1
|
Wu Z, Sun Y, Huang W, Jin Z, You F, Li X, Xiao C. Direct and indirect effects of estrogens, androgens and intestinal microbiota on colorectal cancer. Front Cell Infect Microbiol 2024; 14:1458033. [PMID: 39660281 PMCID: PMC11628516 DOI: 10.3389/fcimb.2024.1458033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Sex differences in colorectal cancer (CRC) has received considerable research attention recently, particularly regarding the influence of sex hormones and the intestinal microbiota. Estrogen, at the genetic and epigenetic levels, directly inhibits CRC cell proliferation by enhancing DNA mismatch repair, regulating miRNAs, blocking the cell cycle, and modulating ion channels. However, estradiol's activation of GPER promotes oncogene expression. Conversely, androgen contributes to epigenetic dysregulation and CRC progression via nuclear receptors while inducing apoptosis through membrane receptors. Specific gut microorganisms produce genotoxins and oncogenic metabolites that damage colonic cell DNA and contribute to cancer induction. Regarding the tumor microenvironment, estrogen mitigates intestinal inflammation, reverses immunosuppression, increases gut microbiome diversity and commensal bacteria abundance, and decreases pathogen enrichment. On the contrary, androgen disrupts intestinal microecology, diminish immunotherapy efficacy, and exacerbate colonic inflammation and tumor growth. The impact of estrogen and androgen is closely tied to their receptor status, elucidating their dual roles in CRC pathogenesis. This review comprehensively discusses the direct and indirect effects of sex hormones and the intestinal microbiota on CRC, considering environmental factors such as diet and lifestyle to propose novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Zihong Wu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Sun
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbo Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenzhen Jin
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Wu Z, Xiao C, Wang J, Zhou M, You F, Li X. 17β-estradiol in colorectal cancer: friend or foe? Cell Commun Signal 2024; 22:367. [PMID: 39030619 PMCID: PMC11264751 DOI: 10.1186/s12964-024-01745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with higher incidence and mortality rates in men compared to women, potentially due to the effects of estrogen signaling. There is substantial evidence supporting the significant role of 17β-Estradiol (E2) in reducing CRC risk in females, although this perspective remains debated. E2 has been demonstrated to inhibit CRC cell proliferation and migration at the cellular level by enhancing DNA mismatch repair, modulating key gene expression, triggering cell cycle arrest, and reducing activity of migration factors. Furthermore, E2 contributes to promote a tumor microenvironment unfavorable for CRC growth by stimulating ERβ expression, reducing inflammatory responses, reversing immunosuppression, and altering the gut microbiome composition. Conversely, under conditions of high oxidative stress, hypoxia, and nutritional deficiencies, E2 may facilitate CRC development through GPER-mediated non-genomic signaling. E2's influence on CRC involves the genomic and non-genomic signals mediated by ERβ and GPER, respectively, leading to its dual roles in anticancer activity and carcinogenesis. This review aims to summarize the potential mechanisms by which E2 directly or indirectly impacts CRC development, providing insights into the phenomenon of sexual dimorphism in CRC and suggesting potential strategies for prevention and treatment.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Min Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, 401147, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
3
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Mahbub AA. 17β-estradiol Enhances 5-Fluorouracil Anti-Cancer Activities in Colon Cancer Cell Lines. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10040062. [PMID: 36412903 PMCID: PMC9680382 DOI: 10.3390/medsci10040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND 5-Fluorouracil (5-FU) represents one of the major constituents of chemotherapy combination regimens in colon cancer (CRC) treatments; however, this regimen is linked with severe adverse effects and chemoresistance. Thus, developing more efficient approaches for CRC is urgently needed to overcome these problems and improve the patient survival rate. Currently, 17β-estradiol (E2) has gained greater attention in colon carcinogenesis, significantly lowering the incidence of CRC in females at reproductive age compared with age-matched males. AIMS This study measured the effects of E2 and/or 5-FU single/dual therapies on cell cycle progression and apoptosis against human HT-29 female and SW480 male primary CRC cells versus their impact on SW620 male metastatic CRC cells. METHODS The HT-29, SW480, and SW620 cells were treated with IC50 of E2 (10 nM) and 5-FU (50 μM), alone or combined (E+F), for 48 h before cell cycle and apoptosis analyses using flow cytometry. RESULTS The data here showed that E2 monotherapy has great potential to arrest the cell cycle and induce apoptosis in all the investigated colon cancer cells, with the most remarkable effects on metastatic cells (SW620). Most importantly, the dual therapy (E+F) has exerted anti-cancer activities in female (HT-29) and male (SW480) primary CRC cells by inducing apoptosis, which was preferentially provoked in the sub-G1 phase. However, the dual treatment showed the smallest effect in SW620 metastatic cells. CONCLUSION this is the first study that demonstrated that the anti-cancer actions of 17β-estradiol and 5-Fluorouracil dual therapy were superior to the monotherapies in female and male primary CRC cells; it is proposed that this treatment strategy could be promising for the early stages of CRC. At the same time, 17β-estradiol monotherapy could be a better approach for treating the metastatic forms of the disease. Nevertheless, additional investigations are still required to determine their precise therapeutic values in CRC.
Collapse
Affiliation(s)
- Amani A Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| |
Collapse
|
5
|
Therapeutic Strategies and Potential Actions of Female Sex Steroid Hormones and Their Receptors in Colon Cancer Based on Preclinical Studies. Life (Basel) 2022; 12:life12040605. [PMID: 35455096 PMCID: PMC9032023 DOI: 10.3390/life12040605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Several epidemiological studies have reported that the use of female sex steroid hormones could reduce the risk of colon cancer (CRC). This review summarizes the available data related to estradiol (E2) and progesterone (P4) single and dual treatments in CRC male and female in vitro and in vivo models, mainly from preclinical studies, alongside their potential molecular mechanisms. Most of the studies showed that E2 exogenous treatment and/or reactivation of its beta receptor (ERβ) significantly inhibited cell proliferation, induced cell cycle arrest, and promoted apoptosis by modulating several molecular pathways. Likewise, the inhibition of ERα receptors produced similar antitumorigenic actions, both in vivo and in vitro, suggesting that E2 could have dual opposing roles in CRC that are dependent on the expression profile of its nuclear receptors. The available studies on P4 are scarce, and the results revealed that in vitro and in vivo treatments with natural and synthetic progesterone were also associated with promising tumoricidal actions. Nevertheless, the combination of E2 with P4 showed enhanced anticancer activities compared with their monotherapy protocols in male–female cell lines and animals. Collectively, the studies suggested that the female sex steroid hormones could provide a novel and effective therapeutic strategy against CRC.
Collapse
|
6
|
Mahbub AA, Aslam A, Elzubier ME, El-Boshy M, Abdelghany AH, Ahmad J, Idris S, Almaimani R, Alsaegh A, El-Readi MZ, Baghdadi MA, Refaat B. Enhanced anti-cancer effects of oestrogen and progesterone co-therapy against colorectal cancer in males. Front Endocrinol (Lausanne) 2022; 13:941834. [PMID: 36263327 PMCID: PMC9574067 DOI: 10.3389/fendo.2022.941834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Although ovarian sex steroids could have protective roles against colorectal cancer (CRC) in women, little is currently known about their potential anti-tumorigenic effects in men. Hence, this study measured the therapeutic effects of 17β-oestradiol (E2) and/or progesterone (P4) against azoxymethane-induced CRC in male mice that were divided into (n = 10 mice/group): negative (NC) and positive (PC) controls, E2 (580 µg/Kg/day; five times/week) and P4 (2.9 mg/Kg/day; five times/week) monotherapies, and concurrent (EP) and sequential (E/P) co-therapy groups. Both hormones were injected intraperitoneally to the designated groups for four consecutive weeks. Similar treatment protocols with E2 (10 nM) and/or P4 (20 nM) were also used in the SW480 and SW620 human male CRC cell lines. The PC group showed abundant colonic tumours alongside increased colonic tissue testosterone levels and androgen (AR) and oestrogen (ERα) receptors, whereas E2 and P4 levels with ERβ and progesterone receptor (PGR) decreased significantly compared with the NC group. E2 and P4 monotherapies equally increased ERβ/PGR with p21/Cytochrome-C/Caspase-3, reduced testosterone levels, inhibited ERα/AR and CCND1/survivin and promoted apoptosis relative to the PC group. Both co-therapy protocols also revealed better anti-cancer effects with enhanced modulation of colonic sex steroid hormones and their receptors, with E/P the most prominent protocol. In vitro, E/P regimen showed the highest increases in the numbers of SW480 (2.1-fold) and SW620 (3.5-fold) cells in Sub-G1 phase of cell cycle. The E/P co-therapy also disclosed the lowest percentages of viable SW480 cells (2.8-fold), whilst both co-therapy protocols equally showed the greatest SW620 apoptotic cell numbers (5.2-fold) relative to untreated cells. Moreover, both co-therapy regimens revealed maximal inhibitions of cell cycle inducers, cell survival markers, and AR/ERα alongside the highest expression of cell cycle suppressors, pro-apoptotic molecules, and ERβ/PGR in both cell lines. In conclusion, CRC was associated with abnormal levels of colonic sex steroid hormones alongside aberrant protein expression of their receptors. While the anti-cancer effects of E2 and P4 monotherapies were equal, their combination protocols showed boosted tumoricidal actions against CRC in males, possibly by promoting ERβ and PGR-mediated androgen deprivation together with inhibition of ERα-regulated oncogenic pathways.
Collapse
Affiliation(s)
- Amani A. Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed E. Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Biochemistry Department, Faculty of Medicine and Surgery, National University, Khartoum, Sudan
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelghany H. Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aiman Alsaegh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit, Egypt
| | - Mohammed A. Baghdadi
- Research Centre, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- *Correspondence: Bassem Refaat, ;
| |
Collapse
|
7
|
Solar Fernandez V, Marino M, Fiocchetti M. Neuroglobin in Retinal Neurodegeneration: A Potential Target in Therapeutic Approaches. Cells 2021; 10:cells10113200. [PMID: 34831423 PMCID: PMC8621852 DOI: 10.3390/cells10113200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal neurodegeneration affects an increasing number of people worldwide causing vision impairments and blindness, reducing quality of life, and generating a great economic challenge. Due to the complexity of the tissue, and the diversity of retinal neurodegenerative diseases in terms of etiology and clinical presentation, so far, there are no cures and only a few early pathological markers have been identified. Increasing efforts have been made to identify and potentiate endogenous protective mechanisms or to abolish detrimental stress responses to preserve retinal structure and function. The discovering of the intracellular monomeric globin neuroglobin (NGB), found at high concentration in the retina, has opened new possibilities for the treatment of retinal disease. Indeed, the NGB capability to reversibly bind oxygen and its neuroprotective function against several types of insults including oxidative stress, ischemia, and neurodegenerative conditions have raised the interest in the possible role of the globin as oxygen supplier in the retina and as a target for retinal neurodegeneration. Here, we provide the undercurrent knowledge on NGB distribution in retinal layers and the evidence about the connection between NGB level modulation and the functional outcome in terms of retinal neuroprotection to provide a novel therapeutic/preventive target for visual pathway degenerative disease.
Collapse
Affiliation(s)
- Virginia Solar Fernandez
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-06-5733-6455; Fax: +39-06-5733-6321
| |
Collapse
|
8
|
Fiocchetti M, Cracco P, Montalesi E, Solar Fernandez V, Stuart JA, Marino M. Neuroglobin and mitochondria: The impact on neurodegenerative diseases. Arch Biochem Biophys 2021; 701:108823. [PMID: 33675812 DOI: 10.1016/j.abb.2021.108823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Dysfunctional mitochondria have severe consequences on cell functions including Reactive Oxygen Specie (ROS) generation, alteration of mitochondrial signaling, Ca2+ buffering, and activation of apoptotic pathway. These dysfunctions are closely linked with degenerative diseases including neurodegeneration. The discovery of neuroglobin (NGB) as an endogenous neuroprotective protein, which effects seem to depend on its mitochondrial localization, could drive new therapeutic strategies against aged-related neurodegenerative diseases. Indeed, high levels of NGB are active against several brain injuries, including neurodegeneration, hypoxia, ischemia, toxicity, and nutrient deprivation opening a new scenario in the comprehension of the relationship between neural pathologies and mitochondrial homeostasis. In this review, we provide the current understanding of the role of mitochondria in neurodegeneration and discuss structural and functional connection between NGB and mitochondria with the purpose of defining a novel mitochondrial-based neuroprotective mechanism(s).
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi, 446 -00146, Rome, Italy; Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Patrizio Cracco
- Department of Science, University Roma Tre, Viale G. Marconi, 446 -00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale G. Marconi, 446 -00146, Rome, Italy
| | | | - Jeffrey A Stuart
- Department of Biological Science, Faculty of Mathematics and Science, Brock University, St. Catharines L2S 3A1, Ontario, Canada
| | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi, 446 -00146, Rome, Italy; Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
9
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|
10
|
Fiocchetti M, Fernandez VS, Montalesi E, Marino M. Neuroglobin: A Novel Player in the Oxidative Stress Response of Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6315034. [PMID: 31354909 PMCID: PMC6636438 DOI: 10.1155/2019/6315034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) result from intracellular aerobic metabolism and/or extracellular stimuli. Although endogenous antioxidant systems exquisitely balance ROS production, an excess of ROS production, commonly found in diverse human degenerative pathologies including cancer, gives rise to the oxidative stress. Increased oxidative stress in cancer is related to the sustained proliferation and metabolism of cancer cells. However, cancer cells show an intrinsic higher antioxidant capacity with respect to the normal counterpart as well as an ability to cope with oxidative stress-induced cell death by establishing mechanisms of adaptation, which define a selective advantage against the adverse oxidative stress environment. The identification of survival factors and adaptive pathways, set up by cancer cells against oxidative stress, provides multiple targets for the therapeutic intervention against cancer. Neuroglobin (NGB), a globin primarily described in neurons as an oxidative stress sensor and cytoprotective factor against redox imbalance, has been recently recognized as a novel tumor-associated protein. In this review, the involvement of NGB in the cancer cell adaptation and resistance to oxidative stress will be discussed highlighting the globin role in the regulation of both the stress-induced apoptotic pathway and antioxidant systems activated by cancer cells.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| |
Collapse
|
11
|
Neuroglobin Expression Models as a Tool to Study Its Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5728129. [PMID: 31320982 PMCID: PMC6607734 DOI: 10.1155/2019/5728129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/12/2019] [Indexed: 01/13/2023]
Abstract
Neuroglobin (Ngb) is an evolutionary conserved member of the globin family with a primary expression in neurons of which the exact functions remain elusive. A plethora of in vivo and in vitro model systems has been generated to this day to determine the functional biological roles of Ngb. Here, we provide a comprehensive overview and discussion of the different Ngb models, covering animal and cellular models of both overexpression and knockout strategies. Intriguingly, an in-depth literature search of available Ngb expression models revealed crucial discrepancies in the outcomes observed in different models. Not only does the level of Ngb expression—either physiologically, overexpressed, or downregulated—alter its functional properties, the experimental setup, being in vitro or in vivo, does impact the functional outcome as well and, hence, whether or not a physiological and/or therapeutic role is ascribed to Ngb. These differences could highlight either technical or biological adaptations and should be considered until elucidation of the Ngb biology.
Collapse
|
12
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Fiocchetti M, Cipolletti M, Ascenzi P, Marino M. Dissecting the 17β-estradiol pathways necessary for neuroglobin anti-apoptotic activity in breast cancer. J Cell Physiol 2018; 233:5087-5103. [PMID: 29219195 DOI: 10.1002/jcp.26378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Neuroglobin (NGB) is a relatively recent discovered monomeric heme-protein, which behave in neurons as a sensor of injuring stimuli including oxidative stress, hypoxia, and neurotoxicity. In addition, the anti-apoptotic activity of overexpressed NGB has been reported both in neurons and in cancer cell lines. We recently demonstrated that, NGB functions as a compensatory protein of the steroid hormone 17β-estradiol (E2) protecting cancer cells against the apoptotic death induced by oxidative stress. However, the E2-induced signaling pathways at the root of NGB over-expression and mitochondrial re-localization in breast cancer cells is still elusive. By using a kinase screening library, here, we report that: i) There is a strong positive correlation between NGB and ERα expression and activity in breast cancer cells; ii) The E2-activated phosphatidyl-inositol 3 kinase (PI3K)/protein kinase B (AKT) and protein kinase C (PKC) pathways are necessary to modulate the NGB protein levels; iii) The E2-induced persistent activation of AKT drive NGB to mitochondria; iv) Reactive oxygen species (ROS)-inducing compounds activating rapidly and transiently AKT does not affect the NGB mitochondrial level; and v) High level of NGB into mitochondria are necessary for the pro-survival and anti-apoptotic effect of this globin in cancer cells. As a whole, these results underline the E2 triggered pathways in E2-responsive breast cancer cells that involve NGB as a compensatory protein devoted to cancer cell survival.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Department of Science, University of Roma Tre, Roma, Italy.,Interdepartmental Laboratory for Electron Microscopy, University of Roma Tre, Roma, Italy
| | - Maria Marino
- Department of Science, University of Roma Tre, Roma, Italy
| |
Collapse
|
14
|
Bellei M, Bortolotti CA, Di Rocco G, Borsari M, Lancellotti L, Ranieri A, Sola M, Battistuzzi G. The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. J Inorg Biochem 2018; 178:70-86. [DOI: 10.1016/j.jinorgbio.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
|
15
|
Zhang B, Liu Y, Li Y, Zhe X, Zhang S, Zhang L. Neuroglobin promotes the proliferation and suppresses the apoptosis of glioma cells by activating the PI3K/AKT pathway. Mol Med Rep 2017; 17:2757-2763. [PMID: 29207186 DOI: 10.3892/mmr.2017.8132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Our previous study demonstrated that neuroglobin (Ngb) functions as an independent predictive indicator of the prognosis of patients with glioma and promotes cancer cell growth by suppressing apoptosis. However, the understanding of the mechanisms underlying the survival‑enhancing function of Ngb in glioma is limited. In the present study, KEGG PathwayFinder by gene correlation analysis was performed on the R2: Genomics Analysis and Visualization Platform, which revealed a high association between Ngb and the phosphatidylinositol 3‑kinase (PI3K)/AKT pathway using glioma data (GSE4290) from the Gene Expression Omnibus database. Furthermore, western blotting experiments were performed in U251 and U87 glioma cells, and Ngb knockdown using short hairpin RNA reduced the protein levels of phosphorylated (p)‑AKT, p‑mammalian target of rapamycin (mTOR) and antiapoptotic factor Bcl‑2, and increased the expression of the proapoptotic protein Bcl‑2‑associated X, in U251 cells. In addition, Ngb overexpression promoted the activation of the PI3K/AKT pathway in U87 cells. MK2206, a PI3K/AKT signaling inhibitor, reduced the expression of p‑AKT and increased the levels of apoptosis‑associated proteins, including cleaved poly(ADP‑ribose) polymerase 1 and cleaved caspase‑3/7/8, in Ngb‑overexpressing U87 cells. Furthermore, MK2206 treatment reduced the proliferation and induced the apoptosis of Ngb‑overexpressing U87 cells, as indicated by the results of MTT, colony formation and flow cytometry assays. In addition, insulin‑like growth factor‑1, a PI3K/AKT signaling activator, reversed Ngb knockdown‑induced growth arrest and apoptosis in U251 cells. In conclusion, the results of the present study indicate that Ngb may facilitate a malignant phenotype of glioma cells by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yajun Li
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Xiao Zhe
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Shijun Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
16
|
Zanetti Polzi L, Battistuzzi G, Borsari M, Pignataro M, Paltrinieri L, Daidone I, Bortolotti CA. Computational investigation of the electron transfer complex between neuroglobin and cytochrome c. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1377342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Laura Zanetti Polzi
- Department of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Licia Paltrinieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
17
|
Fiocchetti M, Cipolletti M, Brandi V, Polticelli F, Ascenzi P. Neuroglobin and friends. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/05/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | - Fabio Polticelli
- Dipartimento di Scienze; Università Roma Tre; Rome Italy
- Istituto Nazionale di Fisica Nucleare; Sezione dell'Università Roma Tre; Rome Italy
| | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica; Università Roma Tre; Rome Italy
| |
Collapse
|
18
|
Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol Neurobiol 2017; 55:2285-2300. [PMID: 28332151 DOI: 10.1007/s12035-017-0481-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that paracrine factors (conditioned medium) increase wound closure and reduce reactive oxygen species in a traumatic brain injury in vitro model. Although the beneficial effects of conditioned medium from human adipose tissue-derived mesenchymal stem cells (hMSCA-CM) have been previously suggested for various neurological diseases, their actions on astrocytic cells are not well understood. In this study, we have explored the effect of hMSCA-CM on human astrocyte model (T98G cells) subjected to scratch assay. Our results indicated that hMSCA-CM improved cell viability, reduced nuclear fragmentation, attenuated the production of reactive oxygen species, and preserved mitochondrial membrane potential and ultrastructural parameters. In addition, hMSCA-CM upregulated neuroglobin in T98G cells and the genetic silencing of this protein prevented the protective action of hMSCA-CM on damaged cells, suggesting that neuroglobin is mediating, at least in part, the protective effect of hMSCA-CM. Overall, this evidence suggests that the use of hMSCA-CM is a promising therapeutic strategy for the protection of astrocytic cells in central nervous system (CNS) pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gina Guio Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., 119991, Moscow, Russia
| | - Paula Esquinas
- Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Neuroglobin functions as a prognostic marker and promotes the tumor growth of glioma via suppressing apoptosis. Biomed Pharmacother 2017; 88:173-180. [PMID: 28103511 DOI: 10.1016/j.biopha.2017.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 11/22/2022] Open
Abstract
Neuroglobin (Ngb) has been reported to be upregulated by hypoxia and plays an anti-apoptotic function. Previous studies have reported that Ngb is expressed in human glioblastoma cells and up-regulated in hypoxic microregions of glioblastoma tumor xenografts. While, the clinical significance of Ngb and its function in human glioma keep unknown. Ngb expression was analyzed in 86 glioma tissues and 20 normal brain tissues. Results showed that Ngb was significantly overexpressed in glioma tissues compared to normal brain tissues. In addition, increased levels of Ngb also observed in glioma cell lines. Clinicopathological analysis verified that the positive expression of Ngb was associated with histological type and world health organization (WHO) grade of glioma. Moreover, Kaplan-Meier analysis found that Ngb overexpression led to a shorter survival. Multivariate Cox regression analysis demonstrated that Ngb expression was an independent prognostic marker. Further experiments illustrated that Ngb knockdown significantly inhibited proliferation and facilitated apoptosis in U251 cells. In vivo experiments further confirmed that Ngb silencing notably prohibited the tumor growth of glioma in nude mice. While, Ngb overexpression prominently promoted proliferation and suppressed apoptosis in U87 cells. Taken together, this work support the first evidence that Ngb can be potentially used as a promising biomarker and target for novel treatment of human glioma.
Collapse
|
20
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
21
|
Critical re-evaluation of neuroglobin expression reveals conserved patterns among mammals. Neuroscience 2016; 337:339-354. [DOI: 10.1016/j.neuroscience.2016.07.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
|
22
|
Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 2016; 433:35-46. [PMID: 27250720 DOI: 10.1016/j.mce.2016.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
Tibolone, a synthetic steroid used for the prevention of osteoporosis and the treatment of climacteric symptoms in post-menopausal women, may exert tissue selective estrogenic actions acting on estrogen receptors (ERs). We previously showed that tibolone protects human T98G astroglial cells against glucose deprivation (GD). In this study we have explored whether the protective effect of tibolone on these cells is mediated by ERs. Experimental studies showed that both ERα and ERβ were involved in the protection by tibolone on GD cells, being ERβ preferentially involved on these actions over ERα. Tibolone increased viability of GD cells by a mechanism fully blocked by an ERβ antagonist and partially blocked by an ERα antagonist. Furthermore, ERβ inhibition prevented the effect of tibolone on nuclear fragmentation, ROS and mitochondrial membrane potential in GD cells. The protective effect of tibolone was mediated by neuroglobin. Tibolone upregulated neuroglobin in T98G cells and primary mouse astrocytes by a mechanism involving ERβ and neuroglobin silencing prevented the protective action of tibolone on GD cells. In summary, tibolone protects T98G cells by a mechanism involving ERβ and the upregulation of neuroglobin.
Collapse
Affiliation(s)
- Marco Avila-Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia; Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | | | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Eliana Baez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile; Universidad Científica del Sur, Lima, Peru.
| |
Collapse
|
23
|
Fiocchetti M, Cipolletti M, Leone S, Ascenzi P, Marino M. Neuroglobin overexpression induced by the 17β-Estradiol-Estrogen receptor-α Pathway reduces the sensitivity of MCF-7 Breast cancer cell to paclitaxel. IUBMB Life 2016; 68:645-51. [PMID: 27312786 DOI: 10.1002/iub.1522] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/27/2016] [Indexed: 11/11/2022]
Abstract
Although paclitaxel (Taxol) is an active chemotherapeutic agent for the treatment of breast cancer, not all breast tumors are sensitive to this drug. In particular, there is a wide agreement on the low sensitivity of estrogen receptor (ER) α-positive breast cancer to paclitaxel treatment. However, the ERα-based insensitivity to paclitaxel is still elusive. Here, the effect of the E2/ERα-dependent upregulation of neuroglobin (NGB), an antiapoptotic globin, on the reduced sensitivity of breast cancer cells to paclitaxel-induced apoptosis has been evaluated in ERα-containing MCF-7 cells. The E2 pretreatment enhances the ERα activity and significantly impairs paclitaxel-induced apoptosis as evaluated by Annexin V assay and PARP-1 cleavage. NGB displays a pivotal role in the E2/ERα-induced antiapoptotic pathway to abrogate paclitaxel-induced cell death in stable NGB-silenced MCF-7 cell clones. Moreover, in the absence of the active ERα, paclitaxel significantly reduces the NGB cell content. In conclusion, these results highlight the involvement of ERα activation and of E2/ERα-dependent NGB upregulation in the insensitivity of MCF-7 to paclitaxel. These novel findings could have important implications in the development of targeted therapeutics for overcoming paclitaxel insensitivity in ERα-positive human breast cancer. © 2016 IUBMB Life, 68(8):645-651, 2016.
Collapse
Affiliation(s)
| | | | - Stefano Leone
- Department of Science, Roma Tre University, Roma, Italy
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Roma, Italy.,Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Roma, Italy
| | - Maria Marino
- Department of Science, Roma Tre University, Roma, Italy
| |
Collapse
|
24
|
Liu LJ, Zhong M, Wang Q, Wang F, Shen LX, Li W. Estrogen-like Properties of Quercetin Protect Rat Hippocampal Neurons by Estrogen Receptor Alpha. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.523.531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Guglielmotto M, Reineri S, Iannello A, Ferrero G, Vanzan L, Miano V, Ricci L, Tamagno E, De Bortoli M, Cutrupi S. E2 Regulates Epigenetic Signature on Neuroglobin Enhancer-Promoter in Neuronal Cells. Front Cell Neurosci 2016; 10:147. [PMID: 27313512 PMCID: PMC4887468 DOI: 10.3389/fncel.2016.00147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Estrogens are neuroprotective factors in several neurological diseases. Neuroglobin (NGB) is one of the estrogen target genes involved in neuroprotection, but little is known about its transcriptional regulation. Estrogen genomic pathway in gene expression regulation is mediated by estrogen receptors (ERα and ERβ) that bind to specific regulatory genomic regions. We focused our attention on 17β-estradiol (E2)-induced NGB expression in human differentiated neuronal cell lines (SK-N-BE and NT-2). Previously, using bioinformatics analysis we identified a putative enhancer in the first intron of NGB locus. Therefore, we observed that E2 increased the enrichment of the H3K4me3 epigenetic marks at the promoter and of the H3K4me1 and H3K27Ac at the intron enhancer. In these NGB regulatory regions, we found estrogen receptor alpha (ERα) binding suggesting that ERα may mediate chromatin remodeling to induce NGB expression upon E2 treatment. Altogether our data show that NGB expression is regulated by ERα binding on genomic regulatory regions supporting hormone therapy applications for the neuroprotection against neurodegenerative diseases.
Collapse
Affiliation(s)
- Michela Guglielmotto
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of TurinTurin, Italy
- Department Neurosciences, University of TurinTurin, Italy
| | - Stefania Reineri
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Andrea Iannello
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Giulio Ferrero
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
- Department of Computer Science, University of TurinTurin, Italy
| | - Ludovica Vanzan
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
| | - Valentina Miano
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Laura Ricci
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Elena Tamagno
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of TurinTurin, Italy
- Department Neurosciences, University of TurinTurin, Italy
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Santina Cutrupi
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| |
Collapse
|
26
|
Fiocchetti M, Cipolletti M, Leone S, Naldini A, Carraro F, Giordano D, Verde C, Ascenzi P, Marino M. Neuroglobin in Breast Cancer Cells: Effect of Hypoxia and Oxidative Stress on Protein Level, Localization, and Anti-Apoptotic Function. PLoS One 2016; 11:e0154959. [PMID: 27149623 PMCID: PMC4858147 DOI: 10.1371/journal.pone.0154959] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022] Open
Abstract
The over-expression of human neuroglobin (NGB), a heme-protein preferentially expressed in the brain, displays anti-apoptotic effects against hypoxic/ischemic and oxidative stresses enhancing neuron survival. As hypoxic and oxidative stress injury frequently occurs in fast proliferating neoplastic tissues, here, the effect of these stressors on the level, localization, and anti-apoptotic function of NGB in wild type and NGB-stable-silenced MCF-7 breast cancer cells has been assessed. The well-known endogenous NGB inducer 17β-estradiol (E2) has been used as positive control. The median pO2 present in tumor microenvironment of breast cancer patients (i.e., 2% O2) does not affect the NGB level in breast cancer cells, whereas hydrogen peroxide and lead(IV) acetate, which increase intracellular reactive oxygen species (ROS) level, enhance the NGB levels outside the mitochondria and still activate apoptosis. However, E2-induced NGB up-regulation in mitochondria completely reverse lead(IV) acetate-induced PARP cleavage. These results indicate that the NGB level could represent a marker of oxidative-stress in MCF-7 breast cancer cells; however, the NGB ability to respond to injuring stimuli by preventing apoptosis requires its re-allocation into the mitochondria. As a whole, present data might lead to a new direction in understanding NGB function in cancer opening new avenues for the therapeutic intervention.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Manuela Cipolletti
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Stefano Leone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabio Carraro
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniela Giordano
- Biosciences and BioResources Institute—CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Cinzia Verde
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
- Biosciences and BioResources Institute—CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
- Biosciences and BioResources Institute—CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Maria Marino
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
- Biosciences and BioResources Institute—CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
- * E-mail:
| |
Collapse
|