1
|
Zhao Y, Wang XQ, Liu RQ, Jiang FW, Wang JX, Chen MS, Zhang H, Cui JG, Chang YH, Li JL. SLC7A11 as a therapeutic target to attenuate phthalates-driven testosterone level decline in mice. J Adv Res 2024:S2090-1232(24)00216-9. [PMID: 38797476 DOI: 10.1016/j.jare.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Phthalates exposure is a major public health concern due to the accumulation in the environment and associated with levels of testosterone reduction, leading to adverse pregnancy outcomes. However, the relationship between phthalate-induced testosterone level decline and ferroptosis remains poorly defined. OBJECTIVES Herein, we aimed to explore the mechanisms of phthalates-induced testosterone synthesis disorder and its relationship to ferroptosis. METHODS We conducted validated experiments in vivo male mice model and in vitro mouse Leydig TM3 cell line, followed by RNA sequencing and metabolomic analysis. We evaluated the levels of testosterone synthesis-associated enzymes and ferroptosis-related indicators by using qRT-PCR and Western blotting. Then, we analyzed the lipid peroxidation, ROS, Fe2+ levels and glutathione system to confirm the occurrence of ferroptosis. RESULTS In the present study, we used di (2-ethylhexyl) phthalate (DEHP) to identify ferroptosis as the critical contributor to phthalate-induced testosterone level decline. It was demonstrated that DEHP caused glutathione metabolism and steroid synthesis disorders in Leydig cells. As the primary metabolite of DEHP, mono-2-ethylhexyl phthalate (MEHP) triggered testosterone synthesis disorder accompanied by a decrease in the expression of solute carri1er family 7 member 11 (SLC7A11) protein. Furthermore, MEHP synergistically induced ferroptosis with Erastin through the increase of intracellular and mitochondrial ROS, and lipid peroxidation production. Mechanistically, overexpression of SLC7A11 counteracts the synergistic effect of co-exposure to MEHP-Erastin. CONCLUSION Our research results suggest that MEHP does not induce ferroptosis but synergizes Erastin-induced ferroptosis. These findings provide evidence for the role of ferroptosis in phthalates-induced testosterone synthesis disorder and point to SLC7A11 as a potential target for male reproductive diseases. This study established a correlation between ferroptosis and phthalates cytotoxicity, providing a novel view point for mitigating the issue of male reproductive disease and "The Global Plastic Toxicity Debt".
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Daffern N, Radhakrishnan I. Per-ARNT-Sim (PAS) Domains in Basic Helix-Loop-Helix (bHLH)-PAS Transcription Factors and Coactivators: Structures and Mechanisms. J Mol Biol 2024; 436:168370. [PMID: 37992889 PMCID: PMC10922228 DOI: 10.1016/j.jmb.2023.168370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
PAS domains are ubiquitous in biology. They perform critically important roles in sensing and transducing a wide variety of environmental signals, and through their ability to bind small-molecule ligands, have emerged as targets for therapeutic intervention. Here, we discuss our current understanding of PAS domain structure and function in the context of basic helix-loop-helix (bHLH)-PAS transcription factors and coactivators. Unlike the bHLH-PAS domains of transcription factors, those of the steroid receptor coactivator (SRC) family are poorly characterized. Recent progress for this family and for the broader bHLH-PAS proteins suggest that these domains are ripe for deeper structural and functional studies.
Collapse
Affiliation(s)
- Nicolas Daffern
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
Daffern N, Radhakrishnan I. A Novel Mechanism of Coactivator Recruitment by the Nurr1 Nuclear Receptor. J Mol Biol 2022; 434:167718. [PMID: 35810793 PMCID: PMC9922031 DOI: 10.1016/j.jmb.2022.167718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/29/2023]
Abstract
Nuclear receptors constitute one of the largest families of transcription factors that regulate genes in metazoans in response to small molecule ligands. Many receptors harbor two transactivation domains, one at each end of the protein sequence. Whereas the molecular mechanisms of transactivation mediated by the ligand-binding domain at the C-terminus of the protein are generally well established, the mechanism involving the N-terminal domain called activation function 1 (AF1) has remained elusive. Previous studies implicated the AF1 domain as a significant contributor towards the overall transcriptional activity of the NR4A family of nuclear receptors and suggested that the steroid receptor coactivators (SRCs) play an important role in this process. Here we show that a short segment within the AF1 domain of the NR4A receptor Nurr1 can directly engage with the SRC1 PAS-B domain. We also show that this segment forms a helix upon binding to a largely hydrophobic groove on PAS-B, overlapping with the surface engaged by the STAT6 transcription factor, suggesting that this mode of recruitment could be shared by diverse transcription factors including other nuclear receptors.
Collapse
Affiliation(s)
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
4
|
Yao B, Zhang S, Wei Y, Tian S, Lu Z, Jin L, He Y, Xie W, Li Y. Structural Insights into the Specificity of Ligand Binding and Coactivator Assembly by Estrogen-Related Receptor β. J Mol Biol 2020; 432:5460-5472. [PMID: 32795533 DOI: 10.1016/j.jmb.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/20/2023]
Abstract
Estrogen-related receptor β (ERRβ) is a nuclear receptor critical for many biological processes. Despite the biological and pharmaceutical importance of ERRβ, deciphering the structure of ERRβ has been hampered by the difficulties in obtaining a pure and stable protein for structural studies. In fact, the ERRβ ligand-binding domain remains the last unsolved ERR structure and also one of only a few unknown nuclear receptor structures. Here, we report the identification of a critical single-residue mutation resulted in robust solubility and stability of an active ERRβ ligand-binding domain, thereby providing a protein tool enabling the first probe into the biochemical and structural studies of this important receptor. The crystal structure reveals key structural features that have enabled the integration of the molecular determinants of signals transduced across the ligand binding and coregulator recruitment by all three ERR subtypes, which also provides a framework for the rational design of selective and potent ligands for the treatment of various ERR-mediated diseases.
Collapse
Affiliation(s)
- Benqiang Yao
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Shuchi Zhang
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Yijuan Wei
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Siyu Tian
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Zhou Lu
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Lihua Jin
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Ying He
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China.
| |
Collapse
|
5
|
Wang L, Cheng CM, Qin J, Xu M, Kao CY, Shi J, You E, Gong W, Rosa LP, Chase P, Scampavia L, Madoux F, Spicer T, Hodder P, Xu HE, Tsai SY, Tsai MJ. Small-molecule inhibitor targeting orphan nuclear receptor COUP-TFII for prostate cancer treatment. SCIENCE ADVANCES 2020; 6:eaaz8031. [PMID: 32494682 PMCID: PMC7190335 DOI: 10.1126/sciadv.aaz8031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The orphan nuclear receptor COUP-TFII is expressed at a low level in adult tissues, but its expression is increased and shown to promote progression of multiple diseases, including prostate cancer, heart failure, and muscular dystrophy. Suppression of COUP-TFII slows disease progression, making it an intriguing therapeutic target. Here, we identified a potent and specific COUP-TFII inhibitor through high-throughput screening. The inhibitor specifically suppressed COUP-TFII activity to regulate its target genes. Mechanistically, the inhibitor directly bound to the COUP-TFII ligand-binding domain and disrupted COUP-TFII interaction with transcription regulators, including FOXA1, thus repressing COUP-TFII activity on target gene regulation. Through blocking COUP-TFII's oncogenic activity in prostate cancer, the inhibitor efficiently exerted a potent antitumor effect in xenograft mouse models and patient-derived xenograft models. Our study identified a potent and specific COUP-TFII inhibitor that may be useful for the treatment of prostate cancer and possibly other diseases.
Collapse
Affiliation(s)
- Leiming Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chiang-Min Cheng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Mafei Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chung-Yang Kao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingjing Shi
- CAS Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Erli You
- CAS Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wanchun Gong
- CAS Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Laura Pedro Rosa
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Peter Chase
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Louis Scampavia
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Franck Madoux
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Timothy Spicer
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Peter Hodder
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - H. Eric Xu
- CAS Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
D’Agostino EH, Flynn AR, Cornelison JL, Mays SG, Patel A, Jui NT, Ortlund EA. Development of a Versatile and Sensitive Direct Ligand Binding Assay for Human NR5A Nuclear Receptors. ACS Med Chem Lett 2020; 11:365-370. [PMID: 32184971 DOI: 10.1021/acsmedchemlett.9b00442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
As regulators of steroidogenesis, development, and metabolism, the nuclear receptor 5A (NR5A) subfamily members steroidogenic factor 1 (SF-1) and liver receptor homologue 1 (LRH-1) are important pharmacological targets for cancers and metabolic diseases. Evaluation of small molecule modulators and candidate endogenous ligands for these orphan receptors has been hindered by the lack of accessible, robust direct-binding assays. Here, we leverage the potency of our new NR5A agonist (6N) to create a high-affinity probe for fluorescence polarization competition assays by conjugating 6N to fluorescein (FAM). The 6N-FAM probe tightly binds the NR5A receptors and detects direct binding of synthetic and phospholipid ligands. For 25 LRH-1 agonists, affinity predicts potency in cellular activation assays, demonstrating the potential for this assay in drug discovery. Moreover, phospholipids dilauroylphosphatidylcholine and phosphatidylinositol(4,5)phosphate bind with high affinity, demonstrating this assay is robust for evaluation of candidate endogenous ligands for human NR5A receptors.
Collapse
|
7
|
Cheng Y, Wei Z, Xie S, Peng Y, Yan Y, Qin D, Liu S, Xu Y, Li G, Zhang L. Alleviation of Toxicity Caused by Overactivation of Pparα through Pparα-Inducible miR-181a2. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:195-206. [PMID: 29246298 PMCID: PMC5645307 DOI: 10.1016/j.omtn.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
Widely varied compounds, including certain plasticizers, hypolipidemic drugs (e.g., ciprofibrate, fenofibrate, WY-14643, and clofibrate), agrochemicals, and environmental pollutants, are peroxisome proliferators (PPs). Appropriate dose of PPs causes a moderate increase in the number and size of peroxisomes and the expression of genes encoding peroxisomal lipid-metabolizing enzymes. However, high-dose PPs cause varied harmful effects. Chronic administration of PPs to mice and rats results in hepatomegaly and ultimately carcinogenesis. Nuclear receptor protein peroxisome proliferator-activated receptor-α (Pparα) was shown to be required for this process. However, biological adaptations to minimize this risk are poorly understood. In this study, we found that miR-181a2 expression was induced by the Pparα agonist WY-14643. Moreover, exogenous expression of miR-181a-5p dramatically alleviated the cell toxicity caused by overactivation of Pparα. Further studies showed that miR-181a-5p directly targeted the Pparα 3′ untranslated region and depressed the Pparα protein level. This study identified a feedback loop between miR-181a-5p and Pparα, which allows biological systems to approach a balance when Pparα is overactivated.
Collapse
Affiliation(s)
- Yanjie Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuying Wei
- The Key Laboratory of Mammalian, Reproductive Biology and Biotechnology of the Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shengsong Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - You Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanling Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangpeng Li
- The Key Laboratory of Mammalian, Reproductive Biology and Biotechnology of the Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Lisheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Bio-medical Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Abstract
Nuclear receptors (NRs) are master regulators of broad genetic programs in metazoans. These programs are regulated in part by the small-molecule ligands that bind NRs and modulate their interactions with transcriptional coregulatory factors. X-ray crystallography is now delivering more complete pictures of how the multidomain architectures of NR homo- and heterodimers are physically arranged on their DNA elements and how ligands and coactivator peptides act through these complexes. Complementary studies are also pointing to a variety of novel mechanisms by which NRs access their DNA-response elements within chromatin. Here, we review the new structural advances together with proteomic discoveries that shape our understanding of how NRs form a variety of functional interactions with collaborating factors in chromatin.
Collapse
Affiliation(s)
| | - Fraydoon Rastinejad
- Integrative Metabolism Program, SBP Medical Discovery Institute, Orlando, Florida 32827
| |
Collapse
|
9
|
Gustafsson JA, Webb P. Editorial. J Steroid Biochem Mol Biol 2016; 157:1-2. [PMID: 26791250 DOI: 10.1016/j.jsbmb.2015.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This Special Issue on the topic of "Orphan Nuclear Receptors" should help to cement the long held view that orphan members of the Nuclear Receptor superfamily play crucial roles in development, physiology and multiple pathologies and that some are attractive druggable targets. Focusing on selected orphans, this issue highlights recent developments in orphan receptor action and addresses questions about function, ligand recognition, strategies for drug development and applications for such drugs. This article is part of a Special Issue entitled "Orphan Nuclear Receptors".
Collapse
Affiliation(s)
- Jan-Ake Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge, Sweden; Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Paul Webb
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|