1
|
Anapali M, Kaya-Dagistanli F, Akdemir AS, Aydemir D, Ulusu NN, Ulutin T, Uysal O, Tanriverdi G, Ozturk M. Combined resveratrol and vitamin D treatment ameliorate inflammation-related liver fibrosis, ER stress, and apoptosis in a high-fructose diet/streptozotocin-induced T2DM model. Histochem Cell Biol 2022; 158:279-296. [PMID: 35849204 DOI: 10.1007/s00418-022-02131-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
A high fructose diet is a major cause of diabetes and various metabolic disorders, including fatty liver. In this study, we investigated the effects of resveratrol and vitamin D (VitD) treatments on endoplasmic reticulum (ER) stress, oxidative stress, inflammation, apoptosis, and liver regeneration in a rat model of type 2 diabetes mellitus, namely, T2DM Sprague-Dawley rats. This T2DM rat model was created through a combination treatment of a 10% fructose diet and 40 mg/kg streptozotocin (STZ). Resveratrol (1 mg/kg/day) and VitD (170/IU/week) were administered alone and in combination to both the diabetic and control groups. Immunohistochemical staining was performed to evaluate PCNA, NF-κB, TNF-α, IL-6, IL-1β, GRP78, and active caspase-3 in liver tissue. The TUNEL method and Sirius red staining were used to determine apoptosis and fibrosis, respectively. G6PD, 6-PGD, GR, and GST activities were measured to determine oxidative stress status. We found that the expressions of cytokines (TNF-α, IL-6, and IL-1β) correlated with NF-κB activation and were significantly increased in the T2DM rats. Increased GRP78 expression, indicating ER stress, increased in apoptotic cells, enhanced caspase-3 activation, and collagen accumulation surrounding the central vein were observed in the T2DM group compared with the other groups. The combination VitD + resveratrol treatment improved antioxidant defense via increasing G6PD, 6-PGD, GR, and GST activities compared to the diabetic groups. We concluded that the combined administration of resveratrol with VitD ameliorates the adverse effects of T2DM by regulating blood glucose levels, increasing antioxidant defense mechanisms, controlling ER stress, enhancing tissue regeneration, improving inflammation, and reducing apoptosis in liver cells. In conclusion, this study indicates that the combination treatment of resveratrol + VitD can be a beneficial option for preventing liver damage in fructose-induced T2DM.
Collapse
Affiliation(s)
- Merve Anapali
- Department of Medical Biology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Fatma Kaya-Dagistanli
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ayse Seda Akdemir
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Omer Uysal
- Department of Biostatistics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melek Ozturk
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
2
|
Lim H, Lee H, Lim Y. Effect of vitamin D 3 supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice. Exp Biol Med (Maywood) 2021; 246:1139-1147. [PMID: 33541129 PMCID: PMC8142114 DOI: 10.1177/1535370220987524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Vitamin D3 has been reported to protect liver against non-alcoholic fatty liver disease (NAFLD) by attenuating hepatic lipid dysregulation in type 2 diabetes mellitus (T2DM). However, the mechanism of vitamin D3 on hepatic lipid metabolism-associated autophagy in hyperglycemia-induced NAFLD remains yet to be exactly elucidated. C57BL/6J mice were intraperitoneally injected with 30 mg/kg of streptozotocin and fed a high-fat diet for induction of diabetes. All mice were administered with vehicle or vitamin D3 (300 ng/kg or 600 ng/kg) by oral gavage for 12 weeks. Histological demonstrations of the hepatic tissues were obtained by H&E staining and the protein levels related to lipid metabolism and autophagy signaling were analyzed by Western blot. Treatment with vitamin D3 improved insulin resistance, liver damage, and plasma lipid profiles, and decreased hepatic lipid content in the diabetic mice. Moreover, vitamin D3 administration ameliorated hepatic lipid dysregulation by downregulating lipogenesis and upregulating lipid oxidation under diabetic condition. Importantly, vitamin D3 treatment induced autophagy by activating AMP-activated protein kinase (AMPK), inactivating Akt and ultimately blocking mammalian target of rapamycin (mTOR) activation in the T2DM mice. Additionally, vitamin D3 was found to be effective in anti-apoptosis and anti-fibrosis in the liver of diabetic mice. The results suggested that vitamin D3 may ameliorate hepatic lipid dysregulation by activating autophagy regulatory AMPK/Akt-mTOR signaling in T2DM, providing insights into its beneficial effects on NAFLD in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hyewon Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Wachal Z, Bombicz M, Priksz D, Hegedűs C, Kovács D, Szabó AM, Kiss R, Németh J, Juhász B, Szilvássy Z, Varga B. Retinoprotection by BGP-15, a Hydroximic Acid Derivative, in a Type II Diabetic Rat Model Compared to Glibenclamide, Metformin, and Pioglitazone. Int J Mol Sci 2020; 21:ijms21062124. [PMID: 32204537 PMCID: PMC7139510 DOI: 10.3390/ijms21062124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 01/20/2023] Open
Abstract
High blood glucose and the consequential ischemia-reperfusion (I/R) injury damage vessels of the retina, deteriorating its function, which can be clearly visualized by electroretinography (ERG). The aim of the present study was to evaluate the possible retinoprotective effects of systemic BGP-15, an emerging drug candidate, in an insulin resistant animal model, the Goto-Kakizaki rat, and compare these results with well-known anti-diabetics such as glibenclamide, metformin, and pioglitazone, which even led to some novel conclusions about these well-known agents. Experiments were carried out on diseased animal model (Goto-Kakizaki rats). The used methods include weight measurement, glucose-related measurements—like fasting blood sugar analysis, oral glucose tolerance test, hyperinsulinemic euglycemic glucose clamp (HEGC), and calculations of different indices from HEGC results—electroretinography and Western Blot. Beside its apparent insulin sensitization, BGP-15 was also able to counteract the retina-damaging effect of Type II diabetes comparable to the aforementioned anti-diabetics. The mechanism of retinoprotective action may include sirtuin 1 (SIRT1) and matrix metalloproteinase 9 (MMP9) enzymes, as BGP-15 was able to elevate SIRT1 and decrease MMP9 expression in the eye. Based on our results, this emerging hydroximic acid derivative might be a future target of pharmacological developments as a potential drug against the harmful consequences of diabetes, such as diabetic retinopathy.
Collapse
|
4
|
Effects of vitamin D on drugs: Response and disposal. Nutrition 2020; 74:110734. [PMID: 32179384 DOI: 10.1016/j.nut.2020.110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D supplementation and vitamin D deficiency are common in clinical experience and in daily life. Vitamin D not only promotes calcium absorption and immune regulation, but also changes drug effects (pharmacodynamics and adverse reactions) and drug disposal in vivo when combined with various commonly used clinical drugs. The extensive physiological effects of vitamin D may cause synergism effects or alleviation of adverse reactions, and vitamin D's affect on drugs in vivo disposal through drug transporters or metabolic enzymes may also lead to changes in drug effects. Herein, the effects of vitamin D combined with commonly used drugs were reviewed from the perspective of drug efficacy and adverse reactions. The effects of vitamin D on drug transport and metabolism were summarized and analyzed. Hopefully, more attention will be paid to vitamin D supplementation and deficiency in clinical treatment and drug research and development.
Collapse
|
5
|
Younan N, Elattar S, Farouk M, Rashed L, Estaphan S. Dipeptidyl peptidase-4 inhibitors and aerobic exercise synergistically protect against liver injury in ovariectomized rats. Physiol Rep 2019; 7:e14191. [PMID: 31496048 PMCID: PMC6732505 DOI: 10.14814/phy2.14191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Menopause increases the risk of non-alcoholic fatty liver disease (NAFLD). We investigated the effect of incretin and/ or exercise on the hepatic fat accumulation in ovariectomized rats. Rats were divided into five groups: Group 1: Control rats, Group 2: Ovariectomized rats, Group 3: Ovariectomized rats + Dipeptidyl peptidase-4 inhibitor (DPPi) (30 mg/kg/day, orally), Group 4: Ovariectomized rats + swimming, and Group 5: Ovariectomized rats + swimming + DPPi. After 6 weeks, Alanine aminotransferase (ALT), glucose, insulin, HOMA IR (Homeostatic Model Assessment for Insulin Resistance), FFA (free fatty acids), Tumor necrosis factor alpha (TNF α), IL6, IL1B levels were measured in blood. The livers were collected for Hematoxylin and eosin (H&E) examination and evaluation of hepatic gene expression of SREBP (sterol regulatory element-binding protein1c), PPAR α (peroxisome proliferator-activated receptor alpha), ACC 1 (acetyl-CoA carboxylase), LC3 (microtubule-associated protein 1 light chain 3), SIRT (sirtuin), hepatic triglycerides, IL6, IL10, caspase 3 and AMPK (adenosine monophosphate-activated protein kinase). A significant increase in ALT level and area of liver tissue defects with a significant increase in glucose HOMA IR, serum FFA, IL6, IL1B, TNF α, liver TGs (triglycerides), inflammation, apoptosis, SREBP1c, ACC1 were found in ovariectomized rats as compared to control group with a significant decrease in PPAR α, LC3, AMPK and SIRT1. DPPi treated rats with and without exercise showed a significant improvement in ALT and area of liver tissue defects, inflammation and apoptosis and serum IL6, IL1B, TNF α, FFA, liver LC3, SIRT1, AMPK, TGs, PPAR α, ACC1 and SREBP1c as compared to the ovariectomized group. Findings from the study confirm the derangement of fat metabolism in the ovariectomized rats and showed that incretin-based therapy and exercise synergistically improved liver fat metabolism, achieved significant beneficial metabolic effects and offer full protection against NAFLD.
Collapse
Affiliation(s)
- Nagat Younan
- Physiology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Samah Elattar
- Physiology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Mira Farouk
- Histology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Laila Rashed
- Biochemistry Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Suzanne Estaphan
- Physiology Department, Faculty of MedicineCairo UniversityCairoEgypt
- ANU Medical SchoolAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
6
|
Ahmad Alma D, Abdullah A S. Hepatorenal Protective Effects of Some Plant Extracts on Experimental Diabetes in Male Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.238.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
The effects of safranal, a constitute of saffron, and metformin on spatial learning and memory impairments in type-1 diabetic rats: behavioral and hippocampal histopathological and biochemical evaluations. Biomed Pharmacother 2018; 107:203-211. [DOI: 10.1016/j.biopha.2018.07.165] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
|
8
|
BMAL1 regulates balance of osteogenic–osteoclastic function of bone marrow mesenchymal stem cells in type 2 diabetes mellitus through the NF-κB pathway. Mol Biol Rep 2018; 45:1691-1704. [DOI: 10.1007/s11033-018-4312-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
|
9
|
Malaysian propolis, metformin and their combination, exert hepatoprotective effect in streptozotocin-induced diabetic rats. Life Sci 2018; 211:40-50. [PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/18/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
AIMS Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle. KEY FINDINGS Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats. SIGNIFICANCE Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.
Collapse
|
10
|
Jia T, Wang YN, Zhang D, Xu X. 1α,25-dihydroxyvitamin D3 promotes osseointegration of titanium implant via downregulating AGEs/RAGE pathway in T2DM. Endocr Connect 2018; 7:/journals/ec/aop/ec-18-0241.xml. [PMID: 30352411 PMCID: PMC6215803 DOI: 10.1530/ec-18-0241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
Diabetes-induced advanced glycation end products (AGEs) overproduction would result in compromised osseointegration of titanium implant and high rate of implantation failure. 1α,25-dihydroxyvitamin D3 (1,25VD3) plays a vital role in osteogenesis, whereas its effects on the osseointegration and the underlying mechanism are unclear. The purpose of this study was to investigate that 1,25VD3 might promote the defensive ability of osseointegration through suppressing AGEs/RAGE in type 2 diabetes mellitus. In animal study, streptozotocin-induced diabetic rats accepted implant surgery, with or without 1,25VD3 intervention for 12 weeks. After sacrificed, the serum AGEs level, bone microarchitecture and biomechanical index of rats were measured systematically. In vitro study, osteoblasts differentiation capacity was analyzed by alizarin red staining, alkaline phosphatase assay and western blotting, after treated with BSA, AGEs, AGEs with RAGE inhibitor and AGEs with 1,25VD3. And the expression of RAGE protein was detected to explore the mechanism. Results showed that 1,25VD3 could reverse the impaired osseointegration and mechanical strength, which possibly resulted from the increased AGEs. Moreover, 1,25VD3 could ameliorate AGEs-induced damage of cell osteogenic differentiation, as well as downregulating the RAGE expression. These data may provide a theoretical basis that 1,25VD3 could work as an adjuvant treatment to against poor osseointegration in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Dongjiao Zhang
- D Zhang, School of Stomatology, Shandong University, Jinan, China
| | | |
Collapse
|
11
|
Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1583098. [PMID: 28396714 PMCID: PMC5370473 DOI: 10.1155/2017/1583098] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR-α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile (P < 0.05) and reduced serum and liver MDA concentration compared to HFD rats (P < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR-α, ACLY, FAS, and NF-κB p65 expressions and enhanced the PPAR-α, IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers (P < 0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver.
Collapse
|
12
|
Zeng N, Zhou Y, Zhang S, Singh Y, Shi B, Salker MS, Lang F. 1α,25(OH) 2D3 Sensitive Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Ishikawa Cells. Cell Physiol Biochem 2017; 41:678-688. [PMID: 28222424 DOI: 10.1159/000458427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Tumor cell proliferation is modified by 1,25-Dihydroxy-Vitamin D3 (1,25(OH)2D3), a steroid hormone predominantly known for its role in calcium and phosphorus metabolism. Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions and lactate, which is in part accomplished by Na+/H+ exchangers, such as NHE1 and monocarboxylate transporters, such as MCT4. An effect of 1,25(OH)2D3 on those transport processes has, however, never been reported. As cytosolic pH impacts on apoptosis, the study further explored the effect of 1,25(OH)2D3 on apoptosis and on the apoptosis regulating kinase AKT, transcription factor Forkhead box O-3 (FOXO3A) and B-cell lymphoma protein BCL-2. METHODS In human endometrial adenocarcinoma (Ishikawa) cells, cytosolic pH (pHi) was determined utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, NHE1 and MCT4 transcript levels using qRT-PCR, NHE1, MCT4, total & phospho AKT, total & phospho-FOXO3A and BCL-2 protein abundance by Western blotting, lactate concentration in the supernatant utilizing a colorimetric enzyme assay and cell death quantification using CytoTox 96®, Annexin V and Propidium Iodide staining. RESULTS A 24 hours treatment with 1,25(OH)2D3 (100 nM) significantly increased cytosolic pH (pHi), significantly decreased Na+/H+ exchanger activity, NHE1 and MCT4 transcript levels as well as protein abundance and significantly increased lactate concentration in the supernatant. Treatment of Ishikawa cells with 1,25(OH)2D3 (100 nM) further triggered apoptosis, an effect paralleled by decreased phosphorylation of AKT and FOXO3A as well as decreased abundance of BCL-2. CONCLUSIONS In Ishikawa cells 1,25(OH)2D3 is a powerful stimulator of glycolysis, an effect presumably due to cytosolic alkalinization. Despite stimulation of glycolysis, 1,25(OH)2D3 stimulates slightly but significantly suicidal cell death, an effect presumably in part due to decreased activation of AKT with decreased inhibition of pro-apoptotic transcription factor FOXO3A and downregulation of the anti-apoptotic protein BCL-2.
Collapse
|