1
|
Guzman JM, Boone MH, Suarez GL, Mitchell C, Monk CS, Hyde LW, Lopez-Duran NL. Relationship between COVID-related stressors and internalizing symptoms: Gendered neuroendocrine risk profiles. Psychoneuroendocrinology 2024; 159:106668. [PMID: 37944209 PMCID: PMC11214276 DOI: 10.1016/j.psyneuen.2023.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The COVID-19 pandemic generated significant life stress and increases in internalizing disorders. Moreover, COVID-related stressors disproportionately impacted women, consistent with outcomes showing a gender gap in stress-related disorders. Gender-related stress vulnerability emerges in adolescence alongside gender-specific changes in neuroendocrine signaling. Most research on the neuroendocrinology of stress-related disorders has focused on differences in the hypothalamic-pituitary-adrenal (HPA) axis effector hormone cortisol. More recent studies, however, emphasize dehydroepiandrosterone (DHEA), a neuroprotective and neuroactive hormone released concurrently with cortisol that balances its biobehavioral actions during stress. Notably, women show lower cortisol responses and higher DHEA responses to stress. However, lower cortisol and higher DHEA are associated with internalizing disorders in women, while those associations are opposite in men. Thus, gender-specific factors perhaps result in a neuroendocrine profile that places women at greater risk for stress-related disorders. The current study prospectively examined socially evaluated cold-pressor task (SECPT) induced neuroendocrine responses at age 15 and internalizing symptoms during the COVID-19 pandemic at age 21 in a cohort of 175 primarily Black low-socioeconomic status participants, while controlling for internalizing symptoms at age 15. The association between COVID-related stress and internalizing symptoms was not stronger in women. Lower DHEA-cortisol ratios were associated with a weaker relationship between COVID-related stress and internalizing symptoms in women, while higher ratios were associated with a weaker relationship in men. These findings suggest gender differences in the relationship between DHEA and cortisol and internalizing outcomes during a stressful period, and support differential neuroendocrine protective and risk pathways for young men and women.
Collapse
Affiliation(s)
- Jose M Guzman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Montana H Boone
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Gabriela L Suarez
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
2
|
Buckinx F, Aubertin-Leheudre M. Sarcopenia in Menopausal Women: Current Perspectives. Int J Womens Health 2022; 14:805-819. [PMID: 35769543 PMCID: PMC9235827 DOI: 10.2147/ijwh.s340537] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Menopause is associated with hormonal changes, which could accelerate or lead to sarcopenia. Functional impairment and physical disability are the major consequences of sarcopenia. In order to hamper these negative health outcomes, it appears necessary to prevent and even treat sarcopenia, through healthy lifestyle changes including diet and regular physical activity or through hormonal replacement therapy when appropriate. Therefore, the purpose of this narrative review will be 1) to present the prevalence of sarcopenia in postmenopausal women; 2) to address the risk factors related to sarcopenia in this specific population; and 3) to discuss how to manage sarcopenia among postmenopausal women.
Collapse
Affiliation(s)
- Fanny Buckinx
- Département des Sciences de l'Activité Physique, Groupe de Recherche en Activité Physique Adapté, Université du Québec à Montréal (UQAM), Montréal (Qc), Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal (Qc), Canada
| | - Mylène Aubertin-Leheudre
- Département des Sciences de l'Activité Physique, Groupe de Recherche en Activité Physique Adapté, Université du Québec à Montréal (UQAM), Montréal (Qc), Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal (Qc), Canada
| |
Collapse
|
3
|
Jiang L, Cui J, Zhang C, Xie J, Zhang S, Fu D, Duo W. Sigma-1 receptor is involved in diminished ovarian reserve possibly by influencing endoplasmic reticulum stress-mediated granulosa cells apoptosis. Aging (Albany NY) 2020; 12:9041-9065. [PMID: 32409627 PMCID: PMC7288944 DOI: 10.18632/aging.103166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022]
Abstract
Sigma non-opioid intracellular receptor 1 (sigma-1 receptor), a non-opioid transmembrane protein, is located on cellular mitochondrial membranes and endoplasmic reticulum. Current research has demonstrated that sigma-1 receptor is related to human degenerative diseases. This study is focused on the effects of sigma-1 receptor on the pathophysiological process of diminished ovarian reserve (DOR) and granulosa cells (GCs) apoptosis. Sigma-1 receptor concentration in follicular fluid (FF) and serum were negatively correlated with basal follicle-stimulating hormone (FSH) and positively correlated with anti-mullerian hormone (AMH), antral follicle count (AFC). Sigma-1 receptor reduction in GCs was accompanied by endoplasmic reticulum stress (ERS)-mediated apoptosis in women with DOR. Plasmid transfection was used to establish SIGMAR1-overexpressed and SIGMAR1-knockdown human granulosa-like tumor (KGN) cell and thapsigargin (TG) was used to induce ERS KGN cells. We found that KGN cells treated with endogenous sigma-1 receptor ligand dehydroepiandrosterone (DHEA) and sigma-1 receptor agonist PRE-084 showed similar biological effects to SIGMAR1-overexpressed KGN cells and opposite effects to SIGMAR1-knockdown KGN cells. DHEA may improve DOR patients' pregnancy outcomes by upregulating sigma-1 receptor and downregulating ERS-mediated apoptotic genes in GCs. Thus, sigma-1 receptor may be a potential ovarian reserve biomarker, and ligand-mediated sigma-1 receptor activation could be a future approach for DOR therapy.
Collapse
Affiliation(s)
- Lile Jiang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Cuilian Zhang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Juanke Xie
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaodi Zhang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongjun Fu
- School of Pharmaceutical Sciences and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Duo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
5
|
Wang LJ, Lee SY, Chou MC, Lee MJ, Chou WJ. Dehydroepiandrosterone sulfate, free testosterone, and sex hormone-binding globulin on susceptibility to attention-deficit/hyperactivity disorder. Psychoneuroendocrinology 2019; 103:212-218. [PMID: 30711898 DOI: 10.1016/j.psyneuen.2019.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
The neuroendocrine system may affect the pathophysiology of gender differences in attention deficit/hyperactivity disorder (ADHD). This study examines whether the relationships among dehydroepiandrosterone sulfate (DHEA-S), free testosterone, or sex hormone-binding globulin (SHBG) and ADHD presentations exhibit gender differences. A total of 113 boys and 35 girls with ADHD (all drug naïve) and 46 and 26 healthy control boys and girls, respectively, were recruited. Blood samples were obtained to measure the serum levels of DHEA-S, free testosterone, and SHBG in each child. The Swanson, Nolan, and Pelham Scale for ADHD Version IV (SNAP-IV) was used to evaluate behavioral symptoms and the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) and the Conners' Continuous Performance Test (CPT) were utilized to assess neurocognitive functions. Patients with ADHD had lower DHEA-S levels than male and female healthy control subjects, and no significant differences were observed in free testosterone and SHBG levels between the patients and the controls. DHEA-S levels were negatively correlated with children's impulsivity performance in the CPT. SHBG levels were negatively correlated with ADHD behavior symptoms among boys. Free testosterone levels were not significantly correlated with either ADHD clinical symptoms or neuropsychological functions. We propose that DHEA-S serves as a potential biomarker of ADHD and is consistently involved in the pathogenesis of ADHD in both boys and girls. SHBG may be involved in behaviors associated with ADHD in boys. Additional studies with basic scientific measures are warranted to elucidate the relationship between androgen hormones and clinical presentations of ADHD.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Miao-Chun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Jing Lee
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Farooqi NAI, Scotti M, Yu A, Lew J, Monnier P, Botteron KN, Campbell BC, Booij L, Herba CM, Séguin JR, Castellanos-Ryan N, McCracken JT, Nguyen TV. Sex-specific contribution of DHEA-cortisol ratio to prefrontal-hippocampal structural development, cognitive abilities and personality traits. J Neuroendocrinol 2019; 31:e12682. [PMID: 30597689 PMCID: PMC6394408 DOI: 10.1111/jne.12682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 01/06/2023]
Abstract
Although dehydroepiandrosterone (DHEA) may exert neuroprotective effects in the developing brain, prolonged or excessive elevations in cortisol may exert neurotoxic effects. The ratio between DHEA and cortisol (DC ratio) has been linked to internalising and externalising disorders, as well as cognitive performance, supporting the clinical relevance of this hormonal ratio during development. However, the brain mechanisms by which these effects may be mediated have not yet been identified. Furthermore, although there is evidence that the effects of cortisol in the central nervous system may be sexually dimorphic in humans, the opposite is true for DHEA, with human studies showing no sex-specific associations in cortical thickness, cortico-amygdalar or cortico-hippocampal structural covariance. Therefore, it remains unclear whether sex moderates the developmental associations between DC ratio, brain structure, cognition and behaviour. In the present study, we examined the associations between DC ratio, structural covariance of the hippocampus with whole-brain cortical thickness, and measures of personality, behaviour and cognition in a longitudinal sample of typically developing children, adolescents and young adults aged 6-22 years (N = 225 participants [F = 128]; 355 scans [F = 208]), using mixed effects models that accounted for both within- and between-subject variances. We found sex-specific interactions between DC ratio and anterior cingulate cortex-hippocampal structural covariance, with higher DC ratios being associated with a more negative covariance between these structures in girls, and a more positive covariance in boys. Furthermore, the negative prefrontal-hippocampal structural covariance found in girls was associated with higher verbal memory and mathematical ability, whereas the positive covariance found in boys was associated with lower cooperativeness and reward dependence personality traits. These findings support the notion that the ratio between DHEA and cortisol levels may contribute, at least in part, to the development of sex differences in cognitive abilities, as well as risk for internalising/externalising disorders, via an alteration in prefrontal-hippocampal structure during the transition from childhood to adulthood.
Collapse
Affiliation(s)
- Nasr A. I. Farooqi
- Department of Psychiatry, McGill University, Montreal, QC,
Canada, H3A1A1
| | - Martina Scotti
- Department of Psychiatry, McGill University, Montreal, QC,
Canada, H3A1A1
| | - Ally Yu
- Department of Psychology, McGill University, Montreal, QC,
Canada, H4A 3J1
| | - Jimin Lew
- Department of Psychology, McGill University, Montreal, QC,
Canada, H4A 3J1
| | - Patricia Monnier
- Department of Obstetrics-Gynecology, McGill University
Health Center, Montreal, QC, Canada, H4A 3J1
- Research Institute of the McGill University Health Center,
Montreal, QC, Canada, H4A 3J1
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO, USA, 63110
- Brain Development Cooperative Group
| | - Benjamin C. Campbell
- Department of Anthropology, University of
Wisconsin-Milwaukee, Milwaukee, WI, USA, 53211
| | - Linda Booij
- Department of Psychiatry, McGill University, Montreal, QC,
Canada, H3A1A1
- Department of Psychology, Concordia University, Montreal,
QC, Canada, H4B 1R6
- CHU Sainte Justine Hospital Research Centre, University of
Montreal, Montreal, QC, Canada, H3T1C5
| | - Catherine M. Herba
- CHU Sainte Justine Hospital Research Centre, University of
Montreal, Montreal, QC, Canada, H3T1C5
- Department of Psychology, Université du
Québec à Montréal, Montreal, QC, Canada
| | - Jean R. Séguin
- CHU Sainte Justine Hospital Research Centre, University of
Montreal, Montreal, QC, Canada, H3T1C5
- Department of Psychiatry and Addiction, University of
Montreal, Montreal, QC, Canada, H3T1C5
| | - Natalie Castellanos-Ryan
- CHU Sainte Justine Hospital Research Centre, University of
Montreal, Montreal, QC, Canada, H3T1C5
- School of Psychoeducation, University of Montreal,
Montreal QC, Canada, H2V 2S9
| | - James T McCracken
- Brain Development Cooperative Group
- Department of Child and Adolescent Psychiatry, University
of California in Los Angeles, Los Angeles, CA, USA, 90024
| | - Tuong-Vi Nguyen
- Department of Psychiatry, McGill University, Montreal, QC,
Canada, H3A1A1
- Department of Obstetrics-Gynecology, McGill University
Health Center, Montreal, QC, Canada, H4A 3J1
- Research Institute of the McGill University Health Center,
Montreal, QC, Canada, H4A 3J1
| |
Collapse
|
7
|
Thomas N, Gurvich C, Kulkarni J. Sex Differences in Aging and Associated Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:57-76. [PMID: 31493222 DOI: 10.1007/978-3-030-25650-0_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aging is a natural process defined by the gradual, time-dependent decline of biological and behavioural functions, for which individuals of the same chronological age show variability. The capacity of biological systems to continuously adjust for optimal functioning despite ever changing environments is essential for healthy aging, and variability in these adaptive homeostatic mechanisms may reflect such heterogeneity in the aging process. With an ever-increasing aging population, interest in biomarkers of aging is growing. Although no universally accepted definition of biomarkers of healthy aging exists, mediators of homeostasis are consistently used as measures of the aging process. As important sex differences are known to underlie many of these systems, it is imperative to consider that this may reflect, to some extent, the sex differences observed in aging and age-related disease states. This chapter aims to outline sex differences in key homeostatic domains thought to be associated with the pathophysiology of aging, often proposed as biomarkers of aging and age-related disease states. This includes considering sex-based differences and hormonal status with regards to the gonadal and adrenal endocrine systems and immune function.
Collapse
Affiliation(s)
- Natalie Thomas
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Hoefel AL, Arbo BD, Vieira-Marques C, Cecconello AL, Cozer AG, Ribeiro MFM, Kucharski LC. Female rats are more susceptible to metabolic effects of dehydroepiandrosterone treatment. Can J Physiol Pharmacol 2018; 96:1069-1075. [PMID: 30011383 DOI: 10.1139/cjpp-2018-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a steroid hormone that presents several effects on metabolism; however, most of the studies have been performed on male animals, while few authors have investigated possible sex differences regarding the metabolic effects of DHEA. Therefore, the aim of this study was to evaluate the effect of different doses of DHEA on metabolic parameters of male and ovariectomized female Wistar rats. Sex differences were found in the metabolism of distinct substrates and in relation to the effect of DHEA. In respect to the glucose metabolism in the liver, the conversion of glucose to CO2 and the synthesis of lipids from glucose were 53% and 33% higher, respectively, in males. Also, DHEA decreased hepatic lipogenesis only in females. Regarding the hepatic glycogen synthesis pathway, females presented 73% higher synthesis than males, and the effect of DHEA was observed only in females, where it decreased this parameter. In the adipose tissue, glucose uptake was 208% higher in females and DHEA decreased this parameter. In the muscle, glucose uptake was 168% higher in females and no DHEA effect was observed. In summary, males and females present a different metabolic profile, with females being more susceptible to the metabolic effects of DHEA.
Collapse
Affiliation(s)
- Ana Lúcia Hoefel
- a Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,b Laboratório de Interação Neuro-humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- c Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Claudia Vieira-Marques
- a Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,b Laboratório de Interação Neuro-humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Lúcia Cecconello
- b Laboratório de Interação Neuro-humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Aline Gonçalves Cozer
- a Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Flávia Marques Ribeiro
- b Laboratório de Interação Neuro-humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- a Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|