluconeogenic genes [phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6-Pase)]. These detrimental effects of NEFA on insulin signaling could be reversed with TUDCA treatment, indicating a mechanistic link between ER stress and NEFA-induced insulin resistance. In a third experiment, pGPU6/GFP/Neo vectors containing short hairpin RNA targeting IRE1α were used to silence IRE1α transcription, and GSK2656157 (PERK phosphorylation inhibitor) and 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF; an inhibitor of ATF6) were used to block PERK and ATF6 branches, respectively. Notably, the silencing of the IRE1α branch improved NEFA-induced insulin resistance by decreasing phosphorylation of IRS1 (S307) and increasing phosphorylation of AKT and GSK3β, and reducing PEPCK and G6-Pase mRNA abundance, which was likely dependent on IRE1α kinase activity. Similarly, blockage of the PERK branch increased phosphorylation of AKT and GSK3β, and reduced PEPCK and G6-Pase mRNA abundance, but had no effect on phosphorylation of IRS1 (S307). However, results showed that inhibition of the ATF6 branch had no effects on phosphorylation of IRS1, AKT, and GSK3β, and instead found increasing PEPCK and G6-Pase mRNA abundance. Taken together, data in the present study found that impeding IRE1α and PERK signaling might aid in relieving hepatic insulin resistance. However, the more detailed mechanisms of how IRE1α and PERK signaling contribute to hepatic insulin resistance in dairy cows remain to be determined.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chenchen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Min Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
13
|
Missio D, Fritzen A, Cupper Vieira C, Germano Ferst J, Farias Fiorenza M, Guedes de Andrade L, Martins de Menezes B, Tomazele Rovani M, Gazieira Gasperin B, Dias Gonçalves PB, Ferreira R. Increased β-hydroxybutyrate (BHBA) concentration affect follicular growth in cattle. Anim Reprod Sci 2022; 243:107033. [PMID: 35816934 DOI: 10.1016/j.anireprosci.2022.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/12/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Metabolic stress conditions caused by negative energy balance (NEB) have been associated with reduced fertility in cows. β-hydroxybutyrate (BHBA) is the main circulating ketone body, which accumulates within follicular fluid. The aim of this study was to evaluate the effects of BHBA on follicle growth and on ovulatory mechanisms in cattle. At 72 h after intrafollicular injection, there was a decrease in follicular diameter in BHBA group compared to control (P = 0.02). Furthermore, follicle growth rate was reduced post-treatment with BHBA in comparison to the control group (P < 0.03). The BHBA intrafollicular injection in follicles ≥ 12 mm, however, did not affect E2 and P4 concentrations in the follicular fluid. In addition, the relative abundance of genes involved in the ovulatory cascade (ADAM 17, AREG, EREG, PTGS2), steroidogenesis (CYP19A1, 3BHSD, STAR), cellular stress (SOD1, CAT, GPX1, HSPA5, XBP1s, XBP1u, ATF4, ATF6), monocarboxylic acid transporters (SLC16A1, SLC16A7) and apoptosis (XIAP) was similar between groups. In conclusion, the results of this study indicate that the increase in intrafollicular concentrations of BHBA affects follicular growth, but it does not compromise the ovulatory cascade and cellular homeostasis in bovine granulosa cells.
Collapse
Affiliation(s)
- Daniele Missio
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alexandro Fritzen
- Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil
| | - Camila Cupper Vieira
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Juliana Germano Ferst
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Mariani Farias Fiorenza
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Guedes de Andrade
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bento Martins de Menezes
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Monique Tomazele Rovani
- Department of Animal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Paulo Bayard Dias Gonçalves
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil.
| |
Collapse
|
14
|
Yue K, Pu X, Loor JJ, Jiang Q, Dong J, Shen T, Li G, Gao W, Lei L, Du X, Song Y, Liu G, Li X. Impaired autophagy aggravates oxidative stress in mammary gland of dairy cows with clinical ketosis. J Dairy Sci 2022; 105:6030-6040. [DOI: 10.3168/jds.2021-21234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
|
15
|
Kannan P, Karthikeyan P, Subramaniam N, Mohan T, Gopinath B, Chakrapani LN, Palanivelu S, Raghunathan M, Periandavan K. Gymnemic acid protects murine pancreatic β-cells by moderating hyperglycemic stress-induced inflammation and apoptosis in type 1 diabetic rats. J Biochem Mol Toxicol 2022; 36:e23050. [PMID: 35343011 DOI: 10.1002/jbt.23050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Type 1 diabetes is a chronic immune-mediated disease caused by pancreatic β-cell dysfunction with consequent severe insulin deficiency. Exacerbated blood glucose levels can cause oxidative stress in the pancreatic β-cells, which leads to inflammation, and apoptosis resulting in islet dysfunction. Although massive studies have been carried out to elucidate the causative factors for β-cell damage in diabetes, the therapeutic approach to pancreatic β-cell damage has not been extensively studied. Hence, the present study has been designed to delineate the role of gymnemic acid (GA) in protecting pancreatic β-cells in diabetic animals, with special reference to inflammation and apoptosis. Our data revealed that the treatment with GA significantly reverted the alteration in both biochemical and histochemical observations in young diabetic rats. Moreover, treatment with the GA downregulates the expression of proinflammatory markers (nuclear factor-κB, tumor necrosis factor-α, interleukin-[IL]-6, and IL-1β), proapoptotic proteins (Bax, cytochrome c, and cleaved caspase-3), as well as upregulates the expression of antiapoptotic protein Bcl-2 in diabetic rats. These findings suggest that the anti-inflammatory and antiapoptotic nature of GA mitigates β-cell damage in hyperglycemic rats.
Collapse
Affiliation(s)
- Pugazhendhi Kannan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Porkodi Karthikeyan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Nirmala Subramaniam
- Department of Biochemistry, University of Madras, Guindy Campus, Guindy, Chennai, India
| | - Thangarajeswari Mohan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Bhavani Gopinath
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Lakshmi N Chakrapani
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Shanthi Palanivelu
- Department of Pathology, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Malathi Raghunathan
- Department of Pathology, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| |
Collapse
|
16
|
Fang Z, Li X, Wang S, Jiang Q, Loor JJ, Jiang X, Ju L, Yu H, Shen T, Chen M, Song Y, Wang Z, Du X, Liu G. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis. J Dairy Sci 2022; 105:4520-4533. [DOI: 10.3168/jds.2021-20892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
|
17
|
Song Y, Wang K, Loor JJ, Jiang Q, Yang Y, Jiang S, Liu S, He J, Feng X, Du X, Lei L, Gao W, Liu G, Li X. β-Hydroxybutyrate inhibits apoptosis in bovine neutrophils through activating ERK1/2 and AKT signaling pathways. J Dairy Sci 2022; 105:3477-3489. [DOI: 10.3168/jds.2021-21259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
|
18
|
Song Y, Jiang S, Li C, Loor JJ, Jiang Q, Yang Y, Feng X, Liu S, He J, Wang K, Li Y, Zhang C, Du X, Wang Z, Li X, Liu G. Free fatty acids promote degranulation of azurophil granules in neutrophils by inducing production of NADPH oxidase-derived reactive oxygen species in cows with subclinical ketosis. J Dairy Sci 2022; 105:2473-2486. [PMID: 34998570 DOI: 10.3168/jds.2021-21089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Subclinical ketosis (SCK) in dairy cows, a common metabolic disorder during the peripartal period, is accompanied by systemic inflammation. Excessive release of azurophil granule (AG) contents during degranulation of polymorphonuclear neutrophils (PMN) could contribute to systemic inflammation in SCK cows. Although the increase in blood free fatty acids (FFA) in SCK cows may promote AG degranulation from PMN, the underlying mechanisms are unclear. Thirty multiparous cows (within 3 wk postpartum) with similar lactation numbers (median = 3, range = 2-4) and days in milk (median = 6, range = 3-15) were classified based on serum β-hydroxybutyrate (BHB) level as control (n = 15, BHB < 0.6 mM) or SCK (n = 15, 1.2 mM < BHB < 3.0 mM). Cows with SCK had greater levels of serum haptoglobin, serum amyloid A, IL-1β, IL-6, IL-8 and tumor necrosis factor-α. These proinflammatory factors had strong positive correlations with myeloperoxidase (MPO), a marker protein of PMN AG, whose content was greater in the serum of SCK cows. Both the number of AG and the protein abundance of MPO were lower in PMN isolated from SCK cows. Additionally, we found a greater ratio of blood CH138A+/CD63high cells and greater mean fluorescence intensity of CD63 on the PMN membrane, further confirming the greater degree of AG degranulation in cows with SCK. In vitro FFA dose response (0, 0.3, 0.6, 1.2, and 2.4 mM for 4 h) and time course (0, 0.5, 1, 2, and 4 h with 0.6 mM) experiments were performed on PMN isolated from control cows. The increase in MPO content in extracellular supernatant resulting from those experiments led to the selection of 0.6 mM FFA for 1 h duration as conditions for subsequent studies. After FFA treatment, release of intracellular MPO was increased along with increased levels of CD63 mean fluorescence intensity on the PMN membrane, confirming that FFA promoted degranulation of AG. In addition, FFA treatment increased reactive oxygen species (ROS) production by PMN, an effect that was attenuated by incubation with diphenyleneiodonium chloride (DPI), a NADPH oxidase-derived ROS inhibitor. The mitochondrial-derived ROS inhibitor carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) did not affect ROS in response to FFA treatment. Treatment with FFA increased p47 phosphorylation and mRNA abundance of NCF1, NCF2, and CYBB in PMN. Furthermore, DPI, but not FCCP, dampened the degranulation of PMN AG induced by FFA in vitro. These data suggested that the degranulation of AG in PMN induced by FFA was mediated by NADPH oxidase-derived ROS. As verified ex vivo, PMN from SCK cows had greater levels of ROS, phosphorylation of p47, and mRNA abundance of NCF1, NCF2, and CYBB. Overall, the present study revealed that high blood concentrations of FFA in SCK cows induce the production of NADPH oxidase-derived ROS, thereby promoting degranulation of AG in PMN. The stimulatory effect of FFA on the release of AG content during degranulation, especially MPO, provides a new insight into the systemic inflammation experienced by peripartal cows with SCK.
Collapse
Affiliation(s)
- Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Shang Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Congyi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Yuchen Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Xiancheng Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Siyuan Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Jiyuan He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Kexin Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Yunfei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003 China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China.
| |
Collapse
|
19
|
Deng Q, Du L, Zhang Y, Liu G. NEFAs Influence the Inflammatory and Insulin Signaling Pathways Through TLR4 in Primary Calf Hepatocytes in vitro. Front Vet Sci 2021; 8:755505. [PMID: 34966805 PMCID: PMC8710596 DOI: 10.3389/fvets.2021.755505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Transition dairy cows are often in a state of negative energy balance because of decreased dry matter intake and increased energy requirements, initiating lipid mobilization and leading to high serum β-hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFAs) levels, which can induce ketosis and fatty liver in dairy cows. Inflammation and insulin resistance are also common diseases in the perinatal period of dairy cows. What is the relationship between negative energy balance, insulin resistance and inflammation in dairy cows? To study the role of non-esterified fatty acids in the nuclear factor kappa beta (NF-κB) inflammatory and insulin signaling pathways through Toll-like receptor 4 (TLR4), we cultured primary calf hepatocytes and added different concentrations of NEFAs to assess the mRNA and protein levels of inflammatory and insulin signaling pathways. Our experiments indicated that NEFAs could activate the NF-κB inflammatory signaling pathway and influence insulin resistance through TLR4. However, an inhibitor of TLR4 alleviated the inhibitory effects of NEFAs on the insulin pathway. In conclusion, all of these results indicate that high-dose NEFAs (2.4 mM) can activate the TLR4/NF-κB inflammatory signaling pathway and reduce the sensitivity of the insulin pathway through the TLR4/PI3K/AKT metabolic axis.
Collapse
Affiliation(s)
- Qinghua Deng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Yuming Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Guowen Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
20
|
Chen J, Li F, Yang W, Jiang S, Li Y. Comparison of Gut Microbiota and Metabolic Status of Sows With Different Litter Sizes During Pregnancy. Front Vet Sci 2021; 8:793174. [PMID: 35004929 PMCID: PMC8733392 DOI: 10.3389/fvets.2021.793174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
The experiment was conducted to compare the differences of gut microbiota and metabolic status of sows with different litter sizes on days 30 and 110 of gestation, and uncover the relationship between the composition of maternal gut microbiota during gestation and sow reproductive performance. Twenty-six Large White × Landrace crossbred multiparous sows (2nd parity) with similar back fat thickness and body weight were assigned to two groups [high-reproductive performance group (HP group) and low-reproductive performance group (LP group)] according to their litter sizes and fed a common gestation diet. Results showed that compared with LP sows, HP sows had significantly lower plasma levels of triglyceride (TG) on gestation d 30 (P < 0.05), but had significantly higher plasma levels of TG, non-esterified fatty acid, tumor necrosis factor-α, and immunoglobulin M on gestation d 110 (P < 0.05). Consistently, HP sows revealed increased alpha diversity and butyrate-producing genera, as well as fecal butyrate concentration, on gestation d 30; HP sows showed significantly different microbiota community structure with LP sows (P < 0.05) and had markedly higher abundance of Firmicutes (genera Christensenellaceae_R-7_group and Terrisporobacter) which were positively related with litter size on gestation d 110 than LP sows (P < 0.05). In addition, plasma biochemical parameters, plasma cytokines, and fecal microbiota shifted dramatically from gestation d 30 to d 110. Therefore, our findings demonstrated that microbial abundances and community structures differed significantly between sows with different litter sizes and gestation stages, which was associated with changes in plasma biochemical parameters, inflammatory factors, and immunoglobulin. Moreover, these findings revealed that there was a significant correlation between litter size and gut microbiota of sows, and provided a microbial perspective to improve sow reproductive performance in pig production.
Collapse
Affiliation(s)
| | | | | | | | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
21
|
Shi M, Sirard MA. Effects of NEFAs during IVM on pig embryos from granulosa cell-cocultured oocytes. Mol Reprod Dev 2021; 88:805-816. [PMID: 34841613 DOI: 10.1002/mrd.23548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
Circulating levels of nonesterified fatty acids (NEFAs) are elevated in some females, which can impair oocyte maturation and embryo development, and may alter the phenotype of the progeny. However, the effects of NEFAs on human embryo development are not clear due to ethical limitations. Thus, we used pig as the model to investigate the impacts of NEFAs on oocyte and embryo due to their similar reproductive and metabolic physiologies to humans. In this study, porcine cumulus-oocyte complexes were in vitro maturated under a pathologically high concentration of NEFAs (468 μM palmitic acid, 194 μM stearic acid, and 534 μM oleic acid) with the presence of granulosa cell monolayer, in contrast to control without NEFAs. The mature oocytes were fertilized to produce embryos for further analysis of the transcriptome and DNA methylation patterns. The elevated level of NEFAs decreased the blastocyst rate and delayed the blastocyst development. Ingenuity pathway analysis showed that the most affected gene pathways were related mainly to cell activities, metabolism, and inflammation. These findings indicated that oocytes exposed to the exogenous high level of NEFAs during in vitro maturation resulted in altered gene expression and DNA methylation of early embryos, which have detrimental impacts on blastocyst quality.
Collapse
Affiliation(s)
- Meihong Shi
- Département des Sciences Animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Pavillon Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, Québec, Canada
| | - Marc-André Sirard
- Département des Sciences Animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Pavillon Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
22
|
Shi M, Sirard MA. Cocultured porcine granulosa cells respond to excess non-esterified fatty acids during in vitro maturation. J Ovarian Res 2021; 14:142. [PMID: 34711256 PMCID: PMC8554973 DOI: 10.1186/s13048-021-00904-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023] Open
Abstract
Background Non-esterified fatty acids (NEFAs) are one of the main lipid components of follicular fluid at concentrations that depend on circulating levels. Elevated levels of NEFAs impair oocyte quality, development potential, and may subsequently influence the metabolism and reproductive fitness of offspring. Granulosa cells (GCs) are the follicular cells that are closely communicating with the oocyte. However, the responses of GCs exposed to high levels of NEFAs when cocultured with cumulus-oocyte complexes (COCs), and how they attenuate the negative effects of NEFAs on oocytes, are unclear. Results To better understand this protective effect, monolayers of porcine GCs were cocultured with COCs during in vitro maturation (IVM) in the presence of elevated levels of NEFAs. Genomic expression analysis was conducted to explore the responses of the GCs to the elevated levels of NEFAs. After limma algorithm analysis, 1,013 genes were differentially expressed between GCs cultured with and without elevated NEFAs. Among them, 438 genes were upregulated and 575 were downregulated. The differentially expressed genes were enriched in pathways related to metabolism, inflammation, and epithelial-mesenchymal transition. Conclusions The pathways and upstream regulators suggested that the cocultured GCs responded to the elevated NEFAs with (1) inhibition of the transition from granulosa to luteal cell, (2) interactions of metabolism change, anti-inflammation, mitochondrial function, and cell transition, (3) intercommunication with cocultured COCs of anti-inflammatory factors. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00904-y.
Collapse
Affiliation(s)
- Meihong Shi
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
23
|
FE65 in breast cancer and its clinicopathological significance. Breast Cancer 2021; 29:144-155. [PMID: 34498219 DOI: 10.1007/s12282-021-01291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/31/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Transcription coregulator adapter protein FE65 is well known to play pivotal roles in pathogenesis of Alzheimer's disease by regulating amyloid precursor protein (APP) expression and processing. APP was recently reported to be also involved in development of human malignancies. Therefore, in this study, we studied FE65 status in different subtypes of human breast cancer and correlated the results with cell proliferation and migration of carcinoma cells and clinicopathological features of breast cancer patients to explore its biological and clinical significance in breast cancer. METHODS We first immunolocalized FE65 and APP in 138 breast cancer patients and correlated the results with their tumor grade. Then, we did further exploration by proximity ligation assay, WST-8, and wound-healing assay. RESULTS FE65 immunoreactivity in carcinoma cells was significantly associated with lymph-node metastasis, ERα, and high pathological N factor. APP immunoreactivity was significantly positively correlated with high pathological N factor. FE65, APP, and p-APP were all significantly correlated with shorter disease-free survival of breast cancer patients. In addition, the status of FE65 was significantly associated with overall survival. Results of in vitro analysis revealed that FE65 promoted the migration and proliferation of T-47D and ZR-75-1 breast carcinoma cells. In situ proximity ligation assay revealed that FE65 could bind to APP in the cytoplasm. FE65 was also associated with APP and ERα in carcinoma cells, suggesting their cooperativity in promoting carcinoma cell proliferation and migration. APP was also significantly associated with adverse clinical outcome of the patients. CONCLUSIONS This is the first study to explore the clinical significance of FE65 in human breast cancer. The significant positive correlation of FE65 with poor clinical outcome, direct binding to APP, and promotion of carcinoma cell proliferation and migration indicated that FE65-APP pathway could serve as the potential candidate of therapeutic intervention in breast cancer patients.
Collapse
|
24
|
Liu L, Lu H, Loor JJ, Aboragah A, Du X, He J, Peng T, Su J, Wang Z, Liu G, Li X. Sirtuin 3 inhibits nuclear factor-κB signaling activated by a fatty acid challenge in bovine mammary epithelial cells. J Dairy Sci 2021; 104:12871-12880. [PMID: 34482974 DOI: 10.3168/jds.2021-20536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Susceptibility to mastitis is highest during the peripartal (transition) period and is often concomitant with other comorbidities such as ketosis. Although infection with pathogenic microorganisms and immune-dysfunction around calving clearly play key roles in mastitis development, other metabolic factors also contribute. Sirtuin 3 (SIRT3), a mitochondrial deacetylase regulating energy and redox homeostasis, antagonizes the lipotoxic effects of nonesterified fatty acids (NEFA). Thus, we hypothesized that increases in circulating NEFA concentrations, as observed in the transition period, provokes inflammatory responses that can be reversed via activation of SIRT3. Here we aimed to study (1) proinflammatory NF-κB signaling and SIRT3 abundance in mammary tissue of ketotic cows and healthy controls, and (2) the effect of SIRT3 on NF-κB activation in bovine mammary epithelial cells (BMEC) treated with high levels of NEFA. The mammary gland biopsy samples were from a previous study, which included 15 healthy cows and 15 ketotic cows. Primary BMEC were isolated from 3 healthy Holstein cows with collagenase III digestion. Purified BMEC were incubated with or without SIRT3 overexpression adenovirus for 48 h, then treated with 0, 0.6, 1.2, or 2.4 mM NEFA for 24 h. Mammary tissue of ketotic cows was associated with lower protein abundance of SIRT3 along with greater NF-κB P65 phosphorylation levels (p-NF-κB P65), p-NF-κB P65:NF-κB P65 ratio, and mRNA abundance of IL1B and IL6. In BMEC, exogenous NEFA dose-dependently reduced protein abundance of SIRT3, but increased p-NF-κB P65, p-NF-κB P65:NF-κB P65 ratio, and mRNA abundance of IL1B and IL6. Compared with green fluorescent protein adenovirus vector + NEFA, overexpression of SIRT3 in NEFA-treated BMEC downregulated p-NF-κB P65 and mRNA abundance of IL1B and IL6. Immunofluorescence indicated that overexpression of SIRT3 inhibited nuclear translocation of NF-κB P65. Overall, our data demonstrated that ketosis is associated with a reduction in SIRT3 abundance and activation of NF-κB signaling in the mammary gland. In vitro data provided evidence that high NEFA concentrations inhibit SIRT3, which contributes to enhanced NF-κB signaling including nuclear translocation and a pro-inflammatory response. The data suggest a promising role of SIRT3 as a target for helping alleviate localized inflammation of the mammary gland resulting from exposure to high concentrations of NEFA.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha 410128, China
| | - Hong Lu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha 410128, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ahmad Aboragah
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Jianhua He
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha 410128, China
| | - Tao Peng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha 410128, China
| | - Jianming Su
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha 410128, China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China.
| |
Collapse
|
25
|
Shen T, Li X, Jin B, Loor JJ, Aboragah A, Ju L, Fang Z, Yu H, Chen M, Zhu Y, Ouyang H, Song Y, Wang Z, Du X, Liu G. Free fatty acids impair autophagic activity and activate nuclear factor kappa B signaling and NLR family pyrin domain containing 3 inflammasome in calf hepatocytes. J Dairy Sci 2021; 104:11973-11982. [PMID: 34454753 DOI: 10.3168/jds.2021-20273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
Free fatty acids (FFA)-induced hepatic inflammation agravates liver injury and metabolic dysfunction in dairy cows with ketosis or fatty liver. Under stressful conditions, autophagy is generally considered as a cell protection mechanism, but whether the FFA-induced inflammatory and stress effect on hepatocytes involves an autophagy response is not well known. Thus, the objective of this study was to investigate the effects of FFA on autophagy and the role of autophagy in the activation of NF-κB (nuclear factor kappa B) signaling and NLRP3 (NLR family pyrin domain containing 3) inflammasome in calf hepatocytes. Calf hepatocytes were isolated from 3 healthy Holstein female new-born calves (1 d of age, 30-40 kg) and exposed to various concentrations of FFA (0, 0.3, 0.6, or 1.2 mM) after treatment with or without the autophagy inhibitor chloroquine (CQ) or the autophagy activator rapamycin. Expression of autophagy markers, LC3 (microtubule-associated protein 1 light chain 3) and p62 (sequestosome 1), NF-κB signaling, and NLRP3 inflammasome-related molecules were analyzed via western blot and quantitative real-time PCR. Results revealed that 0.6 and 1.2 mM FFA activated NF-κB signaling and NLRP3 inflammasome as indicated by an elevated ratio of p-NF-κB/NF-κB, protein abundance of NLRP3 and CASP1 (caspase 1), activity of CASP1, and mRNA abundance of IL1B and IL18. In addition, hepatocyte treated with 0.6 and 1.2 mM FFA or autophagy inhibitor CQ displayed increased protein abundance of p62 and LC3-II. Moreover, there was no difference in protein abundance of p62 and LC3-II between calf hepatocytes treated with 1.2 mM FFA and 1.2 mM FFA plus CQ, indicating that FFA inhibits autophagic activity in calf hepatocytes. Treatment with CQ led to overactivation of NF-κB signaling and NLRP3 inflammasome. Furthermore, CQ plus 1.2 mM FFA aggravated FFA-induced inflammation. In contrast, induction of autophagy by rapamycin ameliorated the FFA-activated NF-κB signaling and NLRP3 inflammasome as demonstrated by a lower ratio of p-NF-κB/NF-κB, protein abundance of NLRP3 and CASP1, activity of CASP1, and mRNA abundance of IL1B and IL18. Overall, inhibition of autophagy exacerbated, whereas induction of autophagy alleviated, FFA-induced inflammatory processes in calf hepatocytes, suggesting that impairment of autophagy might be partly responsible for hepatic inflammation and subsequent liver injury in dairy cows with ketosis or fatty liver. As such, regulation of autophagy may be an effective therapeutic strategy for controlling overt inflammatory responses in vivo.
Collapse
Affiliation(s)
- Taiyu Shen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Bo Jin
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ahmad Aboragah
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Lingxue Ju
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Hao Yu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Meng Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yiwei Zhu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Yuxiang Song
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
26
|
Hu Z, Lin M, Ma X, Zhao G, Zhan K. Effect of Tea Tree Oil on the Expression of Genes Involved in the Innate Immune System in Goat Rumen Epithelial Cells. Animals (Basel) 2021; 11:ani11082460. [PMID: 34438917 PMCID: PMC8388664 DOI: 10.3390/ani11082460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Subacute rumen acidosis (SARA) often causes significant losses on commercial farms. SARA is mainly caused by endotoxin (LPS) produced by the lysis of Gram-negative bacteria, which causes an inflammatory response. To alleviate the inflammatory response mediated by LPS, it is important to improve animal production performance. Tea tree oil (TTO) is a plant extract that possesses good bactericidal and anti-inflammatory effects. According to this study, LPS can significantly induce inflammatory responses in goat rumen epithelial cells (GRECs), while the addition of TTO could markedly mitigate inflammatory responses mediated by LPS in GRECs. Therefore, it may be useful for the treatment of SARA. Abstract In subacute rumen acidosis (SARA), the rumen epithelium is frequently attacked by endotoxin (LPS), which is caused by the lysis of dead Gram-negative bacteria. However, the rumen epithelium innate immune system can actively respond to the infection. Previous studies have demonstrated that tea tree oil (TTO) has good bactericidal and anti-inflammatory effects. Therefore, the aim of this study was to investigate the effect of TTO on the expression of genes involved in the inflammatory cytokines in goat rumen epithelial cells (GRECs) triggered by LPS. Our study shows that rumen epithelial cells isolated from goat rumen tissue can be cultured in vitro in 0.25% trypsin for a long time. These cells were identified as epithelial cells by the expression of cytokeratin 18, monocarboxylate transporter 4 (MCT4), Na[+]/H[+] hydrogen exchanger 1 (NHE1), putative anion transporter 1 (PAT1), vH+ ATPase B subunit (vH+ ATPase), and anion exchanger 2 (AE2). The mRNA expression of IL-1β, IL-6, TNF-α, TLR-2, NF-κB, CXCL6 and CXCL8 genes was significantly increased when LPS was used compared to untreated controls. In addition, mRNA expression of IL-1β, IL-6, TNF-α, TLR-2, NF-κB, CXCL8, CXCL6 and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) genes was also significantly higher in the LPS group compared to the 0.05% TTO group. However, the expression of IL-1β, IL-6, TNF-α, TLR-2, CXCL6 and IFIT3 genes was significantly lower in the LPS and 0.05% TTO group compared to the 1 μg/mL LPS group. These results suggest that TTO can inhibit LPS-induced inflammatory cytokines expression in GRECs.
Collapse
Affiliation(s)
| | | | | | | | - Kang Zhan
- Correspondence: ; Tel.: +86-188-5272-0422
| |
Collapse
|
27
|
Angeli E, Barcarolo D, Durante L, Santiago G, Matiller V, Rey F, Ortega HH, Hein GJ. Effect of precalving body condition score on insulin signaling and hepatic inflammatory state in grazing dairy cattle. Domest Anim Endocrinol 2021; 76:106621. [PMID: 33714908 DOI: 10.1016/j.domaniend.2021.106621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
During postpartum, high-production dairy cows show a temporary period of insulin resistance, during which glucose uptake by peripheral tissues is reduced to prioritize milk production. However, this can further increase their negative energy balance by compromising liver function, especially in cows with excessive body condition score (BCS) and a pro-inflammatory state. Based on this, the aim of this study was to evaluate the hepatic expression of proteins of the insulin signaling pathway (PI3K) and of the cytokines TNFα, IL-6 and NF-κB, as well as the plasma concentrations of non-esterified fatty acids (NEFA), beta-hydroxybutyrate, glucose, triglycerides (TAG), insulin and insulin-like growth factor-1, insulin sensitivity indexes, and the hepatic content of TAG during the transition period in cows with different BCS. Sixteen Holstein cows were selected 14 days before the expecting calving date and classified into 2 groups: low BCS (LBCS) ≤ 3.25 (n = 9) and high BCS (HBCS) ≥ 3.5 (n = 7). Blood and liver samples were obtained 14 (±3) days before the expected calving date and 4 (±3), 14 (±3) and 28 (±3) days after calving. The concentration of NEFA was higher in the HBCS group than in the LBCS group. Glucose concentration showed an interaction effect, with a greater concentration on day 28 in HBCS. Insulin concentration showed no changes. While the pAkt/total Akt ratio was lower in the HBCS group, the TNFα protein expression was higher only on day 4 postcalving in the HBCS group. In agreement with these results, the insulin sensitivity indexes RQUICKI and RQUICKIBHBA were lower in the HCBS group. The results suggest an insulin resistance and a pro-inflammatory state in the liver of cows with HBCS.
Collapse
Affiliation(s)
- E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - D Barcarolo
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - L Durante
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - G Santiago
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - V Matiller
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - G J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez, Universidad Nacional del Litoral (UNL), Gálvez, Santa Fe, Argentina.
| |
Collapse
|
28
|
Shi M, Sirard MA. Transcriptome and epigenome analysis of porcine embryos from non-esterified fatty acid-exposed oocytes. Domest Anim Endocrinol 2021; 76:106605. [PMID: 33631700 DOI: 10.1016/j.domaniend.2021.106605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence indicates that maternal malnutrition leads to decreased female fertility and dysregulated metabolic homeostasis in offspring. High levels of non-esterified fatty acids (NEFAs) in follicular fluid were reported to be involved in these maternal nutritional effects, but the mechanisms remain unclear. This study explored the mechanisms of action of abnormal NEFA levels during porcine oocyte in vitro maturation (IVM) on early embryo development (blastocysts) using phenotypic, transcriptomic, and epigenetic analysis. The oocytes were treated during IVM with, in addition to the 1% (v/v) porcine follicular fluid in the control group, a combination of 468 μmol/L palmitic acid, 194 μmol/L stearic acid, and 534 μmol/L oleic acid supplemented to North Carolina State University-23 (NCSU-23) maturation medium to achieve a high level of NEFAs. After IVM, oocytes were in vitro fertilized and then cultured in regular conditions for blastocysts. Expanded blastocysts were collected to complete transcriptomic and epigenetic analysis. Macroscopically, high level of NEFAs impaired embryo development by reducing the blastocyst rate. Analysis of the transcriptome revealed that pathways related to inflammation, apoptosis, metabolism, and oxidative stress were the most affected. Moreover, DNA methylation data demonstrated differentially methylated regions in genes related to cellular metabolism and inflammation processes. Therefore, our conclusion is that high level of NEFAs during IVM might affect porcine early embryo development by diminishing blastocyst rate and altering gene expression, especially at the metabolism and cell status levels, which could further decrease the embryo quality.
Collapse
Affiliation(s)
- M Shi
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| | - M-A Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
29
|
Guo C, Xue Y, Sun D, Yin Y, Hu F, Mao S. Transcriptome profiling of hepatic and renal mRNAs and lncRNAs under a nutritional restriction during pregnancy in a sheep model. Genomics 2021; 113:2769-2779. [PMID: 34147634 DOI: 10.1016/j.ygeno.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the transcriptome profiles of liver and kidney in pregnant sheep under a nutritional restriction. Twenty Hu sheep were segregated into control group (CON) and severe feed restriction (FR) group. Results showed that the concentration of insulin decreased, whereas glucagon, epinephrine, and norepinephrine increased in the FR group. Histological morphology showed no apparent difference in terms of fat deposition in the kidney. In addition, FR significantly decreased the hepatic gene expression of gluconeogenic genes. However, in the kidney, the relative mRNA expression levels of gluconeogenic genes and glucose transporter 1 were observed to increase while the mRNA expression of sodium-glucose co-transporter 1 were decreased by FR. The differentially expressed genes in the liver were associated with fatty acid metabolism and inflammation. In the kidney, FR mainly activated the gluconeogenesis improving negative energy balance. These results provide a better understanding of the consequences of starvation during pregnancy.
Collapse
Affiliation(s)
- Changzheng Guo
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Xue
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Daming Sun
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Fan Hu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
30
|
Shen T, Xu F, Fang Z, Loor JJ, Ouyang H, Chen M, Jin B, Wang X, Shi Z, Zhu Y, Liang Y, Ju L, Song Y, Wang Z, Li X, Du X, Liu G. Hepatic autophagy and mitophagy status in dairy cows with subclinical and clinical ketosis. J Dairy Sci 2021; 104:4847-4857. [PMID: 33551163 DOI: 10.3168/jds.2020-19150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022]
Abstract
Severe negative energy balance around parturition is an important contributor to ketosis, a metabolic disorder that occurs most frequently in the peripartal period. Autophagy and mitophagy are important processes responsible for breaking down useless or toxic cellular material, and in particular damaged mitochondria. However, the role of autophagy and mitophagy during the occurrence and development of ketosis is unclear. The objective of this study was to investigate autophagy and mitophagy in the livers of cows with subclinical ketosis (SCK) and clinical ketosis (CK). We assessed autophagy by measuring the protein abundance of microtubule-associated protein 1 light chain 3-II (LC3-II; encoded by MAP1LC3) and sequestosome-1 (p62, encoded by SQSTM1), as well as the mRNA abundance of autophagy-related genes 5 (ATG5), 7 (ATG7), and 12 (ATG12), beclin1 (BECN1), and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3). Mitophagy was evaluated by measuring the protein abundance of the mitophagy upstream regulators PTEN-induced putative kinase 1 (PINK1) and Parkin. Liver and blood samples were collected from healthy cows [n = 15; blood β-hydroxybutyrate (BHB) concentration <1.2 mM], cows with SCK (n = 15; blood BHB concentration 1.2 to 3.0 mM) and cows with CK (n = 15; blood BHB concentration >3.0 mM with clinical signs) with similar lactation numbers (median = 3, range = 2 to 4) and days in milk (median = 6, range = 3 to 9). The serum activity of aspartate aminotransferase and alanine aminotransferase was greater in cows with CK than in healthy cows. Levels of oxidative stress biomarkers malondialdehyde and hydrogen peroxide were also higher in liver tissue from ketotic cows (SCK and CK) than from healthy cows. Compared with cows with CK and healthy cows, the hepatic mRNA abundance of MAP1LC3, SQSTM1, ATG5, ATG7, ATG12, and PIK3C3 was upregulated in cows with SCK. Compared with healthy cows, cows with SCK had a lower abundance of p62 and a greater abundance of LC3-II, but levels of both were higher in cows with CK. The mRNA abundance of ATG12 was lower in cows with CK than in healthy cows. Furthermore, the hepatic protein abundance of PINK1 and Parkin was greater in cows with SCK and slightly lower in cows with CK than in healthy cows. These data demonstrated differences in the hepatic activities of autophagy and mitophagy in cows with SCK compared with cows with CK. Although the precise mechanisms for these differences could not be discerned, autophagy and mitophagy seem to be involved in ketosis.
Collapse
Affiliation(s)
- Taiyu Shen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Feng Xu
- Department of Renal Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Meng Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Bo Jin
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xinghui Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Zhen Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yiwei Zhu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Lingxue Ju
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
31
|
Angeli E, Barcarolo D, Ribas L, Marelli B, Roskopf P, Salado E, Ortega H, Hein G. Relevant aspects of dietary n-3 polyunsaturated fatty acids in the adaptation of dairy cattle to the transition period. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Tsuchiya Y, Ozai R, Sugino T, Kawashima K, Kushibiki S, Kim YH, Sato S. Changes in peripheral blood oxidative stress markers and hepatic gene expression related to oxidative stress in Holstein cows with and without subacute ruminal acidosis during the periparturient period. J Vet Med Sci 2020; 82:1529-1536. [PMID: 32893200 PMCID: PMC7653322 DOI: 10.1292/jvms.20-0426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated changes in peripheral blood metabolites, oxidative stress markers
(malondialdehyde, potential antioxidant capacity, and glutathione peroxidase [GPX]), and
hepatic gene expression related to oxidative stress in Holstein cows with and without
subacute ruminal acidosis (SARA) during the periparturient period. Eighteen multiparous
Holstein cows were categorized into SARA (n=9) or non-SARA (n=9) groups depending on
whether they developed SARA; reticulo-ruminal pH was <5.6 for more than 3 hr per day,
during the 2 weeks after parturition. Blood and liver tissue samples were collected 3
weeks prepartum and 2 and 6 weeks postpartum, with an additional blood sample collected 0
and 4 weeks postpartum. Blood aspartate transaminase (AST) and nonesterified fatty acid
(NEFA) increased significantly (P<0.05) after parturition in both
groups. GPX activity decreased gradually after parturition in the SARA group. In the SARA
group, gene expression of GPX 1 and microsomal glutathione S-transferase
3 (MGST3) decreased significantly (P<0.05), and
expression of metallothionein 2A increased significantly (P<0.05)
after parturition in the SARA group. Superoxide dismutase 1 and MGST3
decreased significantly (P<0.05) 2 weeks postpartum in the non-SARA
group. Gene expression related to oxidative stress was negatively correlated with AST,
NEFA and total ketone body levels. Therefore, the hepatic gene expression related to
oxidative stress might change associated with a negative energy balance, and might relate
the high oxidative stress in the SARA group during periparturient period.
Collapse
Affiliation(s)
- Yoshiyuki Tsuchiya
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.,Yamagata Prefectural Agricultural Mutual Aid Association, Tendo, Yamagata 994-8511, Japan
| | - Reiko Ozai
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Toshihisa Sugino
- The Research Center for Animal Science, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kenji Kawashima
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki 305-0901, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Shigeru Sato
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.,Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
33
|
Shen J, Sun B, Yu C, Cao Y, Cai C, Yao J. Choline and methionine regulate lipid metabolism via the AMPK signaling pathway in hepatocytes exposed to high concentrations of nonesterified fatty acids. J Cell Biochem 2020; 121:3667-3678. [PMID: 31680310 DOI: 10.1002/jcb.29494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 01/24/2023]
Abstract
High concentrations of nonesterified fatty acids (NEFAs) and β-hydroxybutyric acid (BHBA) induce lipid peroxidation, resulting in liver damage. Choline and methionine (Met) can promote energy balance and benefit liver health in transition dairy cows; however, the regulating mechanism remains unclear. In the present study, we established the hepatocyte damage model by 1.5 mM NEFAs or BHBA treatment, and examined lipid metabolism in hepatocytes. The results showed that 1.5 mM NEFAs and 1.5 mM BHBA significantly decreased the messenger RNA (mRNA) expression of AMP-activated protein kinase (AMPK)-α as well as its target genes carnitine palmitoyltransferase-1α (CPT-1α), acetyl-CoA carboxylase, fatty acid synthetase, and Apolipoprotein B100 (ApoB100). Choline and Met upregulated the phosphorylation level of AMPK-α, which was blocked by BML (an AMPK-α inhibitor). The mRNA expression level of peroxisome proliferator-activated receptor-α (PPAR-α), CPT-1α, and ApoB100 showed a similar trend. The expressions of liver X recptoer α (LXR-α) and sterol regulatory element-binding protein 1c (SREBP-1c) were decreased by choline and Met, while only the decrease of LXR-α was blocked by BML. These findings indicate that the high-level NEFAs and BHBA weaken the lipid metabolism by impairing the fatty acid oxidation, synthesis, and transport proteins. Choline and Met regulate PPAR-α and LXR-α transcriptional activity through AMPK-α phosphorylation and regulate SREBP-1c independently of AMPK-α to promote lipid oxidation and transport in NEFAs-treated hepatocytes.
Collapse
Affiliation(s)
- Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bofei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,The Development Centre of Animal Husbandry, Shangluo, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Qin X, Yang S, Zhang Y, Li L, Li P, Long M, Guo Y. Effects of non-esterified fatty acids on relative abundance of prostaglandin E 2 and F 2α synthesis-related mRNA transcripts and protein in endometrial cells of cattle in vitro. Anim Reprod Sci 2020; 221:106549. [PMID: 32861111 DOI: 10.1016/j.anireprosci.2020.106549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023]
Abstract
Cows nearing parturition have a negative energy balance (NEB), which is closely associated with lesser fertility. The NEB results in greater fat mobilisation and production of a large amount of non-esterified fatty acid (NEFA). Prostaglandins (PG), especially prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α), have important functions in regulating reproductive function. There, however, is little known about how the synthesis and release of PG are affected by NEFA. In this study, there was a focus on effects of NEFA on PG secretion as well as relative abundances of mRNA transcript and protein for PG synthetases and PG receptors in bovine endometrial (BEND) cells. Proliferation rate of BEND cells decreased in a concentration-dependent manner as NEFA increased in the media. The concentrations of PGE2 and PGF2α in NEFA treatment groups also decreased, while the ratio of PGE2/PGF2α and the relative abundances of proteins and mRNA that regulate PG synthesis and PG receptor mRNA transcripts and protein were greater as the NEFA concentration increased. Collectively, when there were large NEFA concentrations in the medium, there was a lesser release of PGE2 and PGF2α, however, there was a greater ratio of PGE2/PGF2α and relative abundances of mRNA transcripts and protein for PG synthetases and PG receptors in BEND cells, which changed the internal milieu and physiological function of the uterus with possible effects on fertility after calving. These findings provide important information that will help for further investigation of associations between NEB and fertility in dairy cows during the non-lactation to lactation-transition period.
Collapse
Affiliation(s)
- Xueqiang Qin
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Yang Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
35
|
Sun H, Sun Z, Varghese Z, Guo Y, Moorhead JF, Unwin RJ, Ruan XZ. Nonesterified free fatty acids enhance the inflammatory response in renal tubules by inducing extracellular ATP release. Am J Physiol Renal Physiol 2020; 319:F292-F303. [PMID: 32686520 DOI: 10.1152/ajprenal.00098.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In proteinuric renal diseases, excessive plasma nonesterified free fatty acids bound to albumin can leak across damaged glomeruli to be reabsorbed by renal proximal tubular cells and cause inflammatory tubular cells damage by as yet unknown mechanisms. The present study was designed to investigate these mechanisms induced by palmitic acid (PA; one of the nonesterified free fatty acids) overload. Our results show that excess PA stimulates ATP release through the pannexin 1 channel in human renal tubule epithelial cells (HK-2), increasing extracellular ATP concentration approximately threefold compared with control. The ATP release is dependent on caspase-3/7 activation induced by mitochondrial reactive oxygen species. Furthermore, extracellular ATP aggravates PA-induced monocyte chemoattractant protein-1 secretion and monocyte infiltration of tubular cells, enlarging the inflammatory response in both macrophages and HK-2 cells via the purinergic P2X7 receptor-mammalian target of rapamycin-forkhead box O1-thioredoxin-interacting protein/NOD-like receptor protein 3 inflammasome pathway. Hence, PA increases mitochondrial reactive oxygen species-induced ATP release and inflammatory stress, which cause a "first hit," while ATP itself is a "second hit" in amplifying the renal tubular inflammatory response. Thus, inhibition of ATP release or the purinergic P2X7 receptor may be an approach to reduce renal inflammation and improve renal function.
Collapse
Affiliation(s)
- Hong Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Endocrinology and Metabolism, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology and Metabolism, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Zac Varghese
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Yinfeng Guo
- Department of Endocrinology and Metabolism, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - John F Moorhead
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Robert John Unwin
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom.,Early Cardiovascular, Renal & Metabolism, AstraZeneca Biopharmaceutical's R&D, Cambridge, United Kingdom
| | - Xiong Z Ruan
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom.,Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
36
|
Ding H, Li Y, Li W, Tao H, Liu L, Zhang C, Kong T, Feng S, Li J, Wang X, Wu J. Epigallocatechin-3-gallate activates the AMP-activated protein kinase signaling pathway to reduce lipid accumulation in canine hepatocytes. J Cell Physiol 2020; 236:405-416. [PMID: 32572960 DOI: 10.1002/jcp.29869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) plays a crucial role in hepatic lipid metabolism. However, the underlying regulatory mechanism of hepatic lipid metabolism by EGCG in canine is unclear. Primary canine hepatocytes were treated with EGCG (0.01, 0.1, or 1 μM) and BML-275 (an AMP-activated protein kinase [AMPK] inhibitor) to study the effects of EGCG on the gene and protein expressions associated with AMPK signaling pathway. Data showed that treatment with EGCG had greater activation of AMPK, as well as greater expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) along with upregulated messenger RNA (mRNA) abundance and protein abundance of PPARα-target genes. EGCG decreased the expression levels and transcriptional activity of sterol regulatory element-binding protein 1c (SREBP-1c) along with downregulated mRNA abundance and protein abundance of SREBP-1c target genes. Of particular interest, exogenous BML-275 could reduce or eliminate the effects of EGCG on lipid metabolism in canine hepatocytes. Furthermore, the content of triglyceride was significantly decreased in the EGCG-treated groups. These results suggest that EGCG might be a potential agent in preventing high-fat diet-induced lipid accumulation in small animals.
Collapse
Affiliation(s)
- Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huanqing Tao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Leihong Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Tao Kong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
37
|
Tsuchiya Y, Kawahara N, Kim YH, Ichijo T, Sato S. Changes in oxidative stress parameters in healthy and diseased Holstein cows during the transition period in Yamagata Prefecture, Japan. J Vet Med Sci 2020; 82:955-961. [PMID: 32507785 PMCID: PMC7399317 DOI: 10.1292/jvms.20-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We investigated changes in oxidative stress markers during the transition period in healthy Holstein cows and those with postpartum diseases. Transition control (TC) Holstein cows
(n=9) were evaluated for longitudinal changes during the transition period and postpartum diseased (PD) cows with ketosis (n=10), abomasal displacement (n=9), and acute mastitis
(n=10) were evaluated in comparison to control cows (n=10). In the TC group, blood samples were collected at 2 weeks prepartum and at 1, 2, 4, 6, and 8 weeks postpartum. Milk yield
and composition were measured at 2 and 4 weeks postpartum. In the PD group, blood samples were collected at the first day of examination during the 60 days postpartum. Peripheral
oxidative stress parameters (malondialdehyde, MDA; potential antioxidant capacity, PAO; and glutathione peroxidase) were measured, and biochemical analyses were performed. In the
TC group, MDA increased significantly postpartum and was correlated with milk yield, blood glucose (Glu), free fatty acid (FFA), β-hydroxybutyric acid (BHB), and aspartate
aminotransferase. Compared to the control cows, PD cows with ketosis had significantly higher MDA and significantly lower PAO. Moreover, MDA was significantly correlated with Glu,
FFA, and BHB. Postpartum increase in MDA might interact with milk yield and Glu, FFA, and BHB in the TC cows, and postpartum diseases, especially ketosis, might signify its
increase and interaction with Glu, FFA, and BHB.
Collapse
Affiliation(s)
- Yoshiyuki Tsuchiya
- Graduate School of Veterinary Sciences, Iwate University, Iwate 020-8550, Japan.,Yamagata Prefectural Agricultural Mutual Aid Association, Tendo, Yamagata 994-8511, Japan
| | - Naoya Kawahara
- Yamagata Prefectural Agricultural Mutual Aid Association, Tendo, Yamagata 994-8511, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Toshihiro Ichijo
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Shigeru Sato
- Graduate School of Veterinary Sciences, Iwate University, Iwate 020-8550, Japan.,Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| |
Collapse
|
38
|
Li Y, Ding H, Liu L, Song Y, Du X, Feng S, Wang X, Li X, Wang Z, Li X, Li J, Wu J, Liu G. Non-esterified Fatty Acid Induce Dairy Cow Hepatocytes Apoptosis via the Mitochondria-Mediated ROS-JNK/ERK Signaling Pathway. Front Cell Dev Biol 2020; 8:245. [PMID: 32411699 PMCID: PMC7198733 DOI: 10.3389/fcell.2020.00245] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Elevated plasma non-esterified fatty acid (NEFA) levels and hepatocytes damage are characteristics of ketosis in dairy cows. Oxidative stress is associated with the pathogenesis of NEFA-induced liver damage. However, the exact mechanism by which oxidative stress mediates NEFA-induced hepatocytes apoptosis and liver injury remains poorly understood. The results of the present study demonstrated that NEFA contribute to reactive oxygen species (ROS) generation, resulting in an imbalance between oxidative and antioxidant species, transcriptional activation of p53, transcriptional inhibition of nuclear factor E2-related factor 2 (Nrf2), loss of mitochondria membrane potential (MMP) and release of apoptosis-inducing factor (AIF) and cytochrome c (cyt c) into the cytosol, leading to hepatocytes apoptosis. Besides, NEFA triggered apoptosis in dairy cow hepatocytes via the regulation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), Bcl-2-associated X protein (Bax), B-cell lymphoma gene 2 (Bcl-2), caspase 9 and poly (ADP-ribose) polymerase (PARP). Pretreatment with the inhibitor SP600125 or PD98059 or the antioxidant N-acetylcysteine (NAC) revealed that NEFA-ROS-JNK/ERK-mediated mitochondrial signaling pathway plays a crucial role in NEFA-induced hepatocytes apoptosis. Moreover, the results suggested that the transcription factors p53 and Nrf2 function downstream of this NEFA-ROS-JNK/ERK pathway and are involved in NEFA-induced hepatocytes apoptosis. In conclusion, these findings indicate that the NEFA-ROS-JNK/ERK-mediated mitochondrial pathway plays an important role in NEFA-induced dairy cow hepatocytes apoptosis and strongly suggests that the inhibitors SP600125 and PD98059 and the antioxidant NAC may be developed as therapeutics to prevent hyperlipidemia-induced apoptotic damage in ketotic dairy cows.
Collapse
Affiliation(s)
- Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Leihong Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
39
|
Dong J, Bobe G, Guan Y, Li G, Zuo R, Shu X, Wang Y, Sun X, Chen X, Li X. Mitochondrial membrane protein mitofusin 2 as a potential therapeutic target for treating free fatty acid-induced hepatic inflammation in dairy cows during early lactation. J Dairy Sci 2020; 103:5561-5574. [PMID: 32278565 DOI: 10.3168/jds.2019-17652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Inflammation is critical in the progression from benign hepatic lipidosis to pathological hepatic steatosis. The objective of this study was to examine the potential role of the outer mitochondrial membrane protein mitofusin 2 (MFN2) in the etiology of hepatic steatosis in dairy cows during early lactation. Using a nested case-control design, we compared blood and liver samples from 10 healthy cows and 10 age-matched cows with moderate fatty liver. Cows with moderate fatty liver had high liver triacylglycerols, elevated plasma concentrations of free fatty acids (FFA) and β-hydroxybutyrate, and low concentrations of glucose. Cows with moderate fatty liver had overactivated inflammatory pathways in the liver, as indicated by increased abundance of phosphorylated nuclear factor κB (NF-κB) p65, NLR family pyrin domain containing 3 (NLRP3) and caspase-1 inflammasome protein, and elevated plasma concentrations and hepatic mRNA abundance of their molecular targets IL-1β, IL-6, and tumor necrosis factor α (TNF-α). In the cell culture model, we were able to replicate our findings in cows with moderate fatty liver: 1.2 mM exogenous FFA decreased the abundance of MFN2 and upregulated phosphorylation levels of the inhibitor of NF-κB (IκB) α and NF-κB p65, the IκB kinase β activity, and the abundance of NLRP3, caspase-1, IL-1β, IL-6, and TNF-α. Whereas MFN2 knockdown potentiated the FFA-induced activation of these inflammatory pathways, overexpression of MFN2 attenuated the detrimental effect of excess exogenous FFA by improving mitochondrial function and decreasing the release of reactive oxygen species, suggesting that MFN2 may be a potential therapeutic target for FFA-induced hepatic inflammation in dairy cows during early lactation.
Collapse
Affiliation(s)
- Jihong Dong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Gerd Bobe
- Department of Animal and Rangeland Sciences, College of Agriculture and Linus Pauling Institute, Oregon State University, Corvallis 97331
| | - Yuan Guan
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Guojin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Rankun Zuo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Xin Shu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Yazhe Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xudong Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xiying Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China.
| |
Collapse
|
40
|
Xue Y, Guo C, Hu F, Zhu W, Mao S. Undernutrition-induced lipid metabolism disorder triggers oxidative stress in maternal and fetal livers using a model of pregnant sheep. FASEB J 2020; 34:6508-6520. [PMID: 32232897 DOI: 10.1096/fj.201902537r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the oxidative status and antioxidant capacity in maternal and fetal livers upon undernutrition as well as the connection between oxidative stress and lipid metabolism disorder. Ten ewes, who were pregnant for 115 days, were restricted to a 30% level of ad libitum feed intake to develop an undernourished model, while another 10 pregnant ewes were fed normally as controls. Undernutrition induced severe lipid metabolism disorder and oxidative stress in blood, maternal liver, and fetal liver. RNA-sequencing data displayed that antioxidant capacity was changed and antioxidant genes were downregulated in maternal and fetal livers of the undernourished model. Non-esterified fatty acids (NEFAs) and beta-hydroxybutyrate (BHBA) levels showed a positive correlation with oxidative indices and negative correlation with the expression of antioxidant genes both in maternal and fetal livers. Primary hepatocytes experiments confirmed that both high levels of NEFAs and BHBA could elicit oxidative stress and decrease antioxidant capacity, and the peroxisome proliferator-activated receptor alpha (PPARA)/retinoid X receptor alpha (RXRA) signaling pathway played a vital role in enhancing antioxidant capacity and relieving oxidative stress. In conclusion, maternal undernutrition induced lipid metabolism disorder, which downregulated antioxidant genes, decreased antioxidant activity, and further triggered oxidative stress both in maternal and fetal livers. Activation of PPARA/RXRA signaling could enhance antioxidant capacity and mitigate oxidative stress. Our findings contribute to protecting the pregnant mother and her fetus from oxidative stress.
Collapse
Affiliation(s)
- Yanfeng Xue
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Changzheng Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Fan Hu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Shen T, Li X, Loor JJ, Zhu Y, Du X, Wang X, Xing D, Shi Z, Fang Z, Li X, Liu G. Hepatic nuclear factor kappa B signaling pathway and NLR family pyrin domain containing 3 inflammasome is over-activated in ketotic dairy cows. J Dairy Sci 2019; 102:10554-10563. [PMID: 31495623 DOI: 10.3168/jds.2019-16706] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Ketosis is an important metabolic disease that can negatively affect the production efficiency of dairy cows. Earlier studies have revealed metabolic and inflammatory alterations in the blood associated with ketosis; however, a link between ketosis and hepatic inflammation has not been well documented. The objective of this study was to investigate whether the nuclear factor kappa B (NF-κB) signaling pathway and NLR family pyrin domain containing 3 (NLRP3) inflammasome were activated in the liver of ketotic cows. Liver and blood samples were collected from healthy (n = 15, control group) and ketotic (n = 15, ketosis group) cows that had a similar number of lactations (median = 3, range = 2 to 4) and days in milk (median = 6 d, range = 3 to 9 d). Results showed that serum levels of fatty acids, β-hydroxybutyrate (BHB), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were higher and glucose was lower in ketotic cows. Concentrations of serum proinflammatory cytokines IL18, tumor necrosis factor (TNF)-α, and IL1B were greater and the anti-inflammatory cytokine IL10 was lower in the ketosis group. Cows with ketosis had triacylglycerol accumulation in the liver. Upregulation of phosphorylated (p)-NF-κB and p-inhibitor of κB (IκB)α protein abundance in cows with ketosis indicated that the hepatic NF-κB signaling pathway was overactivated. The mRNA abundance of TNFA, inducible nitric oxide synthase (NOS2), IL18, and IL1B were greater and IL10 was lower in ketotic cows. More importantly, the mRNA and protein abundance of NLRP3 and caspase-1 (CASP1) along with CASP1 activity were greater in the liver of cows with ketosis. Overall, the data indicate that the onset of ketosis is accompanied by activation of the NF-κB signaling pathway and NLRP3 inflammasome, resulting in a state of inflammation.
Collapse
Affiliation(s)
- Taiyu Shen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Yiwei Zhu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinghui Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Dongmei Xing
- Animal Medicine College, Hunan Agriculture University, Changsha, Hunan, 410128, China
| | - Zhen Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiaobing Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
42
|
Zhao YL, Zhang X, Liu WW, Yang YT, Gao ZK, Liu XL, Liu W, Hayashi T, Yamato M, Fujisaki H, Hattori S, Mizuno K, Atsuzawa Y, Tashiro SI, Onodera S, Ikejima T. Reactive oxygen species are responsible for the cell aggregation and production of pro-inflammatory mediators in phorbol ester (PMA)-treated U937 cells on gelatin-coated dishes through upregulation of autophagy. Connect Tissue Res 2019; 60:323-334. [PMID: 30277081 DOI: 10.1080/03008207.2018.1530770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Our previous studies indicate that phorbol 12-myristate 13-acetate (PMA)-treated U937 cells cultured on collagen I-coated dishes express lowered production of pro-inflammatory mediators in parallel through reduced reactive oxygen species (ROS) levels. By contrast, PMA-treated U937 cells on gelatin, the denatured collagen, show enhanced production of pro-inflammatory mediators, mediated by up-regulating autophagy levels. The present study is aimed to investigate the effect of ROS levels in PMA-treated U937 cells cultured on gelatin-coated surface. Material and methods: MTT assay, flow cytometric analysis of ROS and autophagy, biochemical detection of antioxidant levels, enzyme-linked immunosorbent assay, and western blot were used. Results: Gelatin-coating increased ROS levels in PMA-treated U937 cells. Increased ROS levels are involved in the regulation of cell aggregation and the release of pro-inflammatory mediators in gelatin-coated culture. These results lead to the query about the crosstalk between the two positive regulators, the autophagy and ROS. Autophagy induction is attenuated by N-acetyl-L-cysteine treatment, but the treatment with autophagy inhibitor, 3-methyladenine, does not affect ROS levels, suggesting ROS are upstream of autophagy in the regulation axis of differentiated U937 cells on gelatin-coated surface. Further study confirmed that upregulation of autophagy was responsible for ROS-induced cell aggregation and production of pro-inflammatory mediators. Conclusion: The results suggest that gelatin-coating promotes the aggregation of PMA-treated U937 cells and the production of pro-inflammatory mediators by ROS-autophagy signaling pathway.
Collapse
Affiliation(s)
- Ye-Li Zhao
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Xuan Zhang
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Wei-Wei Liu
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Yu-Ting Yang
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Zhuo-Kun Gao
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Xiao-Ling Liu
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Wei Liu
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Toshihiko Hayashi
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Masayuki Yamato
- b Institute of Advanced Biomedical Engineering and Science , Tokyo Women's Medical University , Tokyo , Japan
| | - Hitomi Fujisaki
- c Nippi Research Institute of Biomatrix , Toride, Ibaraki , Japan
| | - Shunji Hattori
- c Nippi Research Institute of Biomatrix , Toride, Ibaraki , Japan
| | - Kazunori Mizuno
- c Nippi Research Institute of Biomatrix , Toride, Ibaraki , Japan
| | - Yuji Atsuzawa
- c Nippi Research Institute of Biomatrix , Toride, Ibaraki , Japan
| | - Shin-Ichi Tashiro
- d Department of Medical Education and Primary Care , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Satoshi Onodera
- e Department of Clinical and Pharmaceutical Sciences , Showa Pharmaceutical University , Tokyo , Japan
| | - Takashi Ikejima
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
43
|
Palmitic Acid and β-Hydroxybutyrate Induce Inflammatory Responses in Bovine Endometrial Cells by Activating Oxidative Stress-Mediated NF-κB Signaling. Molecules 2019; 24:molecules24132421. [PMID: 31266188 PMCID: PMC6650895 DOI: 10.3390/molecules24132421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ketosis is a nutritional metabolic disease in dairy cows, and researches indicated that ketonic cows always accompany reproductive problems. When ketosis occurs, the levels of non-esterified fatty acids (NEFAs) and β-hydroxybutyrate (BHBA) in the blood increase significantly. Palmitic acid (PA) is a main component of saturated fatty acids composing NEFA. The aim of this study was to investigate whether high levels of PA and BHBA induce inflammatory responses and regulatory mechanisms in bovine endometrial cells (BEND). Using an enzyme-linked immunosorbent assay, quantitative real-time PCR, and western blotting, we evaluated oxidative stress, pro-inflammatory factors, and the nuclear factor (NF)-κB pathway in cultured BEND cells treated with different concentrations of PA, BHBA, pyrrolidinedithiocarbamate (PDTC, an NF-κB pathway inhibitor), and N-acetylcysteine (NAC, an antioxidant). The content of malondialdehyde was significantly higher, the content of glutathione was lower, and antioxidant activity-glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity-was lower in treated cells compared with control cells. PA- and BHBA-induced oxidative stress activated the NF-κB signaling pathway and upregulated the release of pro-inflammatory factors. Moreover, PA- and BHBA-induced activation of NF-κB-mediated inflammatory responses was inhibited by PDTC and NAC. High concentrations of PA and BHBA induce inflammatory responses in BEND cells by activating oxidative stress-mediated NF-κB signaling.
Collapse
|
44
|
Berberine inhibits lipopolysaccharide-induced expression of inflammatory cytokines by suppressing TLR4-mediated NF-ĸB and MAPK signaling pathways in rumen epithelial cells of Holstein calves. J DAIRY RES 2019; 86:171-176. [PMID: 31142385 DOI: 10.1017/s0022029919000323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Subacute ruminal acidosis (SARA) can increase the level of inflammation and induce rumenitis in dairy cows. Berberine (BBR) is the major active component of Rhizoma Coptidis, which is a type of Chinese anti-inflammatory drug for gastrointestinal diseases. The purpose of this study was to investigate the anti-inflammatory effects of BBR on lipopolysaccharide (LPS)-stimulated rumen epithelial cells (REC) and the underlying molecular mechanisms. REC were cultured and stimulated with LPS in the presence or absence of different concentrations of BBR. The results showed that cell viability was not affected by BBR. Moreover, BBR markedly decreased the concentrations and mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the LPS-treated REC in a dose-dependent manner. Importantly, Western blotting analysis showed that BBR significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the phosphorylation of nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in LPS-treated REC. Furthermore, the results of immunocytofluorescence showed that BBR significantly inhibited the nuclear translocation of NF-κB p65 induced by LPS treatment. In conclusion, the protective effects of BBR on LPS-induced inflammatory responses in REC may be due to its ability to suppress the TLR4-mediated NF-κB and MAPK signaling pathways. These findings suggest that BBR can be used as an anti-inflammatory drug to treat inflammation induced by SARA.
Collapse
|
45
|
Wang Y, Tang K, Zhang W, Guo W, Wang Y, Zan L, Yang W. Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver. PLoS One 2019; 14:e0214144. [PMID: 31009469 PMCID: PMC6476475 DOI: 10.1371/journal.pone.0214144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Castration is an important means of improving the beef quality via increasing fat deposition. However, little is known about the molecular mechanism underlying the fat deposition after castration. Here, the intramuscular fat (IMF) content of the steer group was shown to be much higher than the bull group. To understand transcriptional changes in the genes involved in fat deposition following castration, differential expression patterns of mRNAs in liver tissue were investigated in steers and bulls using RNA sequencing. In total, we obtained 58,282,367-54,918,002 uniquely mapped reads, which covered 90.13% of the currently annotated transcripts; 5,864 novel transcripts and optimized 9,088 known genes were determined. These results indicated that castration could change the expression patterns of mRNAs in liver tissue, and 282 differentially expressed genes (DEGs) were detected between steers and bulls. KEGG pathway analysis showed that the DEGs were mostly enriched in PPAR signaling pathway, steroid biosynthesis, steroid hormone biosynthesis, and biosynthesis of fatty acids. Furthermore, eight DEGs were corroborated via quantitative real-time PCR and we found that FABP1 gene knockdown in bovine hepatocytes prominently reduced intracellular triacylglycerol (TAG) synthesis and very low density lipoprotein (VLDL) secretion in culture medium. In summary, these results indicate that FABP1 may promote fat deposition by promoting the production and secretion of TAG and VLDL in steer liver.
Collapse
Affiliation(s)
- Yujuan Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Wenli Guo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
46
|
The effects of non-esterified fatty acids and β-hydroxybutyrate on the hepatic CYP2E1 in cows with clinical ketosis. J DAIRY RES 2019; 86:68-72. [PMID: 30732670 DOI: 10.1017/s0022029919000025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dairy cows with ketosis display severe oxidative stress as well as high blood concentrations of non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). Cytochrome P4502E1 (CYP2E1) plays an important role in the induction of oxidative stress. The aim of this study was to investigate CYP2E1 expression and activity in the liver of clinically ketotic cows (in vivo) and the effects of NEFA and BHB on CYP2E1 expression and activity in hepatocytes (in vitro). Dairy cows with clinical ketosis exhibited a low blood concentration of glucose but high concentrations of NEFA and BHB. Hepatic mRNA, protein expression, and activity of CYP2E1 were significantly higher in cows with clinical ketosis than in control cows. In vitro, both NEFA and BHB treatment markedly up-regulated the mRNA and protein expressions as well as activity of CYP2E1 in cow hepatocytes. Taken together, these results indicate that high levels of NEFA and BHB significantly up-regulate the expression and activity of hepatic CYP2E1, and may be influential in the induction of oxidative stress in cows with clinical ketosis.
Collapse
|
47
|
Zhu Y, Liu G, Du X, Shi Z, Jin M, Sha X, Li X, Wang Z, Li X. Expression patterns of hepatic genes involved in lipid metabolism in cows with subclinical or clinical ketosis. J Dairy Sci 2019; 102:1725-1735. [DOI: 10.3168/jds.2018-14965] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/29/2018] [Indexed: 12/29/2022]
|
48
|
Mohammadzadeh Honarvar N, Zarezadeh M, Khorshidi M, Makhdoomi Arzati M, Yekaninejad MS, Abdollahi M, Effatpanah M, Hashemi R, Saedisomeolia A. The effect of an oral ginger supplementation on NF-κB concentration in peripheral blood mononuclear cells and anthropomorphic data of patients with type 2 diabetes: A randomized double-blind, placebo-controlled clinical trial. Complement Ther Med 2019; 42:7-11. [PMID: 30670285 DOI: 10.1016/j.ctim.2018.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The complications of diabetes are extensive which can be caused by excessive oxidative stress, inflammation and impaired insulin system. Plant-sourced bioactive compounds can reduce inflammation and oxidative stress. The aim of present study was to determine the effect of ginger supplementation on diabetic complications. METHODS The present study is a randomized double blind clinical trial which is conducted with 48 diabetic patients. The participants were randomly divided into two intervention and placebo groups which were received 2 g ginger powder and 2 g wheat flour respectively for 10 weeks. Nuclear factor kappa B (NF-κB) concentration and anthropometric measurements were evaluated at the baseline and at the end of study. RESULTS The effect of ginger supplementation on hip circumference was marginal and there was no significant effect on BMI and waist circumference. Mean NF-κB p65 concentrations were reduced in ginger supplementation group, however, the amount was not statistically significant. CONCLUSION Ginger supplementation had significant effects on anthropometric evaluations. Ginger supplementation decreased mean NF-κB concentration in comparison with placebo, however the significance level was marginal. In order to achieve reliable information, more researches should be complemented with uptake of other diagnostic tools.
Collapse
Affiliation(s)
- Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Meysam Zarezadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoud Khorshidi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Motahareh Makhdoomi Arzati
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mir Saeed Yekaninejad
- Department of Biostatistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Abdollahi
- AmirAlam Hospital Complex, Marvasti Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Effatpanah
- School of Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rezvan Hashemi
- Department of Geriatric Medicine, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Kawasumi K, Murai T, Mizorogi T, Okada Y, Yamamoto I, Suruga K, Kadokura K, Arai T. Changes in Plasma Metabolites Concentrations in Obese Dogs Supplemented With Anti-oxidant Compound. Front Nutr 2018; 5:74. [PMID: 30246011 PMCID: PMC6137203 DOI: 10.3389/fnut.2018.00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/03/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of this study is to discuss the effect of anti-oxidant supplement (Rv-PEM01-99, Kibun Foods, Inc., Tokyo, Japan) on changes in energy metabolism in obese dogs. 200 mg/kg/day of Rv-PEM01-99 (equivalent to 5 mg kg/day of quercetin derivative) were applied for 6 weeks to the Beagle dogs fed high fat diet (HFD) or control diet (CD). In the present study, body weight (BW) decreasing effect of Rv-PEM 01-99 in obese dogs was not clear. However, plasma alkaline phosphatase (ALP) activities at the end of experiment were significantly decreased compared to those at the start of experiment in obese dogs supplemented with Rv-PEM 01-99 (paired-t test, p < 0.05). In control dogs supplemented with Rv-PEM 01-99, Plasma malondialdehyde (MDA), and triglycerides (TG) levels and lactate dehydrogenase (LDH) activities were significantly decreased compared to those at the start of experiment (paired-t test, p < 0.05). From these findings, Rv-PEM 01-99 seems to be not harmful for dogs. Anti-lipid peroxide effect and liver function improvement are expected in the dogs supplemented with Rv-PEM 01-99.
Collapse
Affiliation(s)
- Koh Kawasumi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Tae Murai
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Takayuki Mizorogi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yuki Okada
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Ichiro Yamamoto
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Kohei Suruga
- Food Function R&D Division, International Operation Department, Kibun Foods Inc., Inagi, Japan
| | - Kazunari Kadokura
- Food Function R&D Division, International Operation Department, Kibun Foods Inc., Inagi, Japan
| | - Toshiro Arai
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|
50
|
Zahrazadeh M, Riasi A, Farhangfar H, Mahyari SA. Effects of close-up body condition score and selenium-vitamin E injection on lactation performance, blood metabolites, and oxidative status in high-producing dairy cows. J Dairy Sci 2018; 101:10495-10504. [PMID: 30172396 DOI: 10.3168/jds.2017-14196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 07/04/2018] [Indexed: 01/30/2023]
Abstract
High-producing dairy cows with high pre-calving body condition score (BCS) are more susceptible to metabolic disorders and oxidative stress. The aim of present study was to evaluate the effects of close-up BCS and 3 times Se-vitamin E (SeE) injection on BCS change, blood metabolites, oxidative status, and milk yield in high-producing Holstein cows. A total of 136 multiparous cows were divided into 2 groups based on their BCS including high (HB = 4.00 ± 0.20) and moderate (MB = 3.25 ± 0.25) at 3 wk before expected calving time. Then, each group was divided into 2 subgroups: 3 rounds of SeE injection at 21 d before, and 0 and 21 d after calving (+SeE), and no SeE injection (-SeE). Four final experimental groups were HB+SeE, MB+SeE, HB-SeE, and MB-SeE (34 cows each). Results indicated that interaction effect of BCS and SeE affected serum glucose, and the MB+SeE group had the highest level. The HB cows lost more BCS compared with MB cows during the postcalving period. Moreover, serum insulin concentration increased after SeE injection. The HB cows had higher serum nonesterified fatty acids at 14 d after calving. The MB cows tended to have higher activity of blood glutathione peroxidase over the study period. Furthermore, the SeE-injected cows tended to have higher activity of blood glutathione peroxidase at 28 d after calving. Serum albumin level was increased by SeE injection. The HB cows had greater milk production than MB cows, and SeE-injected cows tended to have higher milk fat percentage and higher fat:protein ratio compared with nonsupplemented cows. It was concluded that SeE injection had beneficial effects on some blood metabolites, albumin as a blood antioxidative parameter, and lactation performance in high-producing dairy cows, especially cows with moderate close-up BCS.
Collapse
Affiliation(s)
- M Zahrazadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, PO Box 84156/83111, Isfahan, Iran
| | - A Riasi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, PO Box 84156/83111, Isfahan, Iran.
| | - H Farhangfar
- Department of Animal Sciences, College of Agriculture, University of Birjand, PO Box 615-97175, Birjand, Iran
| | - S Ansari Mahyari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, PO Box 84156/83111, Isfahan, Iran
| |
Collapse
|